Identifier
Values
[1] => [1,0] => [1,0] => [1] => 0
[1,1] => [1,0,1,0] => [1,1,0,0] => [1,2] => 0
[2] => [1,1,0,0] => [1,0,1,0] => [2,1] => 0
[1,1,1] => [1,0,1,0,1,0] => [1,1,0,1,0,0] => [1,3,2] => 1
[1,2] => [1,0,1,1,0,0] => [1,1,1,0,0,0] => [1,2,3] => 0
[2,1] => [1,1,0,0,1,0] => [1,0,1,1,0,0] => [2,3,1] => 1
[3] => [1,1,1,0,0,0] => [1,1,0,0,1,0] => [3,1,2] => 0
[1,1,1,1] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [1,3,2,4] => 1
[1,1,2] => [1,0,1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [1,3,4,2] => 0
[1,2,1] => [1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,4,2,3] => 1
[1,3] => [1,0,1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [1,2,3,4] => 0
[2,1,1] => [1,1,0,0,1,0,1,0] => [1,0,1,1,0,1,0,0] => [2,3,1,4] => 1
[2,2] => [1,1,0,0,1,1,0,0] => [1,0,1,1,1,0,0,0] => [2,3,4,1] => 0
[3,1] => [1,1,1,0,0,0,1,0] => [1,1,0,0,1,1,0,0] => [3,4,1,2] => 1
[4] => [1,1,1,1,0,0,0,0] => [1,1,1,0,0,0,1,0] => [4,1,2,3] => 0
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [1,3,2,5,4] => 2
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,3,5,2,4] => 0
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [1,3,2,4,5] => 1
[1,1,3] => [1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,3,4,5,2] => 1
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,4,2,5,3] => 2
[1,2,2] => [1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,4,5,2,3] => 0
[1,3,1] => [1,0,1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,5,2,3,4] => 1
[1,4] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,2,3,4,5] => 0
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => [1,0,1,1,0,1,0,1,0,0] => [2,3,1,5,4] => 2
[2,1,2] => [1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,0,1,1,0,0,0] => [2,3,5,1,4] => 0
[2,2,1] => [1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,1,0,0,1,0,0] => [2,3,1,4,5] => 1
[2,3] => [1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => [2,3,4,5,1] => 1
[3,1,1] => [1,1,1,0,0,0,1,0,1,0] => [1,1,0,0,1,1,0,1,0,0] => [3,4,1,5,2] => 2
[3,2] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,0,1,1,1,0,0,0] => [3,4,5,1,2] => 0
[4,1] => [1,1,1,1,0,0,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0] => [4,5,1,2,3] => 1
[5] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,0,0,0,0,1,0] => [5,1,2,3,4] => 0
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,3,2,5,4,6] => 2
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [1,3,5,2,4,6] => 0
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => [1,3,2,5,6,4] => 1
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [1,3,5,6,2,4] => 1
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => [1,3,2,6,4,5] => 2
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => [1,3,6,2,4,5] => 0
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [1,3,2,4,5,6] => 1
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [1,3,4,5,6,2] => 0
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [1,4,2,5,3,6] => 2
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => [1,4,5,2,3,6] => 0
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [1,4,2,5,6,3] => 1
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [1,4,5,6,2,3] => 1
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [1,5,2,6,3,4] => 2
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [1,5,6,2,3,4] => 0
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [1,6,2,3,4,5] => 1
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,2,3,4,5,6] => 0
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0] => [1,0,1,1,0,1,0,1,0,1,0,0] => [2,3,1,5,4,6] => 2
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0] => [1,0,1,1,0,1,0,1,1,0,0,0] => [2,3,5,1,4,6] => 0
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0] => [1,0,1,1,0,1,1,0,0,1,0,0] => [2,3,1,5,6,4] => 1
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0] => [1,0,1,1,0,1,1,1,0,0,0,0] => [2,3,5,6,1,4] => 1
[2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0] => [1,0,1,1,1,0,0,1,0,1,0,0] => [2,3,1,6,4,5] => 2
[2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => [1,0,1,1,1,0,0,1,1,0,0,0] => [2,3,6,1,4,5] => 0
[2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0] => [1,0,1,1,1,1,0,0,0,1,0,0] => [2,3,1,4,5,6] => 1
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => [2,3,4,5,6,1] => 0
[3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0] => [1,1,0,0,1,1,0,1,0,1,0,0] => [3,4,1,5,2,6] => 2
[3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0] => [1,1,0,0,1,1,0,1,1,0,0,0] => [3,4,5,1,2,6] => 0
[3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,1,0,0,1,0,0] => [3,4,1,5,6,2] => 1
[3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [3,4,5,6,1,2] => 1
[4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,1,0,1,0,0] => [4,5,1,6,2,3] => 2
[4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [4,5,6,1,2,3] => 0
[5,1] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [5,6,1,2,3,4] => 1
[6] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => [6,1,2,3,4,5] => 0
[1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [1,3,2,5,4,7,6] => 3
[1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,1,0,0,0] => [1,3,5,2,4,7,6] => 1
[1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,1,0,0,1,0,0] => [1,3,2,5,7,4,6] => 1
[1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,1,1,1,0,0,0,0] => [1,3,5,7,2,4,6] => 1
[1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,1,0,0] => [1,3,2,5,4,6,7] => 2
[1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,1,1,0,0,0] => [1,3,5,2,4,6,7] => 0
[1,1,1,3,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,1,0,0,0,1,0,0] => [1,3,2,5,6,7,4] => 2
[1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,1,1,1,0,0,0,0,0] => [1,3,5,6,7,2,4] => 0
[1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,1,0,0] => [1,3,2,6,4,7,5] => 3
[1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,1,0,0,1,0,1,1,0,0,0] => [1,3,6,2,4,7,5] => 1
[1,1,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,1,0,0,1,0,0] => [1,3,2,6,7,4,5] => 1
[1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,1,0,0,1,1,1,0,0,0,0] => [1,3,6,7,2,4,5] => 1
[1,1,3,1,1] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,1,0,0] => [1,3,2,7,4,5,6] => 2
[1,1,3,2] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,1,1,0,0,0,1,1,0,0,0] => [1,3,7,2,4,5,6] => 0
[1,1,4,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,1,0,0] => [1,3,2,4,5,6,7] => 1
[1,1,5] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,0] => [1,3,4,5,6,7,2] => 1
[1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,1,0,0] => [1,4,2,5,3,7,6] => 3
[1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,0,1,1,0,0,0] => [1,4,5,2,3,7,6] => 1
[1,2,1,2,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,1,1,0,0,1,0,0] => [1,4,2,5,7,3,6] => 1
[1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0] => [1,1,1,0,0,1,0,1,1,1,0,0,0,0] => [1,4,5,7,2,3,6] => 1
[1,2,2,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,1,0,0] => [1,4,2,5,3,6,7] => 2
[1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,1,1,0,0,0] => [1,4,5,2,3,6,7] => 0
[1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,1,1,1,0,0,0,1,0,0] => [1,4,2,5,6,7,3] => 2
[1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,1,0,0,1,1,1,1,0,0,0,0,0] => [1,4,5,6,7,2,3] => 0
[1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,1,1,0,0,0,1,1,1,0,0,0,0] => [1,5,6,7,2,3,4] => 1
[1,4,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,1,0,0] => [1,6,2,7,3,4,5] => 2
[1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0] => [1,1,1,1,1,0,0,0,0,1,1,0,0,0] => [1,6,7,2,3,4,5] => 0
[1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => [1,7,2,3,4,5,6] => 1
[1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,2,3,4,5,6,7] => 0
[2,1,4] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,1,0,1,1,1,1,0,0,0,0,0] => [2,3,5,6,7,1,4] => 0
[2,4,1] => [1,1,0,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,1,1,1,1,0,0,0,0,1,0,0] => [2,3,1,4,5,6,7] => 1
[2,5] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [2,3,4,5,6,7,1] => 1
[3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [3,4,5,6,7,1,2] => 0
[5,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [5,6,7,1,2,3,4] => 0
[6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0] => [6,7,1,2,3,4,5] => 1
[7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [7,1,2,3,4,5,6] => 0
[1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [1,3,2,5,4,7,6,8] => 3
[1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0] => [1,3,2,5,4,8,6,7] => 3
>>> Load all 141 entries. <<<
[1,1,1,2,3] => [1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,0,0,1,1,1,0,0,0,0] => [1,3,5,8,2,4,6,7] => 1
[1,1,1,3,1,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,0,1,0,1,1,1,0,0,0,1,0,1,0,0] => [1,3,2,5,4,6,7,8] => 2
[1,1,2,1,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,1,0,1,0,0] => [1,3,2,6,4,7,5,8] => 3
[1,1,3,1,1,1] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,1,0,1,0,0] => [1,3,2,7,4,8,5,6] => 3
[1,1,4,1,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,1,0,1,0,0] => [1,3,2,8,4,5,6,7] => 2
[1,1,5,1] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,1,0,0] => [1,3,2,4,5,6,7,8] => 1
[1,2,1,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0] => [1,4,2,5,3,7,6,8] => 3
[1,2,2,1,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,1,0,1,0,0] => [1,4,2,5,3,8,6,7] => 3
[1,2,3,1,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,0,1,1,1,0,0,0,1,0,1,0,0] => [1,4,2,5,3,6,7,8] => 2
[1,3,1,1,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0] => [1,5,2,6,3,7,4,8] => 3
[1,4,1,1,1] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,1,0,1,0,0] => [1,6,2,7,3,8,4,5] => 3
[1,4,3] => [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,1,1,1,1,0,0,0,0,1,1,1,0,0,0,0] => [1,6,7,8,2,3,4,5] => 1
[1,5,1,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0] => [1,7,2,8,3,4,5,6] => 2
[1,5,2] => [1,0,1,1,1,1,1,0,0,0,0,0,1,1,0,0] => [1,1,1,1,1,1,0,0,0,0,0,1,1,0,0,0] => [1,7,8,2,3,4,5,6] => 0
[1,6,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0] => [1,8,2,3,4,5,6,7] => 1
[1,7] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0] => [1,2,3,4,5,6,7,8] => 0
[2,6] => [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [2,3,4,5,6,7,8,1] => 0
[3,5] => [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0] => [3,4,5,6,7,8,1,2] => 1
[5,3] => [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0] => [5,6,7,8,1,2,3,4] => 1
[6,2] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0] => [6,7,8,1,2,3,4,5] => 0
[7,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0] => [7,8,1,2,3,4,5,6] => 1
[8] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0] => [8,1,2,3,4,5,6,7] => 0
[1,6,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0,0] => [1,8,2,9,3,4,5,6,7] => 2
[1,6,2] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0,0] => [1,8,9,2,3,4,5,6,7] => 0
[1,7,1] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,0] => [1,9,2,3,4,5,6,7,8] => 1
[1,8] => [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0] => [1,2,3,4,5,6,7,8,9] => 0
[2,7] => [1,1,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0] => [2,3,4,5,6,7,8,9,1] => 1
[6,3] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,0,0,0] => [1,1,1,1,1,0,0,0,0,0,1,1,1,1,0,0,0,0] => [6,7,8,9,1,2,3,4,5] => 1
[7,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,0,0,0] => [7,8,9,1,2,3,4,5,6] => 0
[8,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,0,0] => [8,9,1,2,3,4,5,6,7] => 1
[9] => [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0] => [9,1,2,3,4,5,6,7,8] => 0
[1,7,2] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,0,0] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,0,0,0] => [1,9,10,2,3,4,5,6,7,8] => 0
[1,8,1] => [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0] => [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,0] => [1,10,2,3,4,5,6,7,8,9] => 1
[1,9] => [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0] => [1,2,3,4,5,6,7,8,9,10] => 0
[2,8] => [1,1,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0] => [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0] => [2,3,4,5,6,7,8,9,10,1] => 0
[6,4] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0] => [6,7,8,9,10,1,2,3,4,5] => 0
[7,3] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1,0,0,0,0] => [7,8,9,10,1,2,3,4,5,6] => 1
[8,2] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,0,0,0] => [8,9,10,1,2,3,4,5,6,7] => 0
[9,1] => [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0] => [9,10,1,2,3,4,5,6,7,8] => 1
[10] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0] => [10,1,2,3,4,5,6,7,8,9] => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of even descents of a permutation.
Map
bounce path
Description
The bounce path determined by an integer composition.
Map
inverse promotion
Description
The inverse promotion of a Dyck path.
This is the bijection obtained by applying the inverse of Schützenberger's promotion to the corresponding two rowed standard Young tableau.
Map
to 321-avoiding permutation
Description
Sends a Dyck path to a 321-avoiding permutation.
This bijection defined in [3, pp. 60] and in [2, Section 3.1].
It is shown in [1] that it sends the number of centered tunnels to the number of fixed points, the number of right tunnels to the number of exceedences, and the semilength plus the height of the middle point to 2 times the length of the longest increasing subsequence.