Identifier
-
Mp00097:
Binary words
—delta morphism⟶
Integer compositions
Mp00038: Integer compositions —reverse⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001118: Graphs ⟶ ℤ
Values
01 => [1,1] => [1,1] => ([(0,1)],2) => 1
10 => [1,1] => [1,1] => ([(0,1)],2) => 1
001 => [2,1] => [1,2] => ([(1,2)],3) => 1
010 => [1,1,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 3
011 => [1,2] => [2,1] => ([(0,2),(1,2)],3) => 2
100 => [1,2] => [2,1] => ([(0,2),(1,2)],3) => 2
101 => [1,1,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 3
110 => [2,1] => [1,2] => ([(1,2)],3) => 1
0001 => [3,1] => [1,3] => ([(2,3)],4) => 1
0010 => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 3
0011 => [2,2] => [2,2] => ([(1,3),(2,3)],4) => 2
0100 => [1,1,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
0101 => [1,1,1,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 5
0110 => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 3
0111 => [1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
1000 => [1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 3
1001 => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 3
1010 => [1,1,1,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 5
1011 => [1,1,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
1100 => [2,2] => [2,2] => ([(1,3),(2,3)],4) => 2
1101 => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 3
1110 => [3,1] => [1,3] => ([(2,3)],4) => 1
00001 => [4,1] => [1,4] => ([(3,4)],5) => 1
00010 => [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 3
00011 => [3,2] => [2,3] => ([(2,4),(3,4)],5) => 2
00100 => [2,1,2] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
00101 => [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
00110 => [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 3
00111 => [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
01000 => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
01001 => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
01010 => [1,1,1,1,1] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
01011 => [1,1,1,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
01100 => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
01101 => [1,2,1,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
01110 => [1,3,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 4
01111 => [1,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
10000 => [1,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 4
10001 => [1,3,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 4
10010 => [1,2,1,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
10011 => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
10100 => [1,1,1,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
10101 => [1,1,1,1,1] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
10110 => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
10111 => [1,1,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
11000 => [2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
11001 => [2,2,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 3
11010 => [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
11011 => [2,1,2] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
11100 => [3,2] => [2,3] => ([(2,4),(3,4)],5) => 2
11101 => [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 3
11110 => [4,1] => [1,4] => ([(3,4)],5) => 1
000001 => [5,1] => [1,5] => ([(4,5)],6) => 1
000010 => [4,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 3
000011 => [4,2] => [2,4] => ([(3,5),(4,5)],6) => 2
000100 => [3,1,2] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
000101 => [3,1,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
000110 => [3,2,1] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 3
000111 => [3,3] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
001000 => [2,1,3] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
001001 => [2,1,2,1] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
001010 => [2,1,1,1,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
001011 => [2,1,1,2] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
001100 => [2,2,2] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
001101 => [2,2,1,1] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
001110 => [2,3,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
001111 => [2,4] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 4
010000 => [1,1,4] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
010001 => [1,1,3,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
010010 => [1,1,2,1,1] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
010011 => [1,1,2,2] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
010100 => [1,1,1,1,2] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 7
010101 => [1,1,1,1,1,1] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 7
010110 => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
010111 => [1,1,1,3] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
011000 => [1,2,3] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
011001 => [1,2,2,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
011010 => [1,2,1,1,1] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
011011 => [1,2,1,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
011100 => [1,3,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
011101 => [1,3,1,1] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
011110 => [1,4,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 5
011111 => [1,5] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 5
100000 => [1,5] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 5
100001 => [1,4,1] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 5
100010 => [1,3,1,1] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
100011 => [1,3,2] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
100100 => [1,2,1,2] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
100101 => [1,2,1,1,1] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
100110 => [1,2,2,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
100111 => [1,2,3] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
101000 => [1,1,1,3] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
101001 => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
101010 => [1,1,1,1,1,1] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 7
101011 => [1,1,1,1,2] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 7
101100 => [1,1,2,2] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
101101 => [1,1,2,1,1] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
101110 => [1,1,3,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
101111 => [1,1,4] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
110000 => [2,4] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 4
110001 => [2,3,1] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
>>> Load all 238 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The acyclic chromatic index of a graph.
An acyclic edge coloring of a graph is a proper colouring of the edges of a graph such that the union of the edges colored with any two given colours is a forest.
The smallest number of colours such that such a colouring exists is the acyclic chromatic index.
An acyclic edge coloring of a graph is a proper colouring of the edges of a graph such that the union of the edges colored with any two given colours is a forest.
The smallest number of colours such that such a colouring exists is the acyclic chromatic index.
Map
reverse
Description
Return the reversal of a composition.
That is, the composition (i1,i2,…,ik) is sent to (ik,ik−1,…,i1).
That is, the composition (i1,i2,…,ik) is sent to (ik,ik−1,…,i1).
Map
to threshold graph
Description
The threshold graph corresponding to the composition.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
Map
delta morphism
Description
Applies the delta morphism to a binary word.
The delta morphism of a finite word w is the integer compositions composed of the lengths of consecutive runs of the same letter in w.
The delta morphism of a finite word w is the integer compositions composed of the lengths of consecutive runs of the same letter in w.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!