Identifier
-
Mp00178:
Binary words
—to composition⟶
Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
St001179: Dyck paths ⟶ ℤ
Values
0 => [2] => [1,1,0,0] => [1,0,1,0] => 3
1 => [1,1] => [1,0,1,0] => [1,1,0,0] => 3
00 => [3] => [1,1,1,0,0,0] => [1,0,1,0,1,0] => 3
01 => [2,1] => [1,1,0,0,1,0] => [1,1,0,0,1,0] => 4
10 => [1,2] => [1,0,1,1,0,0] => [1,1,0,1,0,0] => 4
11 => [1,1,1] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => 4
000 => [4] => [1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => 4
001 => [3,1] => [1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,0] => 4
010 => [2,2] => [1,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0] => 4
011 => [2,1,1] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0] => 5
100 => [1,3] => [1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0] => 4
101 => [1,2,1] => [1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => 5
110 => [1,1,2] => [1,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0] => 5
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => 5
0000 => [5] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => 5
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => 5
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => 5
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0] => 5
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0,1,0] => 5
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0,1,0] => 5
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => 5
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,0] => 6
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => 4
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => 5
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,0] => 5
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => 6
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => 5
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,0] => 6
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,1,0,0,0,0] => 6
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => 6
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => 6
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => 6
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => 6
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => 6
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => 6
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0,1,0,1,0] => 6
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0,1,0,1,0] => 6
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => 6
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => 5
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,1,0,1,0,0,1,0] => 6
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,0,1,0] => 6
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,0,1,0] => 6
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0,1,0] => 6
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,0,1,0] => 6
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,1,0,0,0,0,1,0] => 6
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 7
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => 5
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => 5
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => 5
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => 6
10100 => [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => 5
10101 => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => 6
10110 => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => 6
10111 => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => 7
11000 => [1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => 5
11001 => [1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => 6
11010 => [1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => 6
11011 => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 7
11100 => [1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => 6
11101 => [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => 7
11110 => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => 7
11111 => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 7
=> [1] => [1,0] => [1,0] => 2
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
Number of indecomposable injective modules with projective dimension at most 2 in the corresponding Nakayama algebra.
Map
decomposition reverse
Description
This map is recursively defined as follows.
The unique empty path of semilength $0$ is sent to itself.
Let $D$ be a Dyck path of semilength $n > 0$ and decompose it into $1 D_1 0 D_2$ with Dyck paths $D_1, D_2$ of respective semilengths $n_1$ and $n_2$ such that $n_1$ is minimal. One then has $n_1+n_2 = n-1$.
Now let $\tilde D_1$ and $\tilde D_2$ be the recursively defined respective images of $D_1$ and $D_2$ under this map. The image of $D$ is then defined as $1 \tilde D_2 0 \tilde D_1$.
The unique empty path of semilength $0$ is sent to itself.
Let $D$ be a Dyck path of semilength $n > 0$ and decompose it into $1 D_1 0 D_2$ with Dyck paths $D_1, D_2$ of respective semilengths $n_1$ and $n_2$ such that $n_1$ is minimal. One then has $n_1+n_2 = n-1$.
Now let $\tilde D_1$ and $\tilde D_2$ be the recursively defined respective images of $D_1$ and $D_2$ under this map. The image of $D$ is then defined as $1 \tilde D_2 0 \tilde D_1$.
Map
bounce path
Description
The bounce path determined by an integer composition.
Map
to composition
Description
The composition corresponding to a binary word.
Prepending $1$ to a binary word $w$, the $i$-th part of the composition equals $1$ plus the number of zeros after the $i$-th $1$ in $w$.
This map is not surjective, since the empty composition does not have a preimage.
Prepending $1$ to a binary word $w$, the $i$-th part of the composition equals $1$ plus the number of zeros after the $i$-th $1$ in $w$.
This map is not surjective, since the empty composition does not have a preimage.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!