Identifier
- St001220: Permutations ⟶ ℤ
Values
[1,2] => 1
[2,1] => 1
[1,2,3] => 1
[1,3,2] => 1
[2,1,3] => 1
[2,3,1] => 1
[3,1,2] => 1
[3,2,1] => 2
[1,2,3,4] => 1
[1,2,4,3] => 1
[1,3,2,4] => 1
[1,3,4,2] => 1
[1,4,2,3] => 1
[1,4,3,2] => 2
[2,1,3,4] => 1
[2,1,4,3] => 2
[2,3,1,4] => 1
[2,3,4,1] => 1
[2,4,1,3] => 2
[2,4,3,1] => 2
[3,1,2,4] => 1
[3,1,4,2] => 2
[3,2,1,4] => 2
[3,2,4,1] => 2
[3,4,1,2] => 2
[3,4,2,1] => 3
[4,1,2,3] => 1
[4,1,3,2] => 2
[4,2,1,3] => 2
[4,2,3,1] => 3
[4,3,1,2] => 3
[4,3,2,1] => 6
[1,2,3,4,5] => 1
[1,2,3,5,4] => 1
[1,2,4,3,5] => 1
[1,2,4,5,3] => 1
[1,2,5,3,4] => 1
[1,2,5,4,3] => 2
[1,3,2,4,5] => 1
[1,3,2,5,4] => 2
[1,3,4,2,5] => 1
[1,3,4,5,2] => 1
[1,3,5,2,4] => 2
[1,3,5,4,2] => 2
[1,4,2,3,5] => 1
[1,4,2,5,3] => 2
[1,4,3,2,5] => 2
[1,4,3,5,2] => 2
[1,4,5,2,3] => 2
[1,4,5,3,2] => 3
[1,5,2,3,4] => 1
[1,5,2,4,3] => 2
[1,5,3,2,4] => 2
[1,5,3,4,2] => 3
[1,5,4,2,3] => 3
[1,5,4,3,2] => 6
[2,1,3,4,5] => 1
[2,1,3,5,4] => 2
[2,1,4,3,5] => 2
[2,1,4,5,3] => 2
[2,1,5,3,4] => 2
[2,1,5,4,3] => 4
[2,3,1,4,5] => 1
[2,3,1,5,4] => 2
[2,3,4,1,5] => 1
[2,3,4,5,1] => 1
[2,3,5,1,4] => 2
[2,3,5,4,1] => 2
[2,4,1,3,5] => 2
[2,4,1,5,3] => 2
[2,4,3,1,5] => 2
[2,4,3,5,1] => 2
[2,4,5,1,3] => 2
[2,4,5,3,1] => 3
[2,5,1,3,4] => 2
[2,5,1,4,3] => 4
[2,5,3,1,4] => 3
[2,5,3,4,1] => 3
[2,5,4,1,3] => 4
[2,5,4,3,1] => 6
[3,1,2,4,5] => 1
[3,1,2,5,4] => 2
[3,1,4,2,5] => 2
[3,1,4,5,2] => 2
[3,1,5,2,4] => 2
[3,1,5,4,2] => 4
[3,2,1,4,5] => 2
[3,2,1,5,4] => 4
[3,2,4,1,5] => 2
[3,2,4,5,1] => 2
[3,2,5,1,4] => 4
[3,2,5,4,1] => 4
[3,4,1,2,5] => 2
[3,4,1,5,2] => 2
[3,4,2,1,5] => 3
[3,4,2,5,1] => 3
[3,4,5,1,2] => 2
[3,4,5,2,1] => 4
[3,5,1,2,4] => 2
[3,5,1,4,2] => 4
[3,5,2,1,4] => 4
>>> Load all 872 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The width of a permutation.
Let $w$ be a permutation. The interval $[e,w]$ in the weak order is ranked, and we define $r_i=r_i(w)$ to be the number of elements at rank $i$ in $[e,w]$, where $i \in \{0, \dots, \ell(w)\}$. The width of
$w$ is the maximum of $\{r_0,r_1,\ldots,r_{\ell(w)}\}$. See [1].
Let $w$ be a permutation. The interval $[e,w]$ in the weak order is ranked, and we define $r_i=r_i(w)$ to be the number of elements at rank $i$ in $[e,w]$, where $i \in \{0, \dots, \ell(w)\}$. The width of
$w$ is the maximum of $\{r_0,r_1,\ldots,r_{\ell(w)}\}$. See [1].
References
[1] Fishel, S., Milićević, E., Patrias, R., Tenner, B. E. Enumerations relating braid and commutation classes arXiv:1708.04372
Code
def statistic(pi):
S = SymmetricGroup(len(pi))
pi = S(pi)
P = S.weak_poset()
return P.subposet(P.principal_order_ideal(pi)).width()
Created
Jun 26, 2018 at 12:54 by Susanna Fishel
Updated
Jun 26, 2018 at 13:13 by Christian Stump
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!