Identifier
Values
[1,0] => [1,0] => [1,0] => 0
[1,0,1,0] => [1,0,1,0] => [1,1,0,0] => 0
[1,1,0,0] => [1,1,0,0] => [1,0,1,0] => 1
[1,0,1,0,1,0] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => 0
[1,0,1,1,0,0] => [1,0,1,1,0,0] => [1,1,0,1,0,0] => 2
[1,1,0,0,1,0] => [1,1,0,0,1,0] => [1,1,0,0,1,0] => 1
[1,1,0,1,0,0] => [1,0,1,1,0,0] => [1,1,0,1,0,0] => 2
[1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => 0
[1,0,1,0,1,1,0,0] => [1,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0] => 3
[1,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => 2
[1,0,1,1,0,1,0,0] => [1,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0] => 3
[1,1,0,0,1,0,1,0] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0] => 1
[1,1,0,1,0,0,1,0] => [1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => 2
[1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => 0
[1,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,1,0,0,0,0] => 4
[1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,0] => 3
[1,0,1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,1,0,0,0,0] => 4
[1,0,1,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => 2
[1,0,1,1,0,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,0] => 3
[1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,0] => 1
[1,1,0,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => 2
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => 5
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => 4
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => 5
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => 4
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => 2
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
[1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 1
[1,1,0,1,0,0,1,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0] => 6
[1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0] => 5
[1,0,1,0,1,0,1,0,1,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0] => 6
[1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,1,0,0,0,0] => 4
[1,0,1,0,1,0,1,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0] => 5
[1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,1,0,0,0] => 3
[1,0,1,0,1,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,1,0,0,0,0] => 4
[1,0,1,1,0,0,1,0,1,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => 2
[1,0,1,1,0,1,0,0,1,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,1,0,0,0] => 3
[1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => 1
[1,1,0,1,0,0,1,0,1,0,1,0,1,0] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => 2
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Map
decomposition reverse
Description
This map is recursively defined as follows.
The unique empty path of semilength $0$ is sent to itself.
Let $D$ be a Dyck path of semilength $n > 0$ and decompose it into $1 D_1 0 D_2$ with Dyck paths $D_1, D_2$ of respective semilengths $n_1$ and $n_2$ such that $n_1$ is minimal. One then has $n_1+n_2 = n-1$.
Now let $\tilde D_1$ and $\tilde D_2$ be the recursively defined respective images of $D_1$ and $D_2$ under this map. The image of $D$ is then defined as $1 \tilde D_2 0 \tilde D_1$.
Map
bounce path
Description
Sends a Dyck path $D$ of length $2n$ to its bounce path.
This path is formed by starting at the endpoint $(n,n)$ of $D$ and travelling west until encountering the first vertical step of $D$, then south until hitting the diagonal, then west again to hit $D$, etc. until the point $(0,0)$ is reached.
This map is the first part of the zeta map Mp00030zeta map.