Identifier
Values
{{1}} => [1] => [1,0] => [1,0] => 0
{{1,2}} => [2] => [1,1,0,0] => [1,0,1,0] => 1
{{1},{2}} => [1,1] => [1,0,1,0] => [1,1,0,0] => 0
{{1,2},{3}} => [2,1] => [1,1,0,0,1,0] => [1,1,0,0,1,0] => 1
{{1,3},{2}} => [2,1] => [1,1,0,0,1,0] => [1,1,0,0,1,0] => 1
{{1},{2,3}} => [1,2] => [1,0,1,1,0,0] => [1,1,0,1,0,0] => 2
{{1},{2},{3}} => [1,1,1] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => 0
{{1,2},{3},{4}} => [2,1,1] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0] => 1
{{1,3},{2},{4}} => [2,1,1] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0] => 1
{{1},{2,3},{4}} => [1,2,1] => [1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => 2
{{1,4},{2},{3}} => [2,1,1] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0] => 1
{{1},{2,4},{3}} => [1,2,1] => [1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => 2
{{1},{2},{3,4}} => [1,1,2] => [1,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0] => 3
{{1},{2},{3},{4}} => [1,1,1,1] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => 0
{{1,2},{3},{4},{5}} => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,0] => 1
{{1,3},{2},{4},{5}} => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,0] => 1
{{1},{2,3},{4},{5}} => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => 2
{{1,4},{2},{3},{5}} => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,0] => 1
{{1},{2,4},{3},{5}} => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => 2
{{1},{2},{3,4},{5}} => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,0] => 3
{{1,5},{2},{3},{4}} => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,0] => 1
{{1},{2,5},{3},{4}} => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => 2
{{1},{2},{3,5},{4}} => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,0] => 3
{{1},{2},{3},{4,5}} => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,1,0,0,0,0] => 4
{{1},{2},{3},{4},{5}} => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => 0
{{1,2},{3},{4},{5},{6}} => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 1
{{1,3},{2},{4},{5},{6}} => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 1
{{1},{2,3},{4},{5},{6}} => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => 2
{{1,4},{2},{3},{5},{6}} => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 1
{{1},{2,4},{3},{5},{6}} => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => 2
{{1},{2},{3,4},{5},{6}} => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
{{1,5},{2},{3},{4},{6}} => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 1
{{1},{2,5},{3},{4},{6}} => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => 2
{{1},{2},{3,5},{4},{6}} => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
{{1},{2},{3},{4,5},{6}} => [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => 4
{{1,6},{2},{3},{4},{5}} => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 1
{{1},{2,6},{3},{4},{5}} => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => 2
{{1},{2},{3,6},{4},{5}} => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
{{1},{2},{3},{4,6},{5}} => [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => 4
{{1},{2},{3},{4},{5,6}} => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => 5
{{1},{2},{3},{4},{5},{6}} => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
{{1,2},{3},{4},{5},{6},{7}} => [2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => 1
{{1,3},{2},{4},{5},{6},{7}} => [2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => 1
{{1},{2,3},{4},{5},{6},{7}} => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => 2
{{1,4},{2},{3},{5},{6},{7}} => [2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => 1
{{1},{2,4},{3},{5},{6},{7}} => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => 2
{{1},{2},{3,4},{5},{6},{7}} => [1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,1,0,0,0] => 3
{{1,5},{2},{3},{4},{6},{7}} => [2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => 1
{{1},{2,5},{3},{4},{6},{7}} => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => 2
{{1},{2},{3,5},{4},{6},{7}} => [1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,1,0,0,0] => 3
{{1},{2},{3},{4,5},{6},{7}} => [1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,1,0,0,0,0] => 4
{{1,6},{2},{3},{4},{5},{7}} => [2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => 1
{{1},{2,6},{3},{4},{5},{7}} => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => 2
{{1},{2},{3,6},{4},{5},{7}} => [1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,1,0,0,0] => 3
{{1},{2},{3},{4,6},{5},{7}} => [1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,1,0,0,0,0] => 4
{{1},{2},{3},{4},{5,6},{7}} => [1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0] => 5
{{1,7},{2},{3},{4},{5},{6}} => [2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => 1
{{1},{2,7},{3},{4},{5},{6}} => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => 2
{{1},{2},{3,7},{4},{5},{6}} => [1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,1,0,0,0] => 3
{{1},{2},{3},{4,7},{5},{6}} => [1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,1,0,0,0,0] => 4
{{1},{2},{3},{4},{5,7},{6}} => [1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0] => 5
{{1},{2},{3},{4},{5},{6,7}} => [1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0] => 6
{{1},{2},{3},{4},{5},{6},{7}} => [1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Map
to composition
Description
The integer composition of block sizes of a set partition.
For a set partition of $\{1,2,\dots,n\}$, this is the integer composition of $n$ obtained by sorting the blocks by their minimal element and then taking the block sizes.
Map
bounce path
Description
The bounce path determined by an integer composition.
Map
decomposition reverse
Description
This map is recursively defined as follows.
The unique empty path of semilength $0$ is sent to itself.
Let $D$ be a Dyck path of semilength $n > 0$ and decompose it into $1 D_1 0 D_2$ with Dyck paths $D_1, D_2$ of respective semilengths $n_1$ and $n_2$ such that $n_1$ is minimal. One then has $n_1+n_2 = n-1$.
Now let $\tilde D_1$ and $\tilde D_2$ be the recursively defined respective images of $D_1$ and $D_2$ under this map. The image of $D$ is then defined as $1 \tilde D_2 0 \tilde D_1$.