Identifier
-
Mp00178:
Binary words
—to composition⟶
Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
St001232: Dyck paths ⟶ ℤ
Values
0 => [2] => [1,1,0,0] => [1,0,1,0] => 1
1 => [1,1] => [1,0,1,0] => [1,1,0,0] => 0
01 => [2,1] => [1,1,0,0,1,0] => [1,1,0,0,1,0] => 1
10 => [1,2] => [1,0,1,1,0,0] => [1,1,0,1,0,0] => 2
11 => [1,1,1] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => 0
011 => [2,1,1] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0] => 1
101 => [1,2,1] => [1,0,1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => 2
110 => [1,1,2] => [1,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0] => 3
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => 0
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0,1,0] => 1
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => 2
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,0] => 3
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,1,0,0,0,0] => 4
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => 0
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 1
10111 => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => 2
11011 => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 3
11101 => [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => 4
11110 => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => 5
11111 => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
011111 => [2,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => 1
101111 => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => 2
110111 => [1,1,2,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,1,0,0,0] => 3
111011 => [1,1,1,2,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,1,0,0,0,0] => 4
111101 => [1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0] => 5
111110 => [1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0] => 6
111111 => [1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => 0
=> [1] => [1,0] => [1,0] => 0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Map
to composition
Description
The composition corresponding to a binary word.
Prepending $1$ to a binary word $w$, the $i$-th part of the composition equals $1$ plus the number of zeros after the $i$-th $1$ in $w$.
This map is not surjective, since the empty composition does not have a preimage.
Prepending $1$ to a binary word $w$, the $i$-th part of the composition equals $1$ plus the number of zeros after the $i$-th $1$ in $w$.
This map is not surjective, since the empty composition does not have a preimage.
Map
bounce path
Description
The bounce path determined by an integer composition.
Map
decomposition reverse
Description
This map is recursively defined as follows.
The unique empty path of semilength $0$ is sent to itself.
Let $D$ be a Dyck path of semilength $n > 0$ and decompose it into $1 D_1 0 D_2$ with Dyck paths $D_1, D_2$ of respective semilengths $n_1$ and $n_2$ such that $n_1$ is minimal. One then has $n_1+n_2 = n-1$.
Now let $\tilde D_1$ and $\tilde D_2$ be the recursively defined respective images of $D_1$ and $D_2$ under this map. The image of $D$ is then defined as $1 \tilde D_2 0 \tilde D_1$.
The unique empty path of semilength $0$ is sent to itself.
Let $D$ be a Dyck path of semilength $n > 0$ and decompose it into $1 D_1 0 D_2$ with Dyck paths $D_1, D_2$ of respective semilengths $n_1$ and $n_2$ such that $n_1$ is minimal. One then has $n_1+n_2 = n-1$.
Now let $\tilde D_1$ and $\tilde D_2$ be the recursively defined respective images of $D_1$ and $D_2$ under this map. The image of $D$ is then defined as $1 \tilde D_2 0 \tilde D_1$.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!