Identifier
Values
([],1) => [1] => [1] => [1,0] => 0
([],2) => [2] => [1,1] => [1,0,1,0] => 1
([(0,1)],2) => [1,1] => [2] => [1,1,0,0] => 0
([(1,2)],3) => [2,1] => [2,1] => [1,1,0,0,1,0] => 1
([(0,2),(1,2)],3) => [2,1] => [2,1] => [1,1,0,0,1,0] => 1
([(0,1),(0,2),(1,2)],3) => [1,1,1] => [3] => [1,1,1,0,0,0] => 0
([(0,3),(1,2)],4) => [2,2] => [1,2,1] => [1,0,1,1,0,0,1,0] => 3
([(0,3),(1,2),(2,3)],4) => [2,2] => [1,2,1] => [1,0,1,1,0,0,1,0] => 3
([(1,2),(1,3),(2,3)],4) => [2,1,1] => [3,1] => [1,1,1,0,0,0,1,0] => 1
([(0,3),(1,2),(1,3),(2,3)],4) => [2,1,1] => [3,1] => [1,1,1,0,0,0,1,0] => 1
([(0,2),(0,3),(1,2),(1,3)],4) => [2,2] => [1,2,1] => [1,0,1,1,0,0,1,0] => 3
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [2,1,1] => [3,1] => [1,1,1,0,0,0,1,0] => 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [1,1,1,1] => [4] => [1,1,1,1,0,0,0,0] => 0
([(0,1),(2,3),(2,4),(3,4)],5) => [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => 3
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => 3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,1,1,1] => [4,1] => [1,1,1,1,0,0,0,0,1,0] => 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,1,1,1] => [4,1] => [1,1,1,1,0,0,0,0,1,0] => 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,1,1,1] => [4,1] => [1,1,1,1,0,0,0,0,1,0] => 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,1,1,1] => [4,1] => [1,1,1,1,0,0,0,0,1,0] => 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [5] => [1,1,1,1,1,0,0,0,0,0] => 0
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => [2,2,2] => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => [2,2,2] => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [2,2,2] => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6) => [2,2,2] => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [2,2,2] => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,2] => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [2,2,2] => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [2,2,2] => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [2,2,2] => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [2,2,1,1] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6) => [2,2,2] => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,2] => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [2,2,2] => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,1,1,1,1] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0] => 1
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,1,1,1,1] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0] => 1
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,1,1,1,1] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0] => 1
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,1,1,1,1] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0] => 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [2,2,2] => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [2,2,1,1] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [2,2,1,1] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [2,2,2] => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,1,1,1,1] => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0] => 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,4),(0,5),(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,3),(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,1),(0,2),(0,6),(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,3),(0,5),(1,2),(1,4),(1,6),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,1),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,1,1,1] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => 3
([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,1),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,1,1,1] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => 3
([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,1,1,1] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => 3
([(0,1),(0,3),(0,6),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,3),(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,2),(0,6),(1,3),(1,4),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,1),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,1),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,1,1,1] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => 3
([(0,1),(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,1,1,1] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => 3
([(0,1),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,1,1,1] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => 3
([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,1,1,1] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => 3
([(0,2),(0,6),(1,3),(1,4),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,1),(0,2),(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,1),(0,4),(0,6),(1,3),(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,4),(0,5),(1,2),(1,3),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,1),(0,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,1),(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,1),(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,1),(0,2),(0,6),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,1),(0,5),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
>>> Load all 172 entries. <<<
([(0,1),(0,4),(0,6),(1,3),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,3),(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,5),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,2),(0,3),(0,4),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,4),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,3),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,1,1,1] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => 3
([(0,3),(0,6),(1,2),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,1),(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,1,1,1] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => 3
([(0,3),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,1,1,1] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => 3
([(0,2),(0,3),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,3),(0,5),(0,6),(1,2),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,1),(0,4),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,1),(0,4),(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,1,1,1] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => 3
([(0,3),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,1,1,1] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => 3
([(0,1),(0,2),(0,3),(0,4),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,3),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,1,1,1] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => 3
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,3),(0,4),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,1),(0,4),(0,6),(1,3),(1,5),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,1,1,1] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => 3
([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(4,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,1),(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,3),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,1),(0,3),(0,5),(0,6),(1,2),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,1),(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,1,1,1] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => 3
([(0,2),(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,1,1,1] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => 3
([(0,2),(0,3),(0,6),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,1,1,1] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => 3
([(0,3),(0,4),(0,6),(1,2),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,2),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,1,1,1] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => 3
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,1,1,1] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => 3
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,1,1,1] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => 3
([(0,2),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,1,1,1] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => 3
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,1,1,1] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => 3
([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,1,1,1] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => 3
([(0,6),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,1,1,1] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => 3
([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,1,1,1,1,1] => [6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => 1
([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,1,1,1,1,1] => [6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => 1
([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,1,1,1,1,1] => [6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => 1
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,1,1,1,1,1] => [6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => 1
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,1,1,1,1,1] => [6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => 1
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [2,2,1,1,1] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => 3
([(0,1),(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,1,1,1] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => 3
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [2,2,1,1,1] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => 3
([(0,1),(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,1,1,1] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => 3
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,1,1,1] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => 3
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [2,2,2,1] => [2,2,2,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0] => 5
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,2,1,1,1] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0] => 3
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [2,1,1,1,1,1] => [6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,1,1] => [7] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Map
chromatic difference sequence
Description
The chromatic difference sequence of a graph.
Let $G$ be a simple graph with chromatic number $\kappa$. Let $\alpha_m$ be the maximum number of vertices in a $m$-colorable subgraph of $G$. Set $\delta_m=\alpha_m-\alpha_{m-1}$. The sequence $\delta_1,\delta_2,\dots\delta_\kappa$ is the chromatic difference sequence of $G$.
All entries of the chromatic difference sequence are positive: $\alpha_m > \alpha_{m-1}$ for $m < \kappa$, because we can assign any uncolored vertex of a partial coloring with $m-1$ colors the color $m$. Therefore, the chromatic difference sequence is a composition of the number of vertices of $G$ into $\kappa$ parts.
Map
bounce path
Description
The bounce path determined by an integer composition.
Map
conjugate
Description
The conjugate of a composition.
The conjugate of a composition $C$ is defined as the complement (Mp00039complement) of the reversal (Mp00038reverse) of $C$.
Equivalently, the ribbon shape corresponding to the conjugate of $C$ is the conjugate of the ribbon shape of $C$.