Identifier
-
Mp00203:
Graphs
—cone⟶
Graphs
Mp00324: Graphs —chromatic difference sequence⟶ Integer compositions
Mp00041: Integer compositions —conjugate⟶ Integer compositions
St001235: Integer compositions ⟶ ℤ
Values
([],1) => ([(0,1)],2) => [1,1] => [2] => 1
([],2) => ([(0,2),(1,2)],3) => [2,1] => [2,1] => 2
([(0,1)],2) => ([(0,1),(0,2),(1,2)],3) => [1,1,1] => [3] => 1
([],3) => ([(0,3),(1,3),(2,3)],4) => [3,1] => [2,1,1] => 3
([(1,2)],3) => ([(0,3),(1,2),(1,3),(2,3)],4) => [2,1,1] => [3,1] => 2
([(0,2),(1,2)],3) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [2,1,1] => [3,1] => 2
([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [1,1,1,1] => [4] => 1
([],4) => ([(0,4),(1,4),(2,4),(3,4)],5) => [4,1] => [2,1,1,1] => 4
([(2,3)],4) => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [3,1,1] => 3
([(1,3),(2,3)],4) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [3,1,1] => 3
([(0,3),(1,3),(2,3)],4) => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [3,1,1] => 3
([(0,3),(1,2)],4) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => [2,2,1] => [2,2,1] => 2
([(0,3),(1,2),(2,3)],4) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => [2,2,1] => [2,2,1] => 2
([(1,2),(1,3),(2,3)],4) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,1,1,1] => [4,1] => 2
([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,1,1,1] => [4,1] => 2
([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => [2,2,1] => [2,2,1] => 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,1,1,1] => [4,1] => 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [5] => 1
([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [5,1] => [2,1,1,1,1] => 5
([(3,4)],5) => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [3,1,1,1] => 4
([(2,4),(3,4)],5) => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [3,1,1,1] => 4
([(1,4),(2,4),(3,4)],5) => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [3,1,1,1] => 4
([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [3,1,1,1] => 4
([(1,4),(2,3)],5) => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,2,1] => [2,2,1,1] => 3
([(1,4),(2,3),(3,4)],5) => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,1] => [2,2,1,1] => 3
([(0,1),(2,4),(3,4)],5) => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,1] => [2,2,1,1] => 3
([(2,3),(2,4),(3,4)],5) => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [4,1,1] => 3
([(0,4),(1,4),(2,3),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,1] => [2,2,1,1] => 3
([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [4,1,1] => 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [4,1,1] => 3
([(1,3),(1,4),(2,3),(2,4)],5) => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [3,2,1] => [2,2,1,1] => 3
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,1] => [2,2,1,1] => 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [4,1,1] => 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [4,1,1] => 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [4,1,1] => 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [3,2,1] => [2,2,1,1] => 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [4,1,1] => 3
([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [3,2,1] => [2,2,1,1] => 3
([(0,1),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => [3,2,1] => 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => [3,2,1] => 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => [3,2,1] => 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [2,2,1,1] => [3,2,1] => 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => [3,2,1] => 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => [3,2,1] => 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => [3,2,1] => 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,1,1,1,1] => [5,1] => 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,1,1,1,1] => [5,1] => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,1,1,1,1] => [5,1] => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [2,2,1,1] => [3,2,1] => 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => [3,2,1] => 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,1,1,1,1] => [5,1] => 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => 1
([],0) => ([],1) => [1] => [1] => 1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The global dimension of the corresponding Comp-Nakayama algebra.
We identify the composition [n1-1,n2-1,...,nr-1] with the Nakayama algebra with Kupisch series [n1,n1-1,...,2,n2,n2-1,...,2,...,nr,nr-1,...,3,2,1]. We call such Nakayama algebras with Kupisch series corresponding to a integer composition "Comp-Nakayama algebra".
We identify the composition [n1-1,n2-1,...,nr-1] with the Nakayama algebra with Kupisch series [n1,n1-1,...,2,n2,n2-1,...,2,...,nr,nr-1,...,3,2,1]. We call such Nakayama algebras with Kupisch series corresponding to a integer composition "Comp-Nakayama algebra".
Map
chromatic difference sequence
Description
The chromatic difference sequence of a graph.
Let $G$ be a simple graph with chromatic number $\kappa$. Let $\alpha_m$ be the maximum number of vertices in a $m$-colorable subgraph of $G$. Set $\delta_m=\alpha_m-\alpha_{m-1}$. The sequence $\delta_1,\delta_2,\dots\delta_\kappa$ is the chromatic difference sequence of $G$.
All entries of the chromatic difference sequence are positive: $\alpha_m > \alpha_{m-1}$ for $m < \kappa$, because we can assign any uncolored vertex of a partial coloring with $m-1$ colors the color $m$. Therefore, the chromatic difference sequence is a composition of the number of vertices of $G$ into $\kappa$ parts.
Let $G$ be a simple graph with chromatic number $\kappa$. Let $\alpha_m$ be the maximum number of vertices in a $m$-colorable subgraph of $G$. Set $\delta_m=\alpha_m-\alpha_{m-1}$. The sequence $\delta_1,\delta_2,\dots\delta_\kappa$ is the chromatic difference sequence of $G$.
All entries of the chromatic difference sequence are positive: $\alpha_m > \alpha_{m-1}$ for $m < \kappa$, because we can assign any uncolored vertex of a partial coloring with $m-1$ colors the color $m$. Therefore, the chromatic difference sequence is a composition of the number of vertices of $G$ into $\kappa$ parts.
Map
cone
Description
The cone of a graph.
The cone of a graph is obtained by joining a new vertex to all the vertices of the graph. The added vertex is called a universal vertex or a dominating vertex.
The cone of a graph is obtained by joining a new vertex to all the vertices of the graph. The added vertex is called a universal vertex or a dominating vertex.
Map
conjugate
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!