Identifier
-
Mp00081:
Standard tableaux
—reading word permutation⟶
Permutations
Mp00130: Permutations —descent tops⟶ Binary words
Mp00097: Binary words —delta morphism⟶ Integer compositions
St001235: Integer compositions ⟶ ℤ
Values
[[1,2]] => [1,2] => 0 => [1] => 1
[[1],[2]] => [2,1] => 1 => [1] => 1
[[1,2,3]] => [1,2,3] => 00 => [2] => 1
[[1,3],[2]] => [2,1,3] => 10 => [1,1] => 2
[[1,2],[3]] => [3,1,2] => 01 => [1,1] => 2
[[1],[2],[3]] => [3,2,1] => 11 => [2] => 1
[[1,2,3,4]] => [1,2,3,4] => 000 => [3] => 1
[[1,3,4],[2]] => [2,1,3,4] => 100 => [1,2] => 2
[[1,2,4],[3]] => [3,1,2,4] => 010 => [1,1,1] => 3
[[1,2,3],[4]] => [4,1,2,3] => 001 => [2,1] => 2
[[1,3],[2,4]] => [2,4,1,3] => 001 => [2,1] => 2
[[1,2],[3,4]] => [3,4,1,2] => 001 => [2,1] => 2
[[1,4],[2],[3]] => [3,2,1,4] => 110 => [2,1] => 2
[[1,3],[2],[4]] => [4,2,1,3] => 101 => [1,1,1] => 3
[[1,2],[3],[4]] => [4,3,1,2] => 011 => [1,2] => 2
[[1],[2],[3],[4]] => [4,3,2,1] => 111 => [3] => 1
[[1,2,3,4,5]] => [1,2,3,4,5] => 0000 => [4] => 1
[[1,3,4,5],[2]] => [2,1,3,4,5] => 1000 => [1,3] => 2
[[1,2,4,5],[3]] => [3,1,2,4,5] => 0100 => [1,1,2] => 3
[[1,2,3,5],[4]] => [4,1,2,3,5] => 0010 => [2,1,1] => 3
[[1,2,3,4],[5]] => [5,1,2,3,4] => 0001 => [3,1] => 2
[[1,3,5],[2,4]] => [2,4,1,3,5] => 0010 => [2,1,1] => 3
[[1,2,5],[3,4]] => [3,4,1,2,5] => 0010 => [2,1,1] => 3
[[1,3,4],[2,5]] => [2,5,1,3,4] => 0001 => [3,1] => 2
[[1,2,4],[3,5]] => [3,5,1,2,4] => 0001 => [3,1] => 2
[[1,2,3],[4,5]] => [4,5,1,2,3] => 0001 => [3,1] => 2
[[1,4,5],[2],[3]] => [3,2,1,4,5] => 1100 => [2,2] => 2
[[1,3,5],[2],[4]] => [4,2,1,3,5] => 1010 => [1,1,1,1] => 4
[[1,2,5],[3],[4]] => [4,3,1,2,5] => 0110 => [1,2,1] => 2
[[1,3,4],[2],[5]] => [5,2,1,3,4] => 1001 => [1,2,1] => 2
[[1,2,4],[3],[5]] => [5,3,1,2,4] => 0101 => [1,1,1,1] => 4
[[1,2,3],[4],[5]] => [5,4,1,2,3] => 0011 => [2,2] => 2
[[1,4],[2,5],[3]] => [3,2,5,1,4] => 0101 => [1,1,1,1] => 4
[[1,3],[2,5],[4]] => [4,2,5,1,3] => 0011 => [2,2] => 2
[[1,2],[3,5],[4]] => [4,3,5,1,2] => 0011 => [2,2] => 2
[[1,3],[2,4],[5]] => [5,2,4,1,3] => 0011 => [2,2] => 2
[[1,2],[3,4],[5]] => [5,3,4,1,2] => 0011 => [2,2] => 2
[[1,5],[2],[3],[4]] => [4,3,2,1,5] => 1110 => [3,1] => 2
[[1,4],[2],[3],[5]] => [5,3,2,1,4] => 1101 => [2,1,1] => 3
[[1,3],[2],[4],[5]] => [5,4,2,1,3] => 1011 => [1,1,2] => 3
[[1,2],[3],[4],[5]] => [5,4,3,1,2] => 0111 => [1,3] => 2
[[1],[2],[3],[4],[5]] => [5,4,3,2,1] => 1111 => [4] => 1
[[1,2,3,4,5,6]] => [1,2,3,4,5,6] => 00000 => [5] => 1
[[1,3,4,5,6],[2]] => [2,1,3,4,5,6] => 10000 => [1,4] => 2
[[1,2,4,5,6],[3]] => [3,1,2,4,5,6] => 01000 => [1,1,3] => 3
[[1,2,3,5,6],[4]] => [4,1,2,3,5,6] => 00100 => [2,1,2] => 3
[[1,2,3,4,6],[5]] => [5,1,2,3,4,6] => 00010 => [3,1,1] => 3
[[1,2,3,4,5],[6]] => [6,1,2,3,4,5] => 00001 => [4,1] => 2
[[1,3,5,6],[2,4]] => [2,4,1,3,5,6] => 00100 => [2,1,2] => 3
[[1,2,5,6],[3,4]] => [3,4,1,2,5,6] => 00100 => [2,1,2] => 3
[[1,3,4,6],[2,5]] => [2,5,1,3,4,6] => 00010 => [3,1,1] => 3
[[1,2,4,6],[3,5]] => [3,5,1,2,4,6] => 00010 => [3,1,1] => 3
[[1,2,3,6],[4,5]] => [4,5,1,2,3,6] => 00010 => [3,1,1] => 3
[[1,3,4,5],[2,6]] => [2,6,1,3,4,5] => 00001 => [4,1] => 2
[[1,2,4,5],[3,6]] => [3,6,1,2,4,5] => 00001 => [4,1] => 2
[[1,2,3,5],[4,6]] => [4,6,1,2,3,5] => 00001 => [4,1] => 2
[[1,2,3,4],[5,6]] => [5,6,1,2,3,4] => 00001 => [4,1] => 2
[[1,4,5,6],[2],[3]] => [3,2,1,4,5,6] => 11000 => [2,3] => 2
[[1,3,5,6],[2],[4]] => [4,2,1,3,5,6] => 10100 => [1,1,1,2] => 4
[[1,2,5,6],[3],[4]] => [4,3,1,2,5,6] => 01100 => [1,2,2] => 2
[[1,3,4,6],[2],[5]] => [5,2,1,3,4,6] => 10010 => [1,2,1,1] => 3
[[1,2,4,6],[3],[5]] => [5,3,1,2,4,6] => 01010 => [1,1,1,1,1] => 5
[[1,2,3,6],[4],[5]] => [5,4,1,2,3,6] => 00110 => [2,2,1] => 2
[[1,3,4,5],[2],[6]] => [6,2,1,3,4,5] => 10001 => [1,3,1] => 2
[[1,2,4,5],[3],[6]] => [6,3,1,2,4,5] => 01001 => [1,1,2,1] => 3
[[1,2,3,5],[4],[6]] => [6,4,1,2,3,5] => 00101 => [2,1,1,1] => 4
[[1,2,3,4],[5],[6]] => [6,5,1,2,3,4] => 00011 => [3,2] => 2
[[1,3,5],[2,4,6]] => [2,4,6,1,3,5] => 00001 => [4,1] => 2
[[1,2,5],[3,4,6]] => [3,4,6,1,2,5] => 00001 => [4,1] => 2
[[1,3,4],[2,5,6]] => [2,5,6,1,3,4] => 00001 => [4,1] => 2
[[1,2,4],[3,5,6]] => [3,5,6,1,2,4] => 00001 => [4,1] => 2
[[1,2,3],[4,5,6]] => [4,5,6,1,2,3] => 00001 => [4,1] => 2
[[1,4,6],[2,5],[3]] => [3,2,5,1,4,6] => 01010 => [1,1,1,1,1] => 5
[[1,3,6],[2,5],[4]] => [4,2,5,1,3,6] => 00110 => [2,2,1] => 2
[[1,2,6],[3,5],[4]] => [4,3,5,1,2,6] => 00110 => [2,2,1] => 2
[[1,3,6],[2,4],[5]] => [5,2,4,1,3,6] => 00110 => [2,2,1] => 2
[[1,2,6],[3,4],[5]] => [5,3,4,1,2,6] => 00110 => [2,2,1] => 2
[[1,4,5],[2,6],[3]] => [3,2,6,1,4,5] => 01001 => [1,1,2,1] => 3
[[1,3,5],[2,6],[4]] => [4,2,6,1,3,5] => 00101 => [2,1,1,1] => 4
[[1,2,5],[3,6],[4]] => [4,3,6,1,2,5] => 00101 => [2,1,1,1] => 4
[[1,3,4],[2,6],[5]] => [5,2,6,1,3,4] => 00011 => [3,2] => 2
[[1,2,4],[3,6],[5]] => [5,3,6,1,2,4] => 00011 => [3,2] => 2
[[1,2,3],[4,6],[5]] => [5,4,6,1,2,3] => 00011 => [3,2] => 2
[[1,3,5],[2,4],[6]] => [6,2,4,1,3,5] => 00101 => [2,1,1,1] => 4
[[1,2,5],[3,4],[6]] => [6,3,4,1,2,5] => 00101 => [2,1,1,1] => 4
[[1,3,4],[2,5],[6]] => [6,2,5,1,3,4] => 00011 => [3,2] => 2
[[1,2,4],[3,5],[6]] => [6,3,5,1,2,4] => 00011 => [3,2] => 2
[[1,2,3],[4,5],[6]] => [6,4,5,1,2,3] => 00011 => [3,2] => 2
[[1,5,6],[2],[3],[4]] => [4,3,2,1,5,6] => 11100 => [3,2] => 2
[[1,4,6],[2],[3],[5]] => [5,3,2,1,4,6] => 11010 => [2,1,1,1] => 4
[[1,3,6],[2],[4],[5]] => [5,4,2,1,3,6] => 10110 => [1,1,2,1] => 3
[[1,2,6],[3],[4],[5]] => [5,4,3,1,2,6] => 01110 => [1,3,1] => 2
[[1,4,5],[2],[3],[6]] => [6,3,2,1,4,5] => 11001 => [2,2,1] => 2
[[1,3,5],[2],[4],[6]] => [6,4,2,1,3,5] => 10101 => [1,1,1,1,1] => 5
[[1,2,5],[3],[4],[6]] => [6,4,3,1,2,5] => 01101 => [1,2,1,1] => 3
[[1,3,4],[2],[5],[6]] => [6,5,2,1,3,4] => 10011 => [1,2,2] => 2
[[1,2,4],[3],[5],[6]] => [6,5,3,1,2,4] => 01011 => [1,1,1,2] => 4
[[1,2,3],[4],[5],[6]] => [6,5,4,1,2,3] => 00111 => [2,3] => 2
[[1,4],[2,5],[3,6]] => [3,6,2,5,1,4] => 00011 => [3,2] => 2
[[1,3],[2,5],[4,6]] => [4,6,2,5,1,3] => 00011 => [3,2] => 2
[[1,2],[3,5],[4,6]] => [4,6,3,5,1,2] => 00011 => [3,2] => 2
>>> Load all 350 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The global dimension of the corresponding Comp-Nakayama algebra.
We identify the composition [n1-1,n2-1,...,nr-1] with the Nakayama algebra with Kupisch series [n1,n1-1,...,2,n2,n2-1,...,2,...,nr,nr-1,...,3,2,1]. We call such Nakayama algebras with Kupisch series corresponding to a integer composition "Comp-Nakayama algebra".
We identify the composition [n1-1,n2-1,...,nr-1] with the Nakayama algebra with Kupisch series [n1,n1-1,...,2,n2,n2-1,...,2,...,nr,nr-1,...,3,2,1]. We call such Nakayama algebras with Kupisch series corresponding to a integer composition "Comp-Nakayama algebra".
Map
delta morphism
Description
Applies the delta morphism to a binary word.
The delta morphism of a finite word $w$ is the integer compositions composed of the lengths of consecutive runs of the same letter in $w$.
The delta morphism of a finite word $w$ is the integer compositions composed of the lengths of consecutive runs of the same letter in $w$.
Map
reading word permutation
Description
Return the permutation obtained by reading the entries of the tableau row by row, starting with the bottom-most row in English notation.
Map
descent tops
Description
The descent tops of a permutation as a binary word.
Since 1 is never a descent top, it is omitted and the first letter of the word corresponds to the element 2.
Since 1 is never a descent top, it is omitted and the first letter of the word corresponds to the element 2.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!