Identifier
-
Mp00077:
Semistandard tableaux
—shape⟶
Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
Mp00178: Binary words —to composition⟶ Integer compositions
St001235: Integer compositions ⟶ ℤ
Values
[[1,2]] => [2] => 100 => [1,3] => 2
[[2,2]] => [2] => 100 => [1,3] => 2
[[1],[2]] => [1,1] => 110 => [1,1,2] => 3
[[1,3]] => [2] => 100 => [1,3] => 2
[[2,3]] => [2] => 100 => [1,3] => 2
[[3,3]] => [2] => 100 => [1,3] => 2
[[1],[3]] => [1,1] => 110 => [1,1,2] => 3
[[2],[3]] => [1,1] => 110 => [1,1,2] => 3
[[1,1,2]] => [3] => 1000 => [1,4] => 2
[[1,2,2]] => [3] => 1000 => [1,4] => 2
[[2,2,2]] => [3] => 1000 => [1,4] => 2
[[1,1],[2]] => [2,1] => 1010 => [1,2,2] => 2
[[1,2],[2]] => [2,1] => 1010 => [1,2,2] => 2
[[1,4]] => [2] => 100 => [1,3] => 2
[[2,4]] => [2] => 100 => [1,3] => 2
[[3,4]] => [2] => 100 => [1,3] => 2
[[4,4]] => [2] => 100 => [1,3] => 2
[[1],[4]] => [1,1] => 110 => [1,1,2] => 3
[[2],[4]] => [1,1] => 110 => [1,1,2] => 3
[[3],[4]] => [1,1] => 110 => [1,1,2] => 3
[[1,1,3]] => [3] => 1000 => [1,4] => 2
[[1,2,3]] => [3] => 1000 => [1,4] => 2
[[1,3,3]] => [3] => 1000 => [1,4] => 2
[[2,2,3]] => [3] => 1000 => [1,4] => 2
[[2,3,3]] => [3] => 1000 => [1,4] => 2
[[3,3,3]] => [3] => 1000 => [1,4] => 2
[[1,1],[3]] => [2,1] => 1010 => [1,2,2] => 2
[[1,2],[3]] => [2,1] => 1010 => [1,2,2] => 2
[[1,3],[2]] => [2,1] => 1010 => [1,2,2] => 2
[[1,3],[3]] => [2,1] => 1010 => [1,2,2] => 2
[[2,2],[3]] => [2,1] => 1010 => [1,2,2] => 2
[[2,3],[3]] => [2,1] => 1010 => [1,2,2] => 2
[[1],[2],[3]] => [1,1,1] => 1110 => [1,1,1,2] => 4
[[1,1,1,2]] => [4] => 10000 => [1,5] => 2
[[1,1,2,2]] => [4] => 10000 => [1,5] => 2
[[1,2,2,2]] => [4] => 10000 => [1,5] => 2
[[2,2,2,2]] => [4] => 10000 => [1,5] => 2
[[1,1,1],[2]] => [3,1] => 10010 => [1,3,2] => 2
[[1,1,2],[2]] => [3,1] => 10010 => [1,3,2] => 2
[[1,2,2],[2]] => [3,1] => 10010 => [1,3,2] => 2
[[1,1],[2,2]] => [2,2] => 1100 => [1,1,3] => 3
[[1,5]] => [2] => 100 => [1,3] => 2
[[2,5]] => [2] => 100 => [1,3] => 2
[[3,5]] => [2] => 100 => [1,3] => 2
[[4,5]] => [2] => 100 => [1,3] => 2
[[5,5]] => [2] => 100 => [1,3] => 2
[[1],[5]] => [1,1] => 110 => [1,1,2] => 3
[[2],[5]] => [1,1] => 110 => [1,1,2] => 3
[[3],[5]] => [1,1] => 110 => [1,1,2] => 3
[[4],[5]] => [1,1] => 110 => [1,1,2] => 3
[[1,1,4]] => [3] => 1000 => [1,4] => 2
[[1,2,4]] => [3] => 1000 => [1,4] => 2
[[1,3,4]] => [3] => 1000 => [1,4] => 2
[[1,4,4]] => [3] => 1000 => [1,4] => 2
[[2,2,4]] => [3] => 1000 => [1,4] => 2
[[2,3,4]] => [3] => 1000 => [1,4] => 2
[[2,4,4]] => [3] => 1000 => [1,4] => 2
[[3,3,4]] => [3] => 1000 => [1,4] => 2
[[3,4,4]] => [3] => 1000 => [1,4] => 2
[[4,4,4]] => [3] => 1000 => [1,4] => 2
[[1,1],[4]] => [2,1] => 1010 => [1,2,2] => 2
[[1,2],[4]] => [2,1] => 1010 => [1,2,2] => 2
[[1,4],[2]] => [2,1] => 1010 => [1,2,2] => 2
[[1,3],[4]] => [2,1] => 1010 => [1,2,2] => 2
[[1,4],[3]] => [2,1] => 1010 => [1,2,2] => 2
[[1,4],[4]] => [2,1] => 1010 => [1,2,2] => 2
[[2,2],[4]] => [2,1] => 1010 => [1,2,2] => 2
[[2,3],[4]] => [2,1] => 1010 => [1,2,2] => 2
[[2,4],[3]] => [2,1] => 1010 => [1,2,2] => 2
[[2,4],[4]] => [2,1] => 1010 => [1,2,2] => 2
[[3,3],[4]] => [2,1] => 1010 => [1,2,2] => 2
[[3,4],[4]] => [2,1] => 1010 => [1,2,2] => 2
[[1],[2],[4]] => [1,1,1] => 1110 => [1,1,1,2] => 4
[[1],[3],[4]] => [1,1,1] => 1110 => [1,1,1,2] => 4
[[2],[3],[4]] => [1,1,1] => 1110 => [1,1,1,2] => 4
[[1,1,1,3]] => [4] => 10000 => [1,5] => 2
[[1,1,2,3]] => [4] => 10000 => [1,5] => 2
[[1,1,3,3]] => [4] => 10000 => [1,5] => 2
[[1,2,2,3]] => [4] => 10000 => [1,5] => 2
[[1,2,3,3]] => [4] => 10000 => [1,5] => 2
[[1,3,3,3]] => [4] => 10000 => [1,5] => 2
[[2,2,2,3]] => [4] => 10000 => [1,5] => 2
[[2,2,3,3]] => [4] => 10000 => [1,5] => 2
[[2,3,3,3]] => [4] => 10000 => [1,5] => 2
[[3,3,3,3]] => [4] => 10000 => [1,5] => 2
[[1,1,1],[3]] => [3,1] => 10010 => [1,3,2] => 2
[[1,1,2],[3]] => [3,1] => 10010 => [1,3,2] => 2
[[1,1,3],[2]] => [3,1] => 10010 => [1,3,2] => 2
[[1,1,3],[3]] => [3,1] => 10010 => [1,3,2] => 2
[[1,2,2],[3]] => [3,1] => 10010 => [1,3,2] => 2
[[1,2,3],[2]] => [3,1] => 10010 => [1,3,2] => 2
[[1,2,3],[3]] => [3,1] => 10010 => [1,3,2] => 2
[[1,3,3],[2]] => [3,1] => 10010 => [1,3,2] => 2
[[1,3,3],[3]] => [3,1] => 10010 => [1,3,2] => 2
[[2,2,2],[3]] => [3,1] => 10010 => [1,3,2] => 2
[[2,2,3],[3]] => [3,1] => 10010 => [1,3,2] => 2
[[2,3,3],[3]] => [3,1] => 10010 => [1,3,2] => 2
[[1,1],[2,3]] => [2,2] => 1100 => [1,1,3] => 3
[[1,1],[3,3]] => [2,2] => 1100 => [1,1,3] => 3
[[1,2],[2,3]] => [2,2] => 1100 => [1,1,3] => 3
[[1,2],[3,3]] => [2,2] => 1100 => [1,1,3] => 3
>>> Load all 1182 entries. <<<[[2,2],[3,3]] => [2,2] => 1100 => [1,1,3] => 3
[[1,1],[2],[3]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,2],[2],[3]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,3],[2],[3]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,1,1],[2,2]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,2],[2,2]] => [3,2] => 10100 => [1,2,3] => 2
[[1,6]] => [2] => 100 => [1,3] => 2
[[2,6]] => [2] => 100 => [1,3] => 2
[[3,6]] => [2] => 100 => [1,3] => 2
[[4,6]] => [2] => 100 => [1,3] => 2
[[5,6]] => [2] => 100 => [1,3] => 2
[[6,6]] => [2] => 100 => [1,3] => 2
[[1],[6]] => [1,1] => 110 => [1,1,2] => 3
[[2],[6]] => [1,1] => 110 => [1,1,2] => 3
[[3],[6]] => [1,1] => 110 => [1,1,2] => 3
[[4],[6]] => [1,1] => 110 => [1,1,2] => 3
[[5],[6]] => [1,1] => 110 => [1,1,2] => 3
[[1,1,5]] => [3] => 1000 => [1,4] => 2
[[1,2,5]] => [3] => 1000 => [1,4] => 2
[[1,3,5]] => [3] => 1000 => [1,4] => 2
[[1,4,5]] => [3] => 1000 => [1,4] => 2
[[1,5,5]] => [3] => 1000 => [1,4] => 2
[[2,2,5]] => [3] => 1000 => [1,4] => 2
[[2,3,5]] => [3] => 1000 => [1,4] => 2
[[2,4,5]] => [3] => 1000 => [1,4] => 2
[[2,5,5]] => [3] => 1000 => [1,4] => 2
[[3,3,5]] => [3] => 1000 => [1,4] => 2
[[3,4,5]] => [3] => 1000 => [1,4] => 2
[[3,5,5]] => [3] => 1000 => [1,4] => 2
[[4,4,5]] => [3] => 1000 => [1,4] => 2
[[4,5,5]] => [3] => 1000 => [1,4] => 2
[[5,5,5]] => [3] => 1000 => [1,4] => 2
[[1,1],[5]] => [2,1] => 1010 => [1,2,2] => 2
[[1,2],[5]] => [2,1] => 1010 => [1,2,2] => 2
[[1,5],[2]] => [2,1] => 1010 => [1,2,2] => 2
[[1,3],[5]] => [2,1] => 1010 => [1,2,2] => 2
[[1,5],[3]] => [2,1] => 1010 => [1,2,2] => 2
[[1,4],[5]] => [2,1] => 1010 => [1,2,2] => 2
[[1,5],[4]] => [2,1] => 1010 => [1,2,2] => 2
[[1,5],[5]] => [2,1] => 1010 => [1,2,2] => 2
[[2,2],[5]] => [2,1] => 1010 => [1,2,2] => 2
[[2,3],[5]] => [2,1] => 1010 => [1,2,2] => 2
[[2,5],[3]] => [2,1] => 1010 => [1,2,2] => 2
[[2,4],[5]] => [2,1] => 1010 => [1,2,2] => 2
[[2,5],[4]] => [2,1] => 1010 => [1,2,2] => 2
[[2,5],[5]] => [2,1] => 1010 => [1,2,2] => 2
[[3,3],[5]] => [2,1] => 1010 => [1,2,2] => 2
[[3,4],[5]] => [2,1] => 1010 => [1,2,2] => 2
[[3,5],[4]] => [2,1] => 1010 => [1,2,2] => 2
[[3,5],[5]] => [2,1] => 1010 => [1,2,2] => 2
[[4,4],[5]] => [2,1] => 1010 => [1,2,2] => 2
[[4,5],[5]] => [2,1] => 1010 => [1,2,2] => 2
[[1],[2],[5]] => [1,1,1] => 1110 => [1,1,1,2] => 4
[[1],[3],[5]] => [1,1,1] => 1110 => [1,1,1,2] => 4
[[1],[4],[5]] => [1,1,1] => 1110 => [1,1,1,2] => 4
[[2],[3],[5]] => [1,1,1] => 1110 => [1,1,1,2] => 4
[[2],[4],[5]] => [1,1,1] => 1110 => [1,1,1,2] => 4
[[3],[4],[5]] => [1,1,1] => 1110 => [1,1,1,2] => 4
[[1,1,1,4]] => [4] => 10000 => [1,5] => 2
[[1,1,2,4]] => [4] => 10000 => [1,5] => 2
[[1,1,3,4]] => [4] => 10000 => [1,5] => 2
[[1,1,4,4]] => [4] => 10000 => [1,5] => 2
[[1,2,2,4]] => [4] => 10000 => [1,5] => 2
[[1,2,3,4]] => [4] => 10000 => [1,5] => 2
[[1,2,4,4]] => [4] => 10000 => [1,5] => 2
[[1,3,3,4]] => [4] => 10000 => [1,5] => 2
[[1,3,4,4]] => [4] => 10000 => [1,5] => 2
[[1,4,4,4]] => [4] => 10000 => [1,5] => 2
[[2,2,2,4]] => [4] => 10000 => [1,5] => 2
[[2,2,3,4]] => [4] => 10000 => [1,5] => 2
[[2,2,4,4]] => [4] => 10000 => [1,5] => 2
[[2,3,3,4]] => [4] => 10000 => [1,5] => 2
[[2,3,4,4]] => [4] => 10000 => [1,5] => 2
[[2,4,4,4]] => [4] => 10000 => [1,5] => 2
[[3,3,3,4]] => [4] => 10000 => [1,5] => 2
[[3,3,4,4]] => [4] => 10000 => [1,5] => 2
[[3,4,4,4]] => [4] => 10000 => [1,5] => 2
[[4,4,4,4]] => [4] => 10000 => [1,5] => 2
[[1,1,1],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[1,1,2],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[1,1,4],[2]] => [3,1] => 10010 => [1,3,2] => 2
[[1,1,3],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[1,1,4],[3]] => [3,1] => 10010 => [1,3,2] => 2
[[1,1,4],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[1,2,2],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[1,2,4],[2]] => [3,1] => 10010 => [1,3,2] => 2
[[1,2,3],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[1,2,4],[3]] => [3,1] => 10010 => [1,3,2] => 2
[[1,3,4],[2]] => [3,1] => 10010 => [1,3,2] => 2
[[1,2,4],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[1,4,4],[2]] => [3,1] => 10010 => [1,3,2] => 2
[[1,3,3],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[1,3,4],[3]] => [3,1] => 10010 => [1,3,2] => 2
[[1,3,4],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[1,4,4],[3]] => [3,1] => 10010 => [1,3,2] => 2
[[1,4,4],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[2,2,2],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[2,2,3],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[2,2,4],[3]] => [3,1] => 10010 => [1,3,2] => 2
[[2,2,4],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[2,3,3],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[2,3,4],[3]] => [3,1] => 10010 => [1,3,2] => 2
[[2,3,4],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[2,4,4],[3]] => [3,1] => 10010 => [1,3,2] => 2
[[2,4,4],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[3,3,3],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[3,3,4],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[3,4,4],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[1,1],[2,4]] => [2,2] => 1100 => [1,1,3] => 3
[[1,1],[3,4]] => [2,2] => 1100 => [1,1,3] => 3
[[1,1],[4,4]] => [2,2] => 1100 => [1,1,3] => 3
[[1,2],[2,4]] => [2,2] => 1100 => [1,1,3] => 3
[[1,2],[3,4]] => [2,2] => 1100 => [1,1,3] => 3
[[1,3],[2,4]] => [2,2] => 1100 => [1,1,3] => 3
[[1,2],[4,4]] => [2,2] => 1100 => [1,1,3] => 3
[[1,3],[3,4]] => [2,2] => 1100 => [1,1,3] => 3
[[1,3],[4,4]] => [2,2] => 1100 => [1,1,3] => 3
[[2,2],[3,4]] => [2,2] => 1100 => [1,1,3] => 3
[[2,2],[4,4]] => [2,2] => 1100 => [1,1,3] => 3
[[2,3],[3,4]] => [2,2] => 1100 => [1,1,3] => 3
[[2,3],[4,4]] => [2,2] => 1100 => [1,1,3] => 3
[[3,3],[4,4]] => [2,2] => 1100 => [1,1,3] => 3
[[1,1],[2],[4]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,1],[3],[4]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,2],[2],[4]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,2],[3],[4]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,3],[2],[4]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,4],[2],[3]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,4],[2],[4]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,3],[3],[4]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,4],[3],[4]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[2,2],[3],[4]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[2,3],[3],[4]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[2,4],[3],[4]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1],[2],[3],[4]] => [1,1,1,1] => 11110 => [1,1,1,1,2] => 5
[[1,1,1],[2,3]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,1],[3,3]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,2],[2,3]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,3],[2,2]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,2],[3,3]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,3],[2,3]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,3],[3,3]] => [3,2] => 10100 => [1,2,3] => 2
[[1,2,2],[2,3]] => [3,2] => 10100 => [1,2,3] => 2
[[1,2,2],[3,3]] => [3,2] => 10100 => [1,2,3] => 2
[[1,2,3],[2,3]] => [3,2] => 10100 => [1,2,3] => 2
[[1,2,3],[3,3]] => [3,2] => 10100 => [1,2,3] => 2
[[2,2,2],[3,3]] => [3,2] => 10100 => [1,2,3] => 2
[[2,2,3],[3,3]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1],[2,2],[3]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,1],[2,3],[3]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,2],[2,3],[3]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,1,1],[2,2,2]] => [3,3] => 11000 => [1,1,4] => 3
[[1,7]] => [2] => 100 => [1,3] => 2
[[2,7]] => [2] => 100 => [1,3] => 2
[[3,7]] => [2] => 100 => [1,3] => 2
[[4,7]] => [2] => 100 => [1,3] => 2
[[5,7]] => [2] => 100 => [1,3] => 2
[[6,7]] => [2] => 100 => [1,3] => 2
[[7,7]] => [2] => 100 => [1,3] => 2
[[1],[7]] => [1,1] => 110 => [1,1,2] => 3
[[2],[7]] => [1,1] => 110 => [1,1,2] => 3
[[3],[7]] => [1,1] => 110 => [1,1,2] => 3
[[4],[7]] => [1,1] => 110 => [1,1,2] => 3
[[5],[7]] => [1,1] => 110 => [1,1,2] => 3
[[6],[7]] => [1,1] => 110 => [1,1,2] => 3
[[1,1,6]] => [3] => 1000 => [1,4] => 2
[[1,2,6]] => [3] => 1000 => [1,4] => 2
[[1,3,6]] => [3] => 1000 => [1,4] => 2
[[1,4,6]] => [3] => 1000 => [1,4] => 2
[[1,5,6]] => [3] => 1000 => [1,4] => 2
[[1,6,6]] => [3] => 1000 => [1,4] => 2
[[2,2,6]] => [3] => 1000 => [1,4] => 2
[[2,3,6]] => [3] => 1000 => [1,4] => 2
[[2,4,6]] => [3] => 1000 => [1,4] => 2
[[2,5,6]] => [3] => 1000 => [1,4] => 2
[[2,6,6]] => [3] => 1000 => [1,4] => 2
[[3,3,6]] => [3] => 1000 => [1,4] => 2
[[3,4,6]] => [3] => 1000 => [1,4] => 2
[[3,5,6]] => [3] => 1000 => [1,4] => 2
[[3,6,6]] => [3] => 1000 => [1,4] => 2
[[4,4,6]] => [3] => 1000 => [1,4] => 2
[[4,5,6]] => [3] => 1000 => [1,4] => 2
[[4,6,6]] => [3] => 1000 => [1,4] => 2
[[5,5,6]] => [3] => 1000 => [1,4] => 2
[[5,6,6]] => [3] => 1000 => [1,4] => 2
[[6,6,6]] => [3] => 1000 => [1,4] => 2
[[1,1],[6]] => [2,1] => 1010 => [1,2,2] => 2
[[1,2],[6]] => [2,1] => 1010 => [1,2,2] => 2
[[1,6],[2]] => [2,1] => 1010 => [1,2,2] => 2
[[1,3],[6]] => [2,1] => 1010 => [1,2,2] => 2
[[1,6],[3]] => [2,1] => 1010 => [1,2,2] => 2
[[1,4],[6]] => [2,1] => 1010 => [1,2,2] => 2
[[1,6],[4]] => [2,1] => 1010 => [1,2,2] => 2
[[1,5],[6]] => [2,1] => 1010 => [1,2,2] => 2
[[1,6],[5]] => [2,1] => 1010 => [1,2,2] => 2
[[1,6],[6]] => [2,1] => 1010 => [1,2,2] => 2
[[2,2],[6]] => [2,1] => 1010 => [1,2,2] => 2
[[2,3],[6]] => [2,1] => 1010 => [1,2,2] => 2
[[2,6],[3]] => [2,1] => 1010 => [1,2,2] => 2
[[2,4],[6]] => [2,1] => 1010 => [1,2,2] => 2
[[2,6],[4]] => [2,1] => 1010 => [1,2,2] => 2
[[2,5],[6]] => [2,1] => 1010 => [1,2,2] => 2
[[2,6],[5]] => [2,1] => 1010 => [1,2,2] => 2
[[2,6],[6]] => [2,1] => 1010 => [1,2,2] => 2
[[3,3],[6]] => [2,1] => 1010 => [1,2,2] => 2
[[3,4],[6]] => [2,1] => 1010 => [1,2,2] => 2
[[3,6],[4]] => [2,1] => 1010 => [1,2,2] => 2
[[3,5],[6]] => [2,1] => 1010 => [1,2,2] => 2
[[3,6],[5]] => [2,1] => 1010 => [1,2,2] => 2
[[3,6],[6]] => [2,1] => 1010 => [1,2,2] => 2
[[4,4],[6]] => [2,1] => 1010 => [1,2,2] => 2
[[4,5],[6]] => [2,1] => 1010 => [1,2,2] => 2
[[4,6],[5]] => [2,1] => 1010 => [1,2,2] => 2
[[4,6],[6]] => [2,1] => 1010 => [1,2,2] => 2
[[5,5],[6]] => [2,1] => 1010 => [1,2,2] => 2
[[5,6],[6]] => [2,1] => 1010 => [1,2,2] => 2
[[1],[2],[6]] => [1,1,1] => 1110 => [1,1,1,2] => 4
[[1],[3],[6]] => [1,1,1] => 1110 => [1,1,1,2] => 4
[[1],[4],[6]] => [1,1,1] => 1110 => [1,1,1,2] => 4
[[1],[5],[6]] => [1,1,1] => 1110 => [1,1,1,2] => 4
[[2],[3],[6]] => [1,1,1] => 1110 => [1,1,1,2] => 4
[[2],[4],[6]] => [1,1,1] => 1110 => [1,1,1,2] => 4
[[2],[5],[6]] => [1,1,1] => 1110 => [1,1,1,2] => 4
[[3],[4],[6]] => [1,1,1] => 1110 => [1,1,1,2] => 4
[[3],[5],[6]] => [1,1,1] => 1110 => [1,1,1,2] => 4
[[4],[5],[6]] => [1,1,1] => 1110 => [1,1,1,2] => 4
[[1,1,1,5]] => [4] => 10000 => [1,5] => 2
[[1,1,2,5]] => [4] => 10000 => [1,5] => 2
[[1,1,3,5]] => [4] => 10000 => [1,5] => 2
[[1,1,4,5]] => [4] => 10000 => [1,5] => 2
[[1,1,5,5]] => [4] => 10000 => [1,5] => 2
[[1,2,2,5]] => [4] => 10000 => [1,5] => 2
[[1,2,3,5]] => [4] => 10000 => [1,5] => 2
[[1,2,4,5]] => [4] => 10000 => [1,5] => 2
[[1,2,5,5]] => [4] => 10000 => [1,5] => 2
[[1,3,3,5]] => [4] => 10000 => [1,5] => 2
[[1,3,4,5]] => [4] => 10000 => [1,5] => 2
[[1,3,5,5]] => [4] => 10000 => [1,5] => 2
[[1,4,4,5]] => [4] => 10000 => [1,5] => 2
[[1,4,5,5]] => [4] => 10000 => [1,5] => 2
[[1,5,5,5]] => [4] => 10000 => [1,5] => 2
[[2,2,2,5]] => [4] => 10000 => [1,5] => 2
[[2,2,3,5]] => [4] => 10000 => [1,5] => 2
[[2,2,4,5]] => [4] => 10000 => [1,5] => 2
[[2,2,5,5]] => [4] => 10000 => [1,5] => 2
[[2,3,3,5]] => [4] => 10000 => [1,5] => 2
[[2,3,4,5]] => [4] => 10000 => [1,5] => 2
[[2,3,5,5]] => [4] => 10000 => [1,5] => 2
[[2,4,4,5]] => [4] => 10000 => [1,5] => 2
[[2,4,5,5]] => [4] => 10000 => [1,5] => 2
[[2,5,5,5]] => [4] => 10000 => [1,5] => 2
[[3,3,3,5]] => [4] => 10000 => [1,5] => 2
[[3,3,4,5]] => [4] => 10000 => [1,5] => 2
[[3,3,5,5]] => [4] => 10000 => [1,5] => 2
[[3,4,4,5]] => [4] => 10000 => [1,5] => 2
[[3,4,5,5]] => [4] => 10000 => [1,5] => 2
[[3,5,5,5]] => [4] => 10000 => [1,5] => 2
[[4,4,4,5]] => [4] => 10000 => [1,5] => 2
[[4,4,5,5]] => [4] => 10000 => [1,5] => 2
[[4,5,5,5]] => [4] => 10000 => [1,5] => 2
[[5,5,5,5]] => [4] => 10000 => [1,5] => 2
[[1,1,1],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[1,1,2],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[1,1,5],[2]] => [3,1] => 10010 => [1,3,2] => 2
[[1,1,3],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[1,1,5],[3]] => [3,1] => 10010 => [1,3,2] => 2
[[1,1,4],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[1,1,5],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[1,1,5],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[1,2,2],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[1,2,5],[2]] => [3,1] => 10010 => [1,3,2] => 2
[[1,2,3],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[1,2,5],[3]] => [3,1] => 10010 => [1,3,2] => 2
[[1,3,5],[2]] => [3,1] => 10010 => [1,3,2] => 2
[[1,2,4],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[1,2,5],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[1,4,5],[2]] => [3,1] => 10010 => [1,3,2] => 2
[[1,2,5],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[1,5,5],[2]] => [3,1] => 10010 => [1,3,2] => 2
[[1,3,3],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[1,3,5],[3]] => [3,1] => 10010 => [1,3,2] => 2
[[1,3,4],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[1,3,5],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[1,4,5],[3]] => [3,1] => 10010 => [1,3,2] => 2
[[1,3,5],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[1,5,5],[3]] => [3,1] => 10010 => [1,3,2] => 2
[[1,4,4],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[1,4,5],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[1,4,5],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[1,5,5],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[1,5,5],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[2,2,2],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[2,2,3],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[2,2,5],[3]] => [3,1] => 10010 => [1,3,2] => 2
[[2,2,4],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[2,2,5],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[2,2,5],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[2,3,3],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[2,3,5],[3]] => [3,1] => 10010 => [1,3,2] => 2
[[2,3,4],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[2,3,5],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[2,4,5],[3]] => [3,1] => 10010 => [1,3,2] => 2
[[2,3,5],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[2,5,5],[3]] => [3,1] => 10010 => [1,3,2] => 2
[[2,4,4],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[2,4,5],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[2,4,5],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[2,5,5],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[2,5,5],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[3,3,3],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[3,3,4],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[3,3,5],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[3,3,5],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[3,4,4],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[3,4,5],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[3,4,5],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[3,5,5],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[3,5,5],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[4,4,4],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[4,4,5],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[4,5,5],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[1,1],[2,5]] => [2,2] => 1100 => [1,1,3] => 3
[[1,1],[3,5]] => [2,2] => 1100 => [1,1,3] => 3
[[1,1],[4,5]] => [2,2] => 1100 => [1,1,3] => 3
[[1,1],[5,5]] => [2,2] => 1100 => [1,1,3] => 3
[[1,2],[2,5]] => [2,2] => 1100 => [1,1,3] => 3
[[1,2],[3,5]] => [2,2] => 1100 => [1,1,3] => 3
[[1,3],[2,5]] => [2,2] => 1100 => [1,1,3] => 3
[[1,2],[4,5]] => [2,2] => 1100 => [1,1,3] => 3
[[1,4],[2,5]] => [2,2] => 1100 => [1,1,3] => 3
[[1,2],[5,5]] => [2,2] => 1100 => [1,1,3] => 3
[[1,3],[3,5]] => [2,2] => 1100 => [1,1,3] => 3
[[1,3],[4,5]] => [2,2] => 1100 => [1,1,3] => 3
[[1,4],[3,5]] => [2,2] => 1100 => [1,1,3] => 3
[[1,3],[5,5]] => [2,2] => 1100 => [1,1,3] => 3
[[1,4],[4,5]] => [2,2] => 1100 => [1,1,3] => 3
[[1,4],[5,5]] => [2,2] => 1100 => [1,1,3] => 3
[[2,2],[3,5]] => [2,2] => 1100 => [1,1,3] => 3
[[2,2],[4,5]] => [2,2] => 1100 => [1,1,3] => 3
[[2,2],[5,5]] => [2,2] => 1100 => [1,1,3] => 3
[[2,3],[3,5]] => [2,2] => 1100 => [1,1,3] => 3
[[2,3],[4,5]] => [2,2] => 1100 => [1,1,3] => 3
[[2,4],[3,5]] => [2,2] => 1100 => [1,1,3] => 3
[[2,3],[5,5]] => [2,2] => 1100 => [1,1,3] => 3
[[2,4],[4,5]] => [2,2] => 1100 => [1,1,3] => 3
[[2,4],[5,5]] => [2,2] => 1100 => [1,1,3] => 3
[[3,3],[4,5]] => [2,2] => 1100 => [1,1,3] => 3
[[3,3],[5,5]] => [2,2] => 1100 => [1,1,3] => 3
[[3,4],[4,5]] => [2,2] => 1100 => [1,1,3] => 3
[[3,4],[5,5]] => [2,2] => 1100 => [1,1,3] => 3
[[4,4],[5,5]] => [2,2] => 1100 => [1,1,3] => 3
[[1,1],[2],[5]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,1],[3],[5]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,1],[4],[5]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,2],[2],[5]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,2],[3],[5]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,3],[2],[5]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,5],[2],[3]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,2],[4],[5]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,4],[2],[5]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,5],[2],[4]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,5],[2],[5]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,3],[3],[5]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,3],[4],[5]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,4],[3],[5]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,5],[3],[4]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,5],[3],[5]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,4],[4],[5]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,5],[4],[5]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[2,2],[3],[5]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[2,2],[4],[5]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[2,3],[3],[5]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[2,3],[4],[5]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[2,4],[3],[5]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[2,5],[3],[4]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[2,5],[3],[5]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[2,4],[4],[5]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[2,5],[4],[5]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[3,3],[4],[5]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[3,4],[4],[5]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[3,5],[4],[5]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1],[2],[3],[5]] => [1,1,1,1] => 11110 => [1,1,1,1,2] => 5
[[1],[2],[4],[5]] => [1,1,1,1] => 11110 => [1,1,1,1,2] => 5
[[1],[3],[4],[5]] => [1,1,1,1] => 11110 => [1,1,1,1,2] => 5
[[2],[3],[4],[5]] => [1,1,1,1] => 11110 => [1,1,1,1,2] => 5
[[1,1,1],[2,4]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,1],[3,4]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,1],[4,4]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,2],[2,4]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,4],[2,2]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,2],[3,4]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,3],[2,4]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,4],[2,3]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,2],[4,4]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,4],[2,4]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,3],[3,4]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,4],[3,3]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,3],[4,4]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,4],[3,4]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,4],[4,4]] => [3,2] => 10100 => [1,2,3] => 2
[[1,2,2],[2,4]] => [3,2] => 10100 => [1,2,3] => 2
[[1,2,2],[3,4]] => [3,2] => 10100 => [1,2,3] => 2
[[1,2,3],[2,4]] => [3,2] => 10100 => [1,2,3] => 2
[[1,2,4],[2,3]] => [3,2] => 10100 => [1,2,3] => 2
[[1,2,2],[4,4]] => [3,2] => 10100 => [1,2,3] => 2
[[1,2,4],[2,4]] => [3,2] => 10100 => [1,2,3] => 2
[[1,2,3],[3,4]] => [3,2] => 10100 => [1,2,3] => 2
[[1,2,4],[3,3]] => [3,2] => 10100 => [1,2,3] => 2
[[1,3,3],[2,4]] => [3,2] => 10100 => [1,2,3] => 2
[[1,2,3],[4,4]] => [3,2] => 10100 => [1,2,3] => 2
[[1,2,4],[3,4]] => [3,2] => 10100 => [1,2,3] => 2
[[1,3,4],[2,4]] => [3,2] => 10100 => [1,2,3] => 2
[[1,2,4],[4,4]] => [3,2] => 10100 => [1,2,3] => 2
[[1,3,3],[3,4]] => [3,2] => 10100 => [1,2,3] => 2
[[1,3,3],[4,4]] => [3,2] => 10100 => [1,2,3] => 2
[[1,3,4],[3,4]] => [3,2] => 10100 => [1,2,3] => 2
[[1,3,4],[4,4]] => [3,2] => 10100 => [1,2,3] => 2
[[2,2,2],[3,4]] => [3,2] => 10100 => [1,2,3] => 2
[[2,2,2],[4,4]] => [3,2] => 10100 => [1,2,3] => 2
[[2,2,3],[3,4]] => [3,2] => 10100 => [1,2,3] => 2
[[2,2,4],[3,3]] => [3,2] => 10100 => [1,2,3] => 2
[[2,2,3],[4,4]] => [3,2] => 10100 => [1,2,3] => 2
[[2,2,4],[3,4]] => [3,2] => 10100 => [1,2,3] => 2
[[2,2,4],[4,4]] => [3,2] => 10100 => [1,2,3] => 2
[[2,3,3],[3,4]] => [3,2] => 10100 => [1,2,3] => 2
[[2,3,3],[4,4]] => [3,2] => 10100 => [1,2,3] => 2
[[2,3,4],[3,4]] => [3,2] => 10100 => [1,2,3] => 2
[[2,3,4],[4,4]] => [3,2] => 10100 => [1,2,3] => 2
[[3,3,3],[4,4]] => [3,2] => 10100 => [1,2,3] => 2
[[3,3,4],[4,4]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1],[2,2],[4]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,1],[2,3],[4]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,1],[2,4],[3]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,1],[2,4],[4]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,1],[3,3],[4]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,1],[3,4],[4]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,2],[2,3],[4]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,2],[2,4],[3]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,2],[2,4],[4]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,2],[3,3],[4]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,3],[2,4],[3]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,2],[3,4],[4]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,3],[2,4],[4]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,3],[3,4],[4]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[2,2],[3,3],[4]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[2,2],[3,4],[4]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[2,3],[3,4],[4]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,1,1],[2,2,3]] => [3,3] => 11000 => [1,1,4] => 3
[[1,1,1],[2,3,3]] => [3,3] => 11000 => [1,1,4] => 3
[[1,1,1],[3,3,3]] => [3,3] => 11000 => [1,1,4] => 3
[[1,1,2],[2,2,3]] => [3,3] => 11000 => [1,1,4] => 3
[[1,1,2],[2,3,3]] => [3,3] => 11000 => [1,1,4] => 3
[[1,1,2],[3,3,3]] => [3,3] => 11000 => [1,1,4] => 3
[[1,2,2],[2,3,3]] => [3,3] => 11000 => [1,1,4] => 3
[[1,2,2],[3,3,3]] => [3,3] => 11000 => [1,1,4] => 3
[[2,2,2],[3,3,3]] => [3,3] => 11000 => [1,1,4] => 3
[[1,1],[2,2],[3,3]] => [2,2,2] => 11100 => [1,1,1,3] => 4
[[1,8]] => [2] => 100 => [1,3] => 2
[[2,8]] => [2] => 100 => [1,3] => 2
[[3,8]] => [2] => 100 => [1,3] => 2
[[4,8]] => [2] => 100 => [1,3] => 2
[[5,8]] => [2] => 100 => [1,3] => 2
[[6,8]] => [2] => 100 => [1,3] => 2
[[7,8]] => [2] => 100 => [1,3] => 2
[[8,8]] => [2] => 100 => [1,3] => 2
[[1],[8]] => [1,1] => 110 => [1,1,2] => 3
[[2],[8]] => [1,1] => 110 => [1,1,2] => 3
[[3],[8]] => [1,1] => 110 => [1,1,2] => 3
[[4],[8]] => [1,1] => 110 => [1,1,2] => 3
[[5],[8]] => [1,1] => 110 => [1,1,2] => 3
[[6],[8]] => [1,1] => 110 => [1,1,2] => 3
[[7],[8]] => [1,1] => 110 => [1,1,2] => 3
[[1,1,7]] => [3] => 1000 => [1,4] => 2
[[1,2,7]] => [3] => 1000 => [1,4] => 2
[[1,3,7]] => [3] => 1000 => [1,4] => 2
[[1,4,7]] => [3] => 1000 => [1,4] => 2
[[1,5,7]] => [3] => 1000 => [1,4] => 2
[[1,6,7]] => [3] => 1000 => [1,4] => 2
[[1,7,7]] => [3] => 1000 => [1,4] => 2
[[2,2,7]] => [3] => 1000 => [1,4] => 2
[[2,3,7]] => [3] => 1000 => [1,4] => 2
[[2,4,7]] => [3] => 1000 => [1,4] => 2
[[2,5,7]] => [3] => 1000 => [1,4] => 2
[[2,6,7]] => [3] => 1000 => [1,4] => 2
[[2,7,7]] => [3] => 1000 => [1,4] => 2
[[3,3,7]] => [3] => 1000 => [1,4] => 2
[[3,4,7]] => [3] => 1000 => [1,4] => 2
[[3,5,7]] => [3] => 1000 => [1,4] => 2
[[3,6,7]] => [3] => 1000 => [1,4] => 2
[[3,7,7]] => [3] => 1000 => [1,4] => 2
[[4,4,7]] => [3] => 1000 => [1,4] => 2
[[4,5,7]] => [3] => 1000 => [1,4] => 2
[[4,6,7]] => [3] => 1000 => [1,4] => 2
[[4,7,7]] => [3] => 1000 => [1,4] => 2
[[5,5,7]] => [3] => 1000 => [1,4] => 2
[[5,6,7]] => [3] => 1000 => [1,4] => 2
[[5,7,7]] => [3] => 1000 => [1,4] => 2
[[6,6,7]] => [3] => 1000 => [1,4] => 2
[[6,7,7]] => [3] => 1000 => [1,4] => 2
[[7,7,7]] => [3] => 1000 => [1,4] => 2
[[1,1],[7]] => [2,1] => 1010 => [1,2,2] => 2
[[1,2],[7]] => [2,1] => 1010 => [1,2,2] => 2
[[1,7],[2]] => [2,1] => 1010 => [1,2,2] => 2
[[1,3],[7]] => [2,1] => 1010 => [1,2,2] => 2
[[1,7],[3]] => [2,1] => 1010 => [1,2,2] => 2
[[1,4],[7]] => [2,1] => 1010 => [1,2,2] => 2
[[1,7],[4]] => [2,1] => 1010 => [1,2,2] => 2
[[1,5],[7]] => [2,1] => 1010 => [1,2,2] => 2
[[1,7],[5]] => [2,1] => 1010 => [1,2,2] => 2
[[1,6],[7]] => [2,1] => 1010 => [1,2,2] => 2
[[1,7],[6]] => [2,1] => 1010 => [1,2,2] => 2
[[1,7],[7]] => [2,1] => 1010 => [1,2,2] => 2
[[2,2],[7]] => [2,1] => 1010 => [1,2,2] => 2
[[2,3],[7]] => [2,1] => 1010 => [1,2,2] => 2
[[2,7],[3]] => [2,1] => 1010 => [1,2,2] => 2
[[2,4],[7]] => [2,1] => 1010 => [1,2,2] => 2
[[2,7],[4]] => [2,1] => 1010 => [1,2,2] => 2
[[2,5],[7]] => [2,1] => 1010 => [1,2,2] => 2
[[2,7],[5]] => [2,1] => 1010 => [1,2,2] => 2
[[2,6],[7]] => [2,1] => 1010 => [1,2,2] => 2
[[2,7],[6]] => [2,1] => 1010 => [1,2,2] => 2
[[2,7],[7]] => [2,1] => 1010 => [1,2,2] => 2
[[3,3],[7]] => [2,1] => 1010 => [1,2,2] => 2
[[3,4],[7]] => [2,1] => 1010 => [1,2,2] => 2
[[3,7],[4]] => [2,1] => 1010 => [1,2,2] => 2
[[3,5],[7]] => [2,1] => 1010 => [1,2,2] => 2
[[3,7],[5]] => [2,1] => 1010 => [1,2,2] => 2
[[3,6],[7]] => [2,1] => 1010 => [1,2,2] => 2
[[3,7],[6]] => [2,1] => 1010 => [1,2,2] => 2
[[3,7],[7]] => [2,1] => 1010 => [1,2,2] => 2
[[4,4],[7]] => [2,1] => 1010 => [1,2,2] => 2
[[4,5],[7]] => [2,1] => 1010 => [1,2,2] => 2
[[4,7],[5]] => [2,1] => 1010 => [1,2,2] => 2
[[4,6],[7]] => [2,1] => 1010 => [1,2,2] => 2
[[4,7],[6]] => [2,1] => 1010 => [1,2,2] => 2
[[4,7],[7]] => [2,1] => 1010 => [1,2,2] => 2
[[5,5],[7]] => [2,1] => 1010 => [1,2,2] => 2
[[5,6],[7]] => [2,1] => 1010 => [1,2,2] => 2
[[5,7],[6]] => [2,1] => 1010 => [1,2,2] => 2
[[5,7],[7]] => [2,1] => 1010 => [1,2,2] => 2
[[6,6],[7]] => [2,1] => 1010 => [1,2,2] => 2
[[6,7],[7]] => [2,1] => 1010 => [1,2,2] => 2
[[1],[2],[7]] => [1,1,1] => 1110 => [1,1,1,2] => 4
[[1],[3],[7]] => [1,1,1] => 1110 => [1,1,1,2] => 4
[[1],[4],[7]] => [1,1,1] => 1110 => [1,1,1,2] => 4
[[1],[5],[7]] => [1,1,1] => 1110 => [1,1,1,2] => 4
[[1],[6],[7]] => [1,1,1] => 1110 => [1,1,1,2] => 4
[[2],[3],[7]] => [1,1,1] => 1110 => [1,1,1,2] => 4
[[2],[4],[7]] => [1,1,1] => 1110 => [1,1,1,2] => 4
[[2],[5],[7]] => [1,1,1] => 1110 => [1,1,1,2] => 4
[[2],[6],[7]] => [1,1,1] => 1110 => [1,1,1,2] => 4
[[3],[4],[7]] => [1,1,1] => 1110 => [1,1,1,2] => 4
[[3],[5],[7]] => [1,1,1] => 1110 => [1,1,1,2] => 4
[[3],[6],[7]] => [1,1,1] => 1110 => [1,1,1,2] => 4
[[4],[5],[7]] => [1,1,1] => 1110 => [1,1,1,2] => 4
[[4],[6],[7]] => [1,1,1] => 1110 => [1,1,1,2] => 4
[[5],[6],[7]] => [1,1,1] => 1110 => [1,1,1,2] => 4
[[1,1,1,6]] => [4] => 10000 => [1,5] => 2
[[1,1,2,6]] => [4] => 10000 => [1,5] => 2
[[1,1,3,6]] => [4] => 10000 => [1,5] => 2
[[1,1,4,6]] => [4] => 10000 => [1,5] => 2
[[1,1,5,6]] => [4] => 10000 => [1,5] => 2
[[1,1,6,6]] => [4] => 10000 => [1,5] => 2
[[1,2,2,6]] => [4] => 10000 => [1,5] => 2
[[1,2,3,6]] => [4] => 10000 => [1,5] => 2
[[1,2,4,6]] => [4] => 10000 => [1,5] => 2
[[1,2,5,6]] => [4] => 10000 => [1,5] => 2
[[1,2,6,6]] => [4] => 10000 => [1,5] => 2
[[1,3,3,6]] => [4] => 10000 => [1,5] => 2
[[1,3,4,6]] => [4] => 10000 => [1,5] => 2
[[1,3,5,6]] => [4] => 10000 => [1,5] => 2
[[1,3,6,6]] => [4] => 10000 => [1,5] => 2
[[1,4,4,6]] => [4] => 10000 => [1,5] => 2
[[1,4,5,6]] => [4] => 10000 => [1,5] => 2
[[1,4,6,6]] => [4] => 10000 => [1,5] => 2
[[1,5,5,6]] => [4] => 10000 => [1,5] => 2
[[1,5,6,6]] => [4] => 10000 => [1,5] => 2
[[1,6,6,6]] => [4] => 10000 => [1,5] => 2
[[2,2,2,6]] => [4] => 10000 => [1,5] => 2
[[2,2,3,6]] => [4] => 10000 => [1,5] => 2
[[2,2,4,6]] => [4] => 10000 => [1,5] => 2
[[2,2,5,6]] => [4] => 10000 => [1,5] => 2
[[2,2,6,6]] => [4] => 10000 => [1,5] => 2
[[2,3,3,6]] => [4] => 10000 => [1,5] => 2
[[2,3,4,6]] => [4] => 10000 => [1,5] => 2
[[2,3,5,6]] => [4] => 10000 => [1,5] => 2
[[2,3,6,6]] => [4] => 10000 => [1,5] => 2
[[2,4,4,6]] => [4] => 10000 => [1,5] => 2
[[2,4,5,6]] => [4] => 10000 => [1,5] => 2
[[2,4,6,6]] => [4] => 10000 => [1,5] => 2
[[2,5,5,6]] => [4] => 10000 => [1,5] => 2
[[2,5,6,6]] => [4] => 10000 => [1,5] => 2
[[2,6,6,6]] => [4] => 10000 => [1,5] => 2
[[3,3,3,6]] => [4] => 10000 => [1,5] => 2
[[3,3,4,6]] => [4] => 10000 => [1,5] => 2
[[3,3,5,6]] => [4] => 10000 => [1,5] => 2
[[3,3,6,6]] => [4] => 10000 => [1,5] => 2
[[3,4,4,6]] => [4] => 10000 => [1,5] => 2
[[3,4,5,6]] => [4] => 10000 => [1,5] => 2
[[3,4,6,6]] => [4] => 10000 => [1,5] => 2
[[3,5,5,6]] => [4] => 10000 => [1,5] => 2
[[3,5,6,6]] => [4] => 10000 => [1,5] => 2
[[3,6,6,6]] => [4] => 10000 => [1,5] => 2
[[4,4,4,6]] => [4] => 10000 => [1,5] => 2
[[4,4,5,6]] => [4] => 10000 => [1,5] => 2
[[4,4,6,6]] => [4] => 10000 => [1,5] => 2
[[4,5,5,6]] => [4] => 10000 => [1,5] => 2
[[4,5,6,6]] => [4] => 10000 => [1,5] => 2
[[4,6,6,6]] => [4] => 10000 => [1,5] => 2
[[5,5,5,6]] => [4] => 10000 => [1,5] => 2
[[5,5,6,6]] => [4] => 10000 => [1,5] => 2
[[5,6,6,6]] => [4] => 10000 => [1,5] => 2
[[6,6,6,6]] => [4] => 10000 => [1,5] => 2
[[1,1,1],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[1,1,2],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[1,1,6],[2]] => [3,1] => 10010 => [1,3,2] => 2
[[1,1,3],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[1,1,6],[3]] => [3,1] => 10010 => [1,3,2] => 2
[[1,1,4],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[1,1,6],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[1,1,5],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[1,1,6],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[1,1,6],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[1,2,2],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[1,2,6],[2]] => [3,1] => 10010 => [1,3,2] => 2
[[1,2,3],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[1,2,6],[3]] => [3,1] => 10010 => [1,3,2] => 2
[[1,3,6],[2]] => [3,1] => 10010 => [1,3,2] => 2
[[1,2,4],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[1,2,6],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[1,4,6],[2]] => [3,1] => 10010 => [1,3,2] => 2
[[1,2,5],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[1,2,6],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[1,5,6],[2]] => [3,1] => 10010 => [1,3,2] => 2
[[1,2,6],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[1,6,6],[2]] => [3,1] => 10010 => [1,3,2] => 2
[[1,3,3],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[1,3,6],[3]] => [3,1] => 10010 => [1,3,2] => 2
[[1,3,4],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[1,3,6],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[1,4,6],[3]] => [3,1] => 10010 => [1,3,2] => 2
[[1,3,5],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[1,3,6],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[1,5,6],[3]] => [3,1] => 10010 => [1,3,2] => 2
[[1,3,6],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[1,6,6],[3]] => [3,1] => 10010 => [1,3,2] => 2
[[1,4,4],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[1,4,6],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[1,4,5],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[1,4,6],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[1,5,6],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[1,4,6],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[1,6,6],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[1,5,5],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[1,5,6],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[1,5,6],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[1,6,6],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[1,6,6],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[2,2,2],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[2,2,3],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[2,2,6],[3]] => [3,1] => 10010 => [1,3,2] => 2
[[2,2,4],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[2,2,6],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[2,2,5],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[2,2,6],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[2,2,6],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[2,3,3],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[2,3,6],[3]] => [3,1] => 10010 => [1,3,2] => 2
[[2,3,4],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[2,3,6],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[2,4,6],[3]] => [3,1] => 10010 => [1,3,2] => 2
[[2,3,5],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[2,3,6],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[2,5,6],[3]] => [3,1] => 10010 => [1,3,2] => 2
[[2,3,6],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[2,6,6],[3]] => [3,1] => 10010 => [1,3,2] => 2
[[2,4,4],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[2,4,6],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[2,4,5],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[2,4,6],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[2,5,6],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[2,4,6],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[2,6,6],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[2,5,5],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[2,5,6],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[2,5,6],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[2,6,6],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[2,6,6],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[3,3,3],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[3,3,4],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[3,3,6],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[3,3,5],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[3,3,6],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[3,3,6],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[3,4,4],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[3,4,6],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[3,4,5],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[3,4,6],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[3,5,6],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[3,4,6],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[3,6,6],[4]] => [3,1] => 10010 => [1,3,2] => 2
[[3,5,5],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[3,5,6],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[3,5,6],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[3,6,6],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[3,6,6],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[4,4,4],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[4,4,5],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[4,4,6],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[4,4,6],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[4,5,5],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[4,5,6],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[4,5,6],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[4,6,6],[5]] => [3,1] => 10010 => [1,3,2] => 2
[[4,6,6],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[5,5,5],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[5,5,6],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[5,6,6],[6]] => [3,1] => 10010 => [1,3,2] => 2
[[1,1],[2,6]] => [2,2] => 1100 => [1,1,3] => 3
[[1,1],[3,6]] => [2,2] => 1100 => [1,1,3] => 3
[[1,1],[4,6]] => [2,2] => 1100 => [1,1,3] => 3
[[1,1],[5,6]] => [2,2] => 1100 => [1,1,3] => 3
[[1,1],[6,6]] => [2,2] => 1100 => [1,1,3] => 3
[[1,2],[2,6]] => [2,2] => 1100 => [1,1,3] => 3
[[1,2],[3,6]] => [2,2] => 1100 => [1,1,3] => 3
[[1,3],[2,6]] => [2,2] => 1100 => [1,1,3] => 3
[[1,2],[4,6]] => [2,2] => 1100 => [1,1,3] => 3
[[1,4],[2,6]] => [2,2] => 1100 => [1,1,3] => 3
[[1,2],[5,6]] => [2,2] => 1100 => [1,1,3] => 3
[[1,5],[2,6]] => [2,2] => 1100 => [1,1,3] => 3
[[1,2],[6,6]] => [2,2] => 1100 => [1,1,3] => 3
[[1,3],[3,6]] => [2,2] => 1100 => [1,1,3] => 3
[[1,3],[4,6]] => [2,2] => 1100 => [1,1,3] => 3
[[1,4],[3,6]] => [2,2] => 1100 => [1,1,3] => 3
[[1,3],[5,6]] => [2,2] => 1100 => [1,1,3] => 3
[[1,5],[3,6]] => [2,2] => 1100 => [1,1,3] => 3
[[1,3],[6,6]] => [2,2] => 1100 => [1,1,3] => 3
[[1,4],[4,6]] => [2,2] => 1100 => [1,1,3] => 3
[[1,4],[5,6]] => [2,2] => 1100 => [1,1,3] => 3
[[1,5],[4,6]] => [2,2] => 1100 => [1,1,3] => 3
[[1,4],[6,6]] => [2,2] => 1100 => [1,1,3] => 3
[[1,5],[5,6]] => [2,2] => 1100 => [1,1,3] => 3
[[1,5],[6,6]] => [2,2] => 1100 => [1,1,3] => 3
[[2,2],[3,6]] => [2,2] => 1100 => [1,1,3] => 3
[[2,2],[4,6]] => [2,2] => 1100 => [1,1,3] => 3
[[2,2],[5,6]] => [2,2] => 1100 => [1,1,3] => 3
[[2,2],[6,6]] => [2,2] => 1100 => [1,1,3] => 3
[[2,3],[3,6]] => [2,2] => 1100 => [1,1,3] => 3
[[2,3],[4,6]] => [2,2] => 1100 => [1,1,3] => 3
[[2,4],[3,6]] => [2,2] => 1100 => [1,1,3] => 3
[[2,3],[5,6]] => [2,2] => 1100 => [1,1,3] => 3
[[2,5],[3,6]] => [2,2] => 1100 => [1,1,3] => 3
[[2,3],[6,6]] => [2,2] => 1100 => [1,1,3] => 3
[[2,4],[4,6]] => [2,2] => 1100 => [1,1,3] => 3
[[2,4],[5,6]] => [2,2] => 1100 => [1,1,3] => 3
[[2,5],[4,6]] => [2,2] => 1100 => [1,1,3] => 3
[[2,4],[6,6]] => [2,2] => 1100 => [1,1,3] => 3
[[2,5],[5,6]] => [2,2] => 1100 => [1,1,3] => 3
[[2,5],[6,6]] => [2,2] => 1100 => [1,1,3] => 3
[[3,3],[4,6]] => [2,2] => 1100 => [1,1,3] => 3
[[3,3],[5,6]] => [2,2] => 1100 => [1,1,3] => 3
[[3,3],[6,6]] => [2,2] => 1100 => [1,1,3] => 3
[[3,4],[4,6]] => [2,2] => 1100 => [1,1,3] => 3
[[3,4],[5,6]] => [2,2] => 1100 => [1,1,3] => 3
[[3,5],[4,6]] => [2,2] => 1100 => [1,1,3] => 3
[[3,4],[6,6]] => [2,2] => 1100 => [1,1,3] => 3
[[3,5],[5,6]] => [2,2] => 1100 => [1,1,3] => 3
[[3,5],[6,6]] => [2,2] => 1100 => [1,1,3] => 3
[[4,4],[5,6]] => [2,2] => 1100 => [1,1,3] => 3
[[4,4],[6,6]] => [2,2] => 1100 => [1,1,3] => 3
[[4,5],[5,6]] => [2,2] => 1100 => [1,1,3] => 3
[[4,5],[6,6]] => [2,2] => 1100 => [1,1,3] => 3
[[5,5],[6,6]] => [2,2] => 1100 => [1,1,3] => 3
[[1,1],[2],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,1],[3],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,1],[4],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,1],[5],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,2],[2],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,2],[3],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,3],[2],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,6],[2],[3]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,2],[4],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,4],[2],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,6],[2],[4]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,2],[5],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,5],[2],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,6],[2],[5]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,6],[2],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,3],[3],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,3],[4],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,4],[3],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,6],[3],[4]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,3],[5],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,5],[3],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,6],[3],[5]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,6],[3],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,4],[4],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,4],[5],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,5],[4],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,6],[4],[5]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,6],[4],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,5],[5],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1,6],[5],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[2,2],[3],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[2,2],[4],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[2,2],[5],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[2,3],[3],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[2,3],[4],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[2,4],[3],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[2,6],[3],[4]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[2,3],[5],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[2,5],[3],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[2,6],[3],[5]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[2,6],[3],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[2,4],[4],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[2,4],[5],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[2,5],[4],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[2,6],[4],[5]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[2,6],[4],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[2,5],[5],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[2,6],[5],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[3,3],[4],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[3,3],[5],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[3,4],[4],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[3,4],[5],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[3,5],[4],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[3,6],[4],[5]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[3,6],[4],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[3,5],[5],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[3,6],[5],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[4,4],[5],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[4,5],[5],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[4,6],[5],[6]] => [2,1,1] => 10110 => [1,2,1,2] => 3
[[1],[2],[3],[6]] => [1,1,1,1] => 11110 => [1,1,1,1,2] => 5
[[1],[2],[4],[6]] => [1,1,1,1] => 11110 => [1,1,1,1,2] => 5
[[1],[2],[5],[6]] => [1,1,1,1] => 11110 => [1,1,1,1,2] => 5
[[1],[3],[4],[6]] => [1,1,1,1] => 11110 => [1,1,1,1,2] => 5
[[1],[3],[5],[6]] => [1,1,1,1] => 11110 => [1,1,1,1,2] => 5
[[1],[4],[5],[6]] => [1,1,1,1] => 11110 => [1,1,1,1,2] => 5
[[2],[3],[4],[6]] => [1,1,1,1] => 11110 => [1,1,1,1,2] => 5
[[2],[3],[5],[6]] => [1,1,1,1] => 11110 => [1,1,1,1,2] => 5
[[2],[4],[5],[6]] => [1,1,1,1] => 11110 => [1,1,1,1,2] => 5
[[3],[4],[5],[6]] => [1,1,1,1] => 11110 => [1,1,1,1,2] => 5
[[1,1,1],[2,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,1],[3,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,1],[4,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,1],[5,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,2],[2,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,5],[2,2]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,2],[3,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,3],[2,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,5],[2,3]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,2],[4,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,4],[2,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,5],[2,4]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,2],[5,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,5],[2,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,3],[3,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,5],[3,3]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,3],[4,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,4],[3,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,5],[3,4]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,3],[5,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,5],[3,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,4],[4,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,5],[4,4]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,4],[5,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,5],[4,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1,5],[5,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,2,2],[2,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,2,2],[3,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,2,3],[2,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,2,5],[2,3]] => [3,2] => 10100 => [1,2,3] => 2
[[1,2,2],[4,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,2,4],[2,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,2,5],[2,4]] => [3,2] => 10100 => [1,2,3] => 2
[[1,2,2],[5,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,2,5],[2,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,2,3],[3,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,2,5],[3,3]] => [3,2] => 10100 => [1,2,3] => 2
[[1,3,3],[2,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,2,3],[4,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,2,4],[3,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,2,5],[3,4]] => [3,2] => 10100 => [1,2,3] => 2
[[1,3,4],[2,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,3,5],[2,4]] => [3,2] => 10100 => [1,2,3] => 2
[[1,2,3],[5,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,2,5],[3,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,3,5],[2,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,2,4],[4,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,2,5],[4,4]] => [3,2] => 10100 => [1,2,3] => 2
[[1,4,4],[2,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,2,4],[5,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,2,5],[4,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,4,5],[2,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,2,5],[5,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,3,3],[3,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,3,3],[4,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,3,4],[3,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,3,5],[3,4]] => [3,2] => 10100 => [1,2,3] => 2
[[1,3,3],[5,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,3,5],[3,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,3,4],[4,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,3,5],[4,4]] => [3,2] => 10100 => [1,2,3] => 2
[[1,4,4],[3,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,3,4],[5,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,3,5],[4,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,4,5],[3,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,3,5],[5,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,4,4],[4,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,4,4],[5,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,4,5],[4,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,4,5],[5,5]] => [3,2] => 10100 => [1,2,3] => 2
[[2,2,2],[3,5]] => [3,2] => 10100 => [1,2,3] => 2
[[2,2,2],[4,5]] => [3,2] => 10100 => [1,2,3] => 2
[[2,2,2],[5,5]] => [3,2] => 10100 => [1,2,3] => 2
[[2,2,3],[3,5]] => [3,2] => 10100 => [1,2,3] => 2
[[2,2,5],[3,3]] => [3,2] => 10100 => [1,2,3] => 2
[[2,2,3],[4,5]] => [3,2] => 10100 => [1,2,3] => 2
[[2,2,4],[3,5]] => [3,2] => 10100 => [1,2,3] => 2
[[2,2,5],[3,4]] => [3,2] => 10100 => [1,2,3] => 2
[[2,2,3],[5,5]] => [3,2] => 10100 => [1,2,3] => 2
[[2,2,5],[3,5]] => [3,2] => 10100 => [1,2,3] => 2
[[2,2,4],[4,5]] => [3,2] => 10100 => [1,2,3] => 2
[[2,2,5],[4,4]] => [3,2] => 10100 => [1,2,3] => 2
[[2,2,4],[5,5]] => [3,2] => 10100 => [1,2,3] => 2
[[2,2,5],[4,5]] => [3,2] => 10100 => [1,2,3] => 2
[[2,2,5],[5,5]] => [3,2] => 10100 => [1,2,3] => 2
[[2,3,3],[3,5]] => [3,2] => 10100 => [1,2,3] => 2
[[2,3,3],[4,5]] => [3,2] => 10100 => [1,2,3] => 2
[[2,3,4],[3,5]] => [3,2] => 10100 => [1,2,3] => 2
[[2,3,5],[3,4]] => [3,2] => 10100 => [1,2,3] => 2
[[2,3,3],[5,5]] => [3,2] => 10100 => [1,2,3] => 2
[[2,3,5],[3,5]] => [3,2] => 10100 => [1,2,3] => 2
[[2,3,4],[4,5]] => [3,2] => 10100 => [1,2,3] => 2
[[2,3,5],[4,4]] => [3,2] => 10100 => [1,2,3] => 2
[[2,4,4],[3,5]] => [3,2] => 10100 => [1,2,3] => 2
[[2,3,4],[5,5]] => [3,2] => 10100 => [1,2,3] => 2
[[2,3,5],[4,5]] => [3,2] => 10100 => [1,2,3] => 2
[[2,4,5],[3,5]] => [3,2] => 10100 => [1,2,3] => 2
[[2,3,5],[5,5]] => [3,2] => 10100 => [1,2,3] => 2
[[2,4,4],[4,5]] => [3,2] => 10100 => [1,2,3] => 2
[[2,4,4],[5,5]] => [3,2] => 10100 => [1,2,3] => 2
[[2,4,5],[4,5]] => [3,2] => 10100 => [1,2,3] => 2
[[2,4,5],[5,5]] => [3,2] => 10100 => [1,2,3] => 2
[[3,3,3],[4,5]] => [3,2] => 10100 => [1,2,3] => 2
[[3,3,3],[5,5]] => [3,2] => 10100 => [1,2,3] => 2
[[3,3,4],[4,5]] => [3,2] => 10100 => [1,2,3] => 2
[[3,3,5],[4,4]] => [3,2] => 10100 => [1,2,3] => 2
[[3,3,4],[5,5]] => [3,2] => 10100 => [1,2,3] => 2
[[3,3,5],[4,5]] => [3,2] => 10100 => [1,2,3] => 2
[[3,3,5],[5,5]] => [3,2] => 10100 => [1,2,3] => 2
[[3,4,4],[4,5]] => [3,2] => 10100 => [1,2,3] => 2
[[3,4,4],[5,5]] => [3,2] => 10100 => [1,2,3] => 2
[[3,4,5],[4,5]] => [3,2] => 10100 => [1,2,3] => 2
[[3,4,5],[5,5]] => [3,2] => 10100 => [1,2,3] => 2
[[4,4,4],[5,5]] => [3,2] => 10100 => [1,2,3] => 2
[[4,4,5],[5,5]] => [3,2] => 10100 => [1,2,3] => 2
[[1,1],[2,2],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,1],[2,3],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,1],[2,5],[3]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,1],[2,4],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,1],[2,5],[4]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,1],[2,5],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,1],[3,3],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,1],[3,4],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,1],[3,5],[4]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,1],[3,5],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,1],[4,4],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,1],[4,5],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,2],[2,3],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,2],[2,5],[3]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,2],[2,4],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,2],[2,5],[4]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,2],[2,5],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,2],[3,3],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,3],[2,5],[3]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,2],[3,4],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,2],[3,5],[4]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,3],[2,4],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,3],[2,5],[4]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,4],[2,5],[3]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,2],[3,5],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,3],[2,5],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,2],[4,4],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,4],[2,5],[4]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,2],[4,5],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,4],[2,5],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,3],[3,4],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,3],[3,5],[4]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,3],[3,5],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,3],[4,4],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,4],[3,5],[4]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,3],[4,5],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,4],[3,5],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,4],[4,5],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[2,2],[3,3],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[2,2],[3,4],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[2,2],[3,5],[4]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[2,2],[3,5],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[2,2],[4,4],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[2,2],[4,5],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[2,3],[3,4],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[2,3],[3,5],[4]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[2,3],[3,5],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[2,3],[4,4],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[2,4],[3,5],[4]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[2,3],[4,5],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[2,4],[3,5],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[2,4],[4,5],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[3,3],[4,4],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[3,3],[4,5],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[3,4],[4,5],[5]] => [2,2,1] => 11010 => [1,1,2,2] => 3
[[1,1,1],[2,2,4]] => [3,3] => 11000 => [1,1,4] => 3
[[1,1,1],[2,3,4]] => [3,3] => 11000 => [1,1,4] => 3
[[1,1,1],[2,4,4]] => [3,3] => 11000 => [1,1,4] => 3
[[1,1,1],[3,3,4]] => [3,3] => 11000 => [1,1,4] => 3
[[1,1,1],[3,4,4]] => [3,3] => 11000 => [1,1,4] => 3
[[1,1,1],[4,4,4]] => [3,3] => 11000 => [1,1,4] => 3
[[1,1,2],[2,2,4]] => [3,3] => 11000 => [1,1,4] => 3
[[1,1,2],[2,3,4]] => [3,3] => 11000 => [1,1,4] => 3
[[1,1,3],[2,2,4]] => [3,3] => 11000 => [1,1,4] => 3
[[1,1,2],[2,4,4]] => [3,3] => 11000 => [1,1,4] => 3
[[1,1,2],[3,3,4]] => [3,3] => 11000 => [1,1,4] => 3
[[1,1,3],[2,3,4]] => [3,3] => 11000 => [1,1,4] => 3
[[1,1,2],[3,4,4]] => [3,3] => 11000 => [1,1,4] => 3
[[1,1,3],[2,4,4]] => [3,3] => 11000 => [1,1,4] => 3
[[1,1,2],[4,4,4]] => [3,3] => 11000 => [1,1,4] => 3
[[1,1,3],[3,3,4]] => [3,3] => 11000 => [1,1,4] => 3
[[1,1,3],[3,4,4]] => [3,3] => 11000 => [1,1,4] => 3
[[1,1,3],[4,4,4]] => [3,3] => 11000 => [1,1,4] => 3
[[1,2,2],[2,3,4]] => [3,3] => 11000 => [1,1,4] => 3
[[1,2,2],[2,4,4]] => [3,3] => 11000 => [1,1,4] => 3
[[1,2,2],[3,3,4]] => [3,3] => 11000 => [1,1,4] => 3
[[1,2,3],[2,3,4]] => [3,3] => 11000 => [1,1,4] => 3
[[1,2,2],[3,4,4]] => [3,3] => 11000 => [1,1,4] => 3
[[1,2,3],[2,4,4]] => [3,3] => 11000 => [1,1,4] => 3
[[1,2,2],[4,4,4]] => [3,3] => 11000 => [1,1,4] => 3
[[1,2,3],[3,3,4]] => [3,3] => 11000 => [1,1,4] => 3
[[1,2,3],[3,4,4]] => [3,3] => 11000 => [1,1,4] => 3
[[1,3,3],[2,4,4]] => [3,3] => 11000 => [1,1,4] => 3
[[1,2,3],[4,4,4]] => [3,3] => 11000 => [1,1,4] => 3
[[1,3,3],[3,4,4]] => [3,3] => 11000 => [1,1,4] => 3
[[1,3,3],[4,4,4]] => [3,3] => 11000 => [1,1,4] => 3
[[2,2,2],[3,3,4]] => [3,3] => 11000 => [1,1,4] => 3
[[2,2,2],[3,4,4]] => [3,3] => 11000 => [1,1,4] => 3
[[2,2,2],[4,4,4]] => [3,3] => 11000 => [1,1,4] => 3
[[2,2,3],[3,3,4]] => [3,3] => 11000 => [1,1,4] => 3
[[2,2,3],[3,4,4]] => [3,3] => 11000 => [1,1,4] => 3
[[2,2,3],[4,4,4]] => [3,3] => 11000 => [1,1,4] => 3
[[2,3,3],[3,4,4]] => [3,3] => 11000 => [1,1,4] => 3
[[2,3,3],[4,4,4]] => [3,3] => 11000 => [1,1,4] => 3
[[3,3,3],[4,4,4]] => [3,3] => 11000 => [1,1,4] => 3
[[1,1],[2,2],[3,4]] => [2,2,2] => 11100 => [1,1,1,3] => 4
[[1,1],[2,2],[4,4]] => [2,2,2] => 11100 => [1,1,1,3] => 4
[[1,1],[2,3],[3,4]] => [2,2,2] => 11100 => [1,1,1,3] => 4
[[1,1],[2,3],[4,4]] => [2,2,2] => 11100 => [1,1,1,3] => 4
[[1,1],[3,3],[4,4]] => [2,2,2] => 11100 => [1,1,1,3] => 4
[[1,2],[2,3],[3,4]] => [2,2,2] => 11100 => [1,1,1,3] => 4
[[1,2],[2,3],[4,4]] => [2,2,2] => 11100 => [1,1,1,3] => 4
[[1,2],[3,3],[4,4]] => [2,2,2] => 11100 => [1,1,1,3] => 4
[[2,2],[3,3],[4,4]] => [2,2,2] => 11100 => [1,1,1,3] => 4
[[1]] => [1] => 10 => [1,2] => 2
[[2]] => [1] => 10 => [1,2] => 2
[[1,1]] => [2] => 100 => [1,3] => 2
[[3]] => [1] => 10 => [1,2] => 2
[[1,1,1]] => [3] => 1000 => [1,4] => 2
[[4]] => [1] => 10 => [1,2] => 2
[[1,1,1,1]] => [4] => 10000 => [1,5] => 2
[[5]] => [1] => 10 => [1,2] => 2
[[6]] => [1] => 10 => [1,2] => 2
[[1,3,5],[2,4,6]] => [3,3] => 11000 => [1,1,4] => 3
[[1,3,4],[2,5,6]] => [3,3] => 11000 => [1,1,4] => 3
[[1,2,5],[3,4,6]] => [3,3] => 11000 => [1,1,4] => 3
[[1,2,4],[3,5,6]] => [3,3] => 11000 => [1,1,4] => 3
[[1,4],[2,5],[3,6]] => [2,2,2] => 11100 => [1,1,1,3] => 4
[[1,2,3],[4,5,6]] => [3,3] => 11000 => [1,1,4] => 3
[[1,3],[2,5],[4,6]] => [2,2,2] => 11100 => [1,1,1,3] => 4
[[1,2],[3,5],[4,6]] => [2,2,2] => 11100 => [1,1,1,3] => 4
[[1,3],[2,4],[5,6]] => [2,2,2] => 11100 => [1,1,1,3] => 4
[[1,2],[3,4],[5,6]] => [2,2,2] => 11100 => [1,1,1,3] => 4
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Generating function
$F_{(2, 2)} = 2\ q^{2} + q^{3}$
$F_{(2, 3)} = 3\ q^{2} + 2\ q^{3}$
$F_{(3, 2)} = 5\ q^{2}$
$F_{(2, 4)} = 4\ q^{2} + 3\ q^{3}$
$F_{(3, 3)} = 12\ q^{2} + q^{4}$
$F_{(4, 2)} = 7\ q^{2} + q^{3}$
$F_{(2, 5)} = 5\ q^{2} + 4\ q^{3}$
$F_{(3, 4)} = 22\ q^{2} + 3\ q^{4}$
$F_{(4, 3)} = 22\ q^{2} + 8\ q^{3}$
$F_{(2, 6)} = 6\ q^{2} + 5\ q^{3}$
$F_{(3, 5)} = 35\ q^{2} + 6\ q^{4}$
$F_{(4, 4)} = 50\ q^{2} + 26\ q^{3} + q^{5}$
$F_{(2, 7)} = 7\ q^{2} + 6\ q^{3}$
$F_{(3, 6)} = 51\ q^{2} + 10\ q^{4}$
$F_{(4, 5)} = 95\ q^{2} + 60\ q^{3} + 4\ q^{5}$
$F_{(2, 8)} = 8\ q^{2} + 7\ q^{3}$
$F_{(3, 7)} = 70\ q^{2} + 15\ q^{4}$
$F_{(4, 6)} = 161\ q^{2} + 115\ q^{3} + 10\ q^{5}$
Description
The global dimension of the corresponding Comp-Nakayama algebra.
We identify the composition [n1-1,n2-1,...,nr-1] with the Nakayama algebra with Kupisch series [n1,n1-1,...,2,n2,n2-1,...,2,...,nr,nr-1,...,3,2,1]. We call such Nakayama algebras with Kupisch series corresponding to a integer composition "Comp-Nakayama algebra".
We identify the composition [n1-1,n2-1,...,nr-1] with the Nakayama algebra with Kupisch series [n1,n1-1,...,2,n2,n2-1,...,2,...,nr,nr-1,...,3,2,1]. We call such Nakayama algebras with Kupisch series corresponding to a integer composition "Comp-Nakayama algebra".
Map
shape
Description
Return the shape of a tableau.
Map
to composition
Description
The composition corresponding to a binary word.
Prepending $1$ to a binary word $w$, the $i$-th part of the composition equals $1$ plus the number of zeros after the $i$-th $1$ in $w$.
This map is not surjective, since the empty composition does not have a preimage.
Prepending $1$ to a binary word $w$, the $i$-th part of the composition equals $1$ plus the number of zeros after the $i$-th $1$ in $w$.
This map is not surjective, since the empty composition does not have a preimage.
Map
to binary word
Description
Return the partition as binary word, by traversing its shape from the first row to the last row, down steps as 1 and left steps as 0.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!