Processing math: 100%

Identifier
Values
0 => 0 => 0 => [2] => 1
1 => 1 => 1 => [1,1] => 2
00 => 00 => 01 => [2,1] => 2
01 => 10 => 00 => [3] => 1
10 => 01 => 10 => [1,2] => 2
11 => 11 => 11 => [1,1,1] => 3
000 => 000 => 011 => [2,1,1] => 3
001 => 100 => 010 => [2,2] => 2
010 => 010 => 000 => [4] => 1
011 => 110 => 001 => [3,1] => 2
100 => 001 => 101 => [1,2,1] => 2
101 => 101 => 100 => [1,3] => 2
110 => 011 => 110 => [1,1,2] => 3
111 => 111 => 111 => [1,1,1,1] => 4
0000 => 0000 => 0111 => [2,1,1,1] => 4
0001 => 1000 => 0110 => [2,1,2] => 3
0010 => 0100 => 0100 => [2,3] => 2
0011 => 1100 => 0101 => [2,2,1] => 2
0100 => 0010 => 0001 => [4,1] => 2
0101 => 1010 => 0000 => [5] => 1
0110 => 0110 => 0010 => [3,2] => 2
0111 => 1110 => 0011 => [3,1,1] => 3
1000 => 0001 => 1011 => [1,2,1,1] => 3
1001 => 1001 => 1010 => [1,2,2] => 2
1010 => 0101 => 1000 => [1,4] => 2
1011 => 1101 => 1001 => [1,3,1] => 2
1100 => 0011 => 1101 => [1,1,2,1] => 3
1101 => 1011 => 1100 => [1,1,3] => 3
1110 => 0111 => 1110 => [1,1,1,2] => 4
1111 => 1111 => 1111 => [1,1,1,1,1] => 5
00000 => 00000 => 01111 => [2,1,1,1,1] => 5
00001 => 10000 => 01110 => [2,1,1,2] => 4
00010 => 01000 => 01100 => [2,1,3] => 3
00011 => 11000 => 01101 => [2,1,2,1] => 3
00100 => 00100 => 01001 => [2,3,1] => 2
00101 => 10100 => 01000 => [2,4] => 2
00110 => 01100 => 01010 => [2,2,2] => 2
00111 => 11100 => 01011 => [2,2,1,1] => 3
01000 => 00010 => 00011 => [4,1,1] => 3
01001 => 10010 => 00010 => [4,2] => 2
01010 => 01010 => 00000 => [6] => 1
01011 => 11010 => 00001 => [5,1] => 2
01100 => 00110 => 00101 => [3,2,1] => 2
01101 => 10110 => 00100 => [3,3] => 2
01110 => 01110 => 00110 => [3,1,2] => 3
01111 => 11110 => 00111 => [3,1,1,1] => 4
10000 => 00001 => 10111 => [1,2,1,1,1] => 4
10001 => 10001 => 10110 => [1,2,1,2] => 3
10010 => 01001 => 10100 => [1,2,3] => 2
10011 => 11001 => 10101 => [1,2,2,1] => 2
10100 => 00101 => 10001 => [1,4,1] => 2
10101 => 10101 => 10000 => [1,5] => 2
10110 => 01101 => 10010 => [1,3,2] => 2
10111 => 11101 => 10011 => [1,3,1,1] => 3
11000 => 00011 => 11011 => [1,1,2,1,1] => 3
11001 => 10011 => 11010 => [1,1,2,2] => 3
11010 => 01011 => 11000 => [1,1,4] => 3
11011 => 11011 => 11001 => [1,1,3,1] => 3
11100 => 00111 => 11101 => [1,1,1,2,1] => 4
11101 => 10111 => 11100 => [1,1,1,3] => 4
11110 => 01111 => 11110 => [1,1,1,1,2] => 5
11111 => 11111 => 11111 => [1,1,1,1,1,1] => 6
=> => => [1] => 1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The global dimension of the corresponding Comp-Nakayama algebra.
We identify the composition [n1-1,n2-1,...,nr-1] with the Nakayama algebra with Kupisch series [n1,n1-1,...,2,n2,n2-1,...,2,...,nr,nr-1,...,3,2,1]. We call such Nakayama algebras with Kupisch series corresponding to a integer composition "Comp-Nakayama algebra".
Map
reverse
Description
Return the reversal of a binary word.
Map
to composition
Description
The composition corresponding to a binary word.
Prepending 1 to a binary word w, the i-th part of the composition equals 1 plus the number of zeros after the i-th 1 in w.
This map is not surjective, since the empty composition does not have a preimage.
Map
flag zeros to zeros
Description
Return a binary word of the same length, such that the number of zeros equals the number of occurrences of 10 in the word obtained from the original word by prepending the reverse of the complement.
For example, the image of the word w=11 is 11, because 0011 has no occurrences of 10. The words 1010 and 01010 have image 00.