Identifier
-
Mp00041:
Integer compositions
—conjugate⟶
Integer compositions
St001236: Integer compositions ⟶ ℤ
Values
[1] => [1] => 1
[1,1] => [2] => 1
[2] => [1,1] => 2
[1,1,1] => [3] => 1
[1,2] => [1,2] => 1
[2,1] => [2,1] => 1
[3] => [1,1,1] => 3
[1,1,1,1] => [4] => 1
[1,1,2] => [1,3] => 1
[1,2,1] => [2,2] => 1
[1,3] => [1,1,2] => 1
[2,1,1] => [3,1] => 1
[2,2] => [1,2,1] => 2
[3,1] => [2,1,1] => 1
[4] => [1,1,1,1] => 4
[1,1,1,1,1] => [5] => 1
[1,1,1,2] => [1,4] => 1
[1,1,2,1] => [2,3] => 1
[1,1,3] => [1,1,3] => 1
[1,2,1,1] => [3,2] => 1
[1,2,2] => [1,2,2] => 1
[1,3,1] => [2,1,2] => 1
[1,4] => [1,1,1,2] => 1
[2,1,1,1] => [4,1] => 1
[2,1,2] => [1,3,1] => 1
[2,2,1] => [2,2,1] => 1
[2,3] => [1,1,2,1] => 2
[3,1,1] => [3,1,1] => 1
[3,2] => [1,2,1,1] => 2
[4,1] => [2,1,1,1] => 1
[5] => [1,1,1,1,1] => 5
[1,1,1,1,1,1] => [6] => 1
[1,1,1,1,2] => [1,5] => 1
[1,1,1,2,1] => [2,4] => 1
[1,1,1,3] => [1,1,4] => 1
[1,1,2,1,1] => [3,3] => 1
[1,1,2,2] => [1,2,3] => 1
[1,1,3,1] => [2,1,3] => 1
[1,1,4] => [1,1,1,3] => 1
[1,2,1,1,1] => [4,2] => 1
[1,2,1,2] => [1,3,2] => 1
[1,2,2,1] => [2,2,2] => 1
[1,2,3] => [1,1,2,2] => 1
[1,3,1,1] => [3,1,2] => 1
[1,3,2] => [1,2,1,2] => 1
[1,4,1] => [2,1,1,2] => 1
[1,5] => [1,1,1,1,2] => 1
[2,1,1,1,1] => [5,1] => 1
[2,1,1,2] => [1,4,1] => 1
[2,1,2,1] => [2,3,1] => 1
[2,1,3] => [1,1,3,1] => 1
[2,2,1,1] => [3,2,1] => 1
[2,2,2] => [1,2,2,1] => 2
[2,3,1] => [2,1,2,1] => 1
[2,4] => [1,1,1,2,1] => 2
[3,1,1,1] => [4,1,1] => 1
[3,1,2] => [1,3,1,1] => 1
[3,2,1] => [2,2,1,1] => 1
[3,3] => [1,1,2,1,1] => 3
[4,1,1] => [3,1,1,1] => 1
[4,2] => [1,2,1,1,1] => 2
[5,1] => [2,1,1,1,1] => 1
[6] => [1,1,1,1,1,1] => 6
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The dominant dimension of the corresponding Comp-Nakayama algebra.
Map
conjugate
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!