Identifier
Values
0 => [2] => [1,1,0,0] => 0
1 => [1,1] => [1,0,1,0] => 1
00 => [3] => [1,1,1,0,0,0] => 0
01 => [2,1] => [1,1,0,0,1,0] => 1
10 => [1,2] => [1,0,1,1,0,0] => 1
11 => [1,1,1] => [1,0,1,0,1,0] => 2
000 => [4] => [1,1,1,1,0,0,0,0] => 0
001 => [3,1] => [1,1,1,0,0,0,1,0] => 1
010 => [2,2] => [1,1,0,0,1,1,0,0] => 1
011 => [2,1,1] => [1,1,0,0,1,0,1,0] => 2
100 => [1,3] => [1,0,1,1,1,0,0,0] => 1
101 => [1,2,1] => [1,0,1,1,0,0,1,0] => 1
110 => [1,1,2] => [1,0,1,0,1,1,0,0] => 2
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0] => 3
0000 => [5] => [1,1,1,1,1,0,0,0,0,0] => 0
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0] => 1
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0] => 1
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0] => 2
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0] => 1
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => 1
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0] => 2
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => 3
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0] => 1
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0] => 1
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0] => 1
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0] => 2
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0] => 2
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0] => 2
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0] => 3
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => 4
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0] => 1
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => 1
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => 2
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => 1
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 1
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0] => 2
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0] => 3
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0] => 1
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0] => 1
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => 1
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0] => 2
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0] => 2
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0] => 2
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0] => 3
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0] => 4
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0] => 1
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0] => 1
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0] => 1
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0] => 2
10100 => [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0] => 1
10101 => [1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => 1
10110 => [1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0] => 2
10111 => [1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0] => 3
11000 => [1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0] => 2
11001 => [1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0] => 2
11010 => [1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0] => 2
11011 => [1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0] => 2
11100 => [1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0] => 3
11101 => [1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0] => 3
11110 => [1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0] => 4
11111 => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => 5
=> [1] => [1,0] => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra.
See http://www.findstat.org/DyckPaths/NakayamaAlgebras.
Map
bounce path
Description
The bounce path determined by an integer composition.
Map
to composition
Description
The composition corresponding to a binary word.
Prepending $1$ to a binary word $w$, the $i$-th part of the composition equals $1$ plus the number of zeros after the $i$-th $1$ in $w$.
This map is not surjective, since the empty composition does not have a preimage.