Identifier
- St001312: Integer compositions ⟶ ℤ
Values
=>
[1]=>1
[1,1]=>2
[2]=>1
[1,1,1]=>5
[1,2]=>3
[2,1]=>3
[3]=>1
[1,1,1,1]=>14
[1,1,2]=>9
[1,2,1]=>10
[1,3]=>4
[2,1,1]=>9
[2,2]=>6
[3,1]=>4
[4]=>1
[1,1,1,1,1]=>42
[1,1,1,2]=>28
[1,1,2,1]=>32
[1,1,3]=>14
[1,2,1,1]=>32
[1,2,2]=>22
[1,3,1]=>17
[1,4]=>5
[2,1,1,1]=>28
[2,1,2]=>19
[2,2,1]=>22
[2,3]=>10
[3,1,1]=>14
[3,2]=>10
[4,1]=>5
[5]=>1
[1,1,1,1,1,1]=>132
[1,1,1,1,2]=>90
[1,1,1,2,1]=>104
[1,1,1,3]=>48
[1,1,2,1,1]=>107
[1,1,2,2]=>75
[1,1,3,1]=>62
[1,1,4]=>20
[1,2,1,1,1]=>104
[1,2,1,2]=>72
[1,2,2,1]=>84
[1,2,3]=>40
[1,3,1,1]=>62
[1,3,2]=>45
[1,4,1]=>26
[1,5]=>6
[2,1,1,1,1]=>90
[2,1,1,2]=>62
[2,1,2,1]=>72
[2,1,3]=>34
[2,2,1,1]=>75
[2,2,2]=>53
[2,3,1]=>45
[2,4]=>15
[3,1,1,1]=>48
[3,1,2]=>34
[3,2,1]=>40
[3,3]=>20
[4,1,1]=>20
[4,2]=>15
[5,1]=>6
[6]=>1
[1,1,1,1,1,1,1]=>429
[1,1,1,1,1,2]=>297
[1,1,1,1,2,1]=>345
[1,1,1,1,3]=>165
[1,1,1,2,1,1]=>359
[1,1,1,2,2]=>255
[1,1,1,3,1]=>219
[1,1,1,4]=>75
[1,1,2,1,1,1]=>359
[1,1,2,1,2]=>252
[1,1,2,2,1]=>295
[1,1,2,3]=>145
[1,1,3,1,1]=>233
[1,1,3,2]=>171
[1,1,4,1]=>107
[1,1,5]=>27
[1,2,1,1,1,1]=>345
[1,2,1,1,2]=>241
[1,2,1,2,1]=>281
[1,2,1,3]=>137
[1,2,2,1,1]=>295
[1,2,2,2]=>211
[1,2,3,1]=>185
[1,2,4]=>65
[1,3,1,1,1]=>219
[1,3,1,2]=>157
[1,3,2,1]=>185
[1,3,3]=>95
[1,4,1,1]=>107
[1,4,2]=>81
[1,5,1]=>37
[1,6]=>7
[2,1,1,1,1,1]=>297
[2,1,1,1,2]=>207
[2,1,1,2,1]=>241
[2,1,1,3]=>117
[2,1,2,1,1]=>252
[2,1,2,2]=>180
[2,1,3,1]=>157
[2,1,4]=>55
[2,2,1,1,1]=>255
[2,2,1,2]=>180
[2,2,2,1]=>211
[2,2,3]=>105
[2,3,1,1]=>171
[2,3,2]=>126
[2,4,1]=>81
[2,5]=>21
[3,1,1,1,1]=>165
[3,1,1,2]=>117
[3,1,2,1]=>137
[3,1,3]=>69
[3,2,1,1]=>145
[3,2,2]=>105
[3,3,1]=>95
[3,4]=>35
[4,1,1,1]=>75
[4,1,2]=>55
[4,2,1]=>65
[4,3]=>35
[5,1,1]=>27
[5,2]=>21
[6,1]=>7
[7]=>1
[1,1,1,1,1,1,1,1]=>1430
[1,1,1,1,1,1,2]=>1001
[1,1,1,1,1,2,1]=>1166
[1,1,1,1,1,3]=>572
[1,1,1,1,2,1,1]=>1220
[1,1,1,1,2,2]=>875
[1,1,1,1,3,1]=>770
[1,1,1,1,4]=>275
[1,1,1,2,1,1,1]=>1234
[1,1,1,2,1,2]=>875
[1,1,1,2,2,1]=>1026
[1,1,1,2,3]=>516
[1,1,1,3,1,1]=>842
[1,1,1,3,2]=>623
[1,1,1,4,1]=>410
[1,1,1,5]=>110
[1,1,2,1,1,1,1]=>1220
[1,1,2,1,1,2]=>861
[1,1,2,1,2,1]=>1006
[1,1,2,1,3]=>502
[1,1,2,2,1,1]=>1060
[1,1,2,2,2]=>765
[1,1,2,3,1]=>685
[1,1,2,4]=>250
[1,1,3,1,1,1]=>842
[1,1,3,1,2]=>609
[1,1,3,2,1]=>718
[1,1,3,3]=>376
[1,1,4,1,1]=>450
[1,1,4,2]=>343
[1,1,5,1]=>170
[1,1,6]=>35
[1,2,1,1,1,1,1]=>1166
[1,2,1,1,1,2]=>821
[1,2,1,1,2,1]=>958
[1,2,1,1,3]=>476
[1,2,1,2,1,1]=>1006
[1,2,1,2,2]=>725
[1,2,1,3,1]=>646
[1,2,1,4]=>235
[1,2,2,1,1,1]=>1026
[1,2,2,1,2]=>731
[1,2,2,2,1]=>858
[1,2,2,3]=>436
[1,2,3,1,1]=>718
[1,2,3,2]=>533
[1,2,4,1]=>358
[1,2,5]=>98
[1,3,1,1,1,1]=>770
[1,3,1,1,2]=>551
[1,3,1,2,1]=>646
[1,3,1,3]=>332
[1,3,2,1,1]=>685
[1,3,2,2]=>500
[1,3,3,1]=>460
[1,3,4]=>175
[1,4,1,1,1]=>410
[1,4,1,2]=>303
[1,4,2,1]=>358
[1,4,3]=>196
[1,5,1,1]=>170
[1,5,2]=>133
[1,6,1]=>50
[1,7]=>8
[2,1,1,1,1,1,1]=>1001
[2,1,1,1,1,2]=>704
[2,1,1,1,2,1]=>821
[2,1,1,1,3]=>407
[2,1,1,2,1,1]=>861
[2,1,1,2,2]=>620
[2,1,1,3,1]=>551
[2,1,1,4]=>200
[2,1,2,1,1,1]=>875
[2,1,2,1,2]=>623
[2,1,2,2,1]=>731
[2,1,2,3]=>371
[2,1,3,1,1]=>609
[2,1,3,2]=>452
[2,1,4,1]=>303
[2,1,5]=>83
[2,2,1,1,1,1]=>875
[2,2,1,1,2]=>620
[2,2,1,2,1]=>725
[2,2,1,3]=>365
[2,2,2,1,1]=>765
[2,2,2,2]=>554
[2,2,3,1]=>500
[2,2,4]=>185
[2,3,1,1,1]=>623
[2,3,1,2]=>452
[2,3,2,1]=>533
[2,3,3]=>281
[2,4,1,1]=>343
[2,4,2]=>262
[2,5,1]=>133
[2,6]=>28
[3,1,1,1,1,1]=>572
[3,1,1,1,2]=>407
[3,1,1,2,1]=>476
[3,1,1,3]=>242
[3,1,2,1,1]=>502
[3,1,2,2]=>365
[3,1,3,1]=>332
[3,1,4]=>125
[3,2,1,1,1]=>516
[3,2,1,2]=>371
[3,2,2,1]=>436
[3,2,3]=>226
[3,3,1,1]=>376
[3,3,2]=>281
[3,4,1]=>196
[3,5]=>56
[4,1,1,1,1]=>275
[4,1,1,2]=>200
[4,1,2,1]=>235
[4,1,3]=>125
[4,2,1,1]=>250
[4,2,2]=>185
[4,3,1]=>175
[4,4]=>70
[5,1,1,1]=>110
[5,1,2]=>83
[5,2,1]=>98
[5,3]=>56
[6,1,1]=>35
[6,2]=>28
[7,1]=>8
[8]=>1
[1,1,1,1,1,1,1,1,1]=>4862
[1,1,1,1,1,1,1,2]=>3432
[1,1,1,1,1,1,2,1]=>4004
[1,1,1,1,1,1,3]=>2002
[1,1,1,1,1,2,1,1]=>4202
[1,1,1,1,1,2,2]=>3036
[1,1,1,1,1,3,1]=>2717
[1,1,1,1,1,4]=>1001
[1,1,1,1,2,1,1,1]=>4274
[1,1,1,1,2,1,2]=>3054
[1,1,1,1,2,2,1]=>3584
[1,1,1,1,2,3]=>1834
[1,1,1,1,3,1,1]=>3014
[1,1,1,1,3,2]=>2244
[1,1,1,1,4,1]=>1529
[1,1,1,1,5]=>429
[1,1,1,2,1,1,1,1]=>4274
[1,1,1,2,1,1,2]=>3040
[1,1,1,2,1,2,1]=>3556
[1,1,1,2,1,3]=>1806
[1,1,1,2,2,1,1]=>3754
[1,1,1,2,2,2]=>2728
[1,1,1,2,3,1]=>2479
[1,1,1,2,4]=>931
[1,1,1,3,1,1,1]=>3098
[1,1,1,3,1,2]=>2256
[1,1,1,3,2,1]=>2660
[1,1,1,3,3]=>1414
[1,1,1,4,1,1]=>1754
[1,1,1,4,2]=>1344
[1,1,1,5,1]=>704
[1,1,1,6]=>154
[1,1,2,1,1,1,1,1]=>4202
[1,1,2,1,1,1,2]=>2982
[1,1,2,1,1,2,1]=>3484
[1,1,2,1,1,3]=>1762
[1,1,2,1,2,1,1]=>3667
[1,1,2,1,2,2]=>2661
[1,1,2,1,3,1]=>2407
[1,1,2,1,4]=>901
[1,1,2,2,1,1,1]=>3754
[1,1,2,2,1,2]=>2694
[1,1,2,2,2,1]=>3164
[1,1,2,2,3]=>1634
[1,1,2,3,1,1]=>2704
[1,1,2,3,2]=>2019
[1,1,2,4,1]=>1399
[1,1,2,5]=>399
[1,1,3,1,1,1,1]=>3014
[1,1,3,1,1,2]=>2172
[1,1,3,1,2,1]=>2548
[1,1,3,1,3]=>1330
[1,1,3,2,1,1]=>2704
[1,1,3,2,2]=>1986
[1,1,3,3,1]=>1849
[1,1,3,4]=>721
[1,1,4,1,1,1]=>1754
[1,1,4,1,2]=>1304
[1,1,4,2,1]=>1540
[1,1,4,3]=>854
[1,1,5,1,1]=>794
[1,1,5,2]=>624
[1,1,6,1]=>254
[1,1,7]=>44
[1,2,1,1,1,1,1,1]=>4004
[1,2,1,1,1,1,2]=>2838
[1,2,1,1,1,2,1]=>3314
[1,2,1,1,1,3]=>1672
[1,2,1,1,2,1,1]=>3484
[1,2,1,1,2,2]=>2526
[1,2,1,1,3,1]=>2279
[1,2,1,1,4]=>851
[1,2,1,2,1,1,1]=>3556
[1,2,1,2,1,2]=>2550
[1,2,1,2,2,1]=>2994
[1,2,1,2,3]=>1544
[1,2,1,3,1,1]=>2548
[1,2,1,3,2]=>1902
[1,2,1,4,1]=>1315
[1,2,1,5]=>375
[1,2,2,1,1,1,1]=>3584
[1,2,2,1,1,2]=>2558
[1,2,2,1,2,1]=>2994
[1,2,2,1,3]=>1532
[1,2,2,2,1,1]=>3164
[1,2,2,2,2]=>2306
[1,2,2,3,1]=>2109
[1,2,2,4]=>801
[1,2,3,1,1,1]=>2660
[1,2,3,1,2]=>1942
[1,2,3,2,1]=>2290
[1,2,3,3]=>1224
[1,2,4,1,1]=>1540
[1,2,4,2]=>1182
[1,2,5,1]=>630
[1,2,6]=>140
[1,3,1,1,1,1,1]=>2717
[1,3,1,1,1,2]=>1947
[1,3,1,1,2,1]=>2279
[1,3,1,1,3]=>1177
[1,3,1,2,1,1]=>2407
[1,3,1,2,2]=>1761
[1,3,1,3,1]=>1622
[1,3,1,4]=>626
[1,3,2,1,1,1]=>2479
[1,3,2,1,2]=>1794
[1,3,2,2,1]=>2109
[1,3,2,3]=>1109
[1,3,3,1,1]=>1849
[1,3,3,2]=>1389
[1,3,4,1]=>994
[1,3,5]=>294
[1,4,1,1,1,1]=>1529
[1,4,1,1,2]=>1119
[1,4,1,2,1]=>1315
[1,4,1,3]=>709
[1,4,2,1,1]=>1399
[1,4,2,2]=>1041
[1,4,3,1]=>994
[1,4,4]=>406
[1,5,1,1,1]=>704
[1,5,1,2]=>534
[1,5,2,1]=>630
[1,5,3]=>364
[1,6,1,1]=>254
[1,6,2]=>204
[1,7,1]=>65
[1,8]=>9
[2,1,1,1,1,1,1,1]=>3432
[2,1,1,1,1,1,2]=>2431
[2,1,1,1,1,2,1]=>2838
[2,1,1,1,1,3]=>1430
[2,1,1,1,2,1,1]=>2982
[2,1,1,1,2,2]=>2161
[2,1,1,1,3,1]=>1947
[2,1,1,1,4]=>726
[2,1,1,2,1,1,1]=>3040
[2,1,1,2,1,2]=>2179
[2,1,1,2,2,1]=>2558
[2,1,1,2,3]=>1318
[2,1,1,3,1,1]=>2172
[2,1,1,3,2]=>1621
[2,1,1,4,1]=>1119
[2,1,1,5]=>319
[2,1,2,1,1,1,1]=>3054
[2,1,2,1,1,2]=>2179
[2,1,2,1,2,1]=>2550
[2,1,2,1,3]=>1304
[2,1,2,2,1,1]=>2694
[2,1,2,2,2]=>1963
[2,1,2,3,1]=>1794
[2,1,2,4]=>681
[2,1,3,1,1,1]=>2256
[2,1,3,1,2]=>1647
[2,1,3,2,1]=>1942
[2,1,3,3]=>1038
[2,1,4,1,1]=>1304
[2,1,4,2]=>1001
[2,1,5,1]=>534
[2,1,6]=>119
[2,2,1,1,1,1,1]=>3036
[2,2,1,1,1,2]=>2161
[2,2,1,1,2,1]=>2526
[2,2,1,1,3]=>1286
[2,2,1,2,1,1]=>2661
[2,2,1,2,2]=>1936
[2,2,1,3,1]=>1761
[2,2,1,4]=>666
[2,2,2,1,1,1]=>2728
[2,2,2,1,2]=>1963
[2,2,2,2,1]=>2306
[2,2,2,3]=>1198
[2,2,3,1,1]=>1986
[2,2,3,2]=>1486
[2,2,4,1]=>1041
[2,2,5]=>301
[2,3,1,1,1,1]=>2244
[2,3,1,1,2]=>1621
[2,3,1,2,1]=>1902
[2,3,1,3]=>998
[2,3,2,1,1]=>2019
[2,3,2,2]=>1486
[2,3,3,1]=>1389
[2,3,4]=>546
[2,4,1,1,1]=>1344
[2,4,1,2]=>1001
[2,4,2,1]=>1182
[2,4,3]=>658
[2,5,1,1]=>624
[2,5,2]=>491
[2,6,1]=>204
[2,7]=>36
[3,1,1,1,1,1,1]=>2002
[3,1,1,1,1,2]=>1430
[3,1,1,1,2,1]=>1672
[3,1,1,1,3]=>858
[3,1,1,2,1,1]=>1762
[3,1,1,2,2]=>1286
[3,1,1,3,1]=>1177
[3,1,1,4]=>451
[3,1,2,1,1,1]=>1806
[3,1,2,1,2]=>1304
[3,1,2,2,1]=>1532
[3,1,2,3]=>802
[3,1,3,1,1]=>1330
[3,1,3,2]=>998
[3,1,4,1]=>709
[3,1,5]=>209
[3,2,1,1,1,1]=>1834
[3,2,1,1,2]=>1318
[3,2,1,2,1]=>1544
[3,2,1,3]=>802
[3,2,2,1,1]=>1634
[3,2,2,2]=>1198
[3,2,3,1]=>1109
[3,2,4]=>431
[3,3,1,1,1]=>1414
[3,3,1,2]=>1038
[3,3,2,1]=>1224
[3,3,3]=>662
[3,4,1,1]=>854
[3,4,2]=>658
[3,5,1]=>364
[3,6]=>84
[4,1,1,1,1,1]=>1001
[4,1,1,1,2]=>726
[4,1,1,2,1]=>851
[4,1,1,3]=>451
[4,1,2,1,1]=>901
[4,1,2,2]=>666
[4,1,3,1]=>626
[4,1,4]=>251
[4,2,1,1,1]=>931
[4,2,1,2]=>681
[4,2,2,1]=>801
[4,2,3]=>431
[4,3,1,1]=>721
[4,3,2]=>546
[4,4,1]=>406
[4,5]=>126
[5,1,1,1,1]=>429
[5,1,1,2]=>319
[5,1,2,1]=>375
[5,1,3]=>209
[5,2,1,1]=>399
[5,2,2]=>301
[5,3,1]=>294
[5,4]=>126
[6,1,1,1]=>154
[6,1,2]=>119
[6,2,1]=>140
[6,3]=>84
[7,1,1]=>44
[7,2]=>36
[8,1]=>9
[9]=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
Number of parabolic noncrossing partitions indexed by the composition.
Also the number of elements in the $\nu$-Tamari lattice with $\nu = \nu_\alpha = 1^{\alpha_1} 0^{\alpha_1} \cdots 1^{\alpha_k} 0^{\alpha_k}$, the bounce path indexed by the composition $\alpha$. These elements are Dyck paths weakly above the bounce path $\nu_\alpha$.
Also the number of elements in the $\nu$-Tamari lattice with $\nu = \nu_\alpha = 1^{\alpha_1} 0^{\alpha_1} \cdots 1^{\alpha_k} 0^{\alpha_k}$, the bounce path indexed by the composition $\alpha$. These elements are Dyck paths weakly above the bounce path $\nu_\alpha$.
References
[1] Mühle, H., Williams, N. Tamari Lattices for Parabolic Quotients of the Symmetric Group arXiv:1804.02761
[2] Bergeron, N., Ceballos, C., Pilaud, V. Hopf dreams arXiv:1807.03044
[2] Bergeron, N., Ceballos, C., Pilaud, V. Hopf dreams arXiv:1807.03044
Code
def contains(A,B): Aa = A.to_area_sequence() Bb = B.to_area_sequence() return all( Aa[i] >= Bb[i] for i in range(len(Aa)) ) def statistic(L): n = sum(list(L)) Bp = [] for a in L: Bp += ([1] * a) + ([0] * a) Bp = DyckWord(Bp) return sum(1 for D in DyckWords(n) if contains(D, Bp))
Created
Dec 12, 2018 at 11:36 by Wenjie Fang
Updated
Dec 13, 2018 at 19:02 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!