Identifier
-
Mp00071:
Permutations
—descent composition⟶
Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
Mp00156: Graphs —line graph⟶ Graphs
St001330: Graphs ⟶ ℤ
Values
[2,1] => [1,1] => ([(0,1)],2) => ([],1) => 1
[1,3,2] => [2,1] => ([(0,2),(1,2)],3) => ([(0,1)],2) => 2
[2,1,3] => [1,2] => ([(1,2)],3) => ([],1) => 1
[2,3,1] => [2,1] => ([(0,2),(1,2)],3) => ([(0,1)],2) => 2
[3,1,2] => [1,2] => ([(1,2)],3) => ([],1) => 1
[3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 3
[1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => 3
[1,3,2,4] => [2,2] => ([(1,3),(2,3)],4) => ([(0,1)],2) => 2
[1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => 3
[1,4,2,3] => [2,2] => ([(1,3),(2,3)],4) => ([(0,1)],2) => 2
[2,1,3,4] => [1,3] => ([(2,3)],4) => ([],1) => 1
[2,3,1,4] => [2,2] => ([(1,3),(2,3)],4) => ([(0,1)],2) => 2
[2,3,4,1] => [3,1] => ([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => 3
[2,4,1,3] => [2,2] => ([(1,3),(2,3)],4) => ([(0,1)],2) => 2
[3,1,2,4] => [1,3] => ([(2,3)],4) => ([],1) => 1
[3,2,1,4] => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => 3
[3,4,1,2] => [2,2] => ([(1,3),(2,3)],4) => ([(0,1)],2) => 2
[4,1,2,3] => [1,3] => ([(2,3)],4) => ([],1) => 1
[4,2,1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => 3
[4,3,1,2] => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => 3
[1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 3
[1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 3
[1,3,2,4,5] => [2,3] => ([(2,4),(3,4)],5) => ([(0,1)],2) => 2
[1,3,4,2,5] => [3,2] => ([(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 3
[1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[1,3,5,2,4] => [3,2] => ([(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 3
[1,4,2,3,5] => [2,3] => ([(2,4),(3,4)],5) => ([(0,1)],2) => 2
[1,4,5,2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 3
[1,5,2,3,4] => [2,3] => ([(2,4),(3,4)],5) => ([(0,1)],2) => 2
[2,1,3,4,5] => [1,4] => ([(3,4)],5) => ([],1) => 1
[2,3,1,4,5] => [2,3] => ([(2,4),(3,4)],5) => ([(0,1)],2) => 2
[2,3,4,1,5] => [3,2] => ([(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 3
[2,3,4,5,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[2,3,5,1,4] => [3,2] => ([(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 3
[2,4,1,3,5] => [2,3] => ([(2,4),(3,4)],5) => ([(0,1)],2) => 2
[2,4,5,1,3] => [3,2] => ([(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 3
[2,5,1,3,4] => [2,3] => ([(2,4),(3,4)],5) => ([(0,1)],2) => 2
[3,1,2,4,5] => [1,4] => ([(3,4)],5) => ([],1) => 1
[3,2,1,4,5] => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 3
[3,4,1,2,5] => [2,3] => ([(2,4),(3,4)],5) => ([(0,1)],2) => 2
[3,4,5,1,2] => [3,2] => ([(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 3
[3,5,1,2,4] => [2,3] => ([(2,4),(3,4)],5) => ([(0,1)],2) => 2
[4,1,2,3,5] => [1,4] => ([(3,4)],5) => ([],1) => 1
[4,2,1,3,5] => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 3
[4,3,1,2,5] => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 3
[4,5,1,2,3] => [2,3] => ([(2,4),(3,4)],5) => ([(0,1)],2) => 2
[5,1,2,3,4] => [1,4] => ([(3,4)],5) => ([],1) => 1
[5,2,1,3,4] => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 3
[5,3,1,2,4] => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 3
[5,4,1,2,3] => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 3
[1,2,3,4,6,5] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[1,2,3,5,4,6] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[1,2,3,5,6,4] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[1,2,3,6,4,5] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[1,2,4,3,5,6] => [3,3] => ([(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 3
[1,2,4,5,3,6] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[1,2,4,5,6,3] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[1,2,4,6,3,5] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[1,2,5,3,4,6] => [3,3] => ([(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 3
[1,2,5,6,3,4] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[1,2,6,3,4,5] => [3,3] => ([(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 3
[1,3,2,4,5,6] => [2,4] => ([(3,5),(4,5)],6) => ([(0,1)],2) => 2
[1,3,4,2,5,6] => [3,3] => ([(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 3
[1,3,4,5,2,6] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[1,3,4,5,6,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[1,3,4,6,2,5] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[1,3,5,2,4,6] => [3,3] => ([(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 3
[1,3,5,6,2,4] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[1,3,6,2,4,5] => [3,3] => ([(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 3
[1,4,2,3,5,6] => [2,4] => ([(3,5),(4,5)],6) => ([(0,1)],2) => 2
[1,4,5,2,3,6] => [3,3] => ([(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 3
[1,4,5,6,2,3] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[1,4,6,2,3,5] => [3,3] => ([(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 3
[1,5,2,3,4,6] => [2,4] => ([(3,5),(4,5)],6) => ([(0,1)],2) => 2
[1,5,6,2,3,4] => [3,3] => ([(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 3
[1,6,2,3,4,5] => [2,4] => ([(3,5),(4,5)],6) => ([(0,1)],2) => 2
[2,1,3,4,5,6] => [1,5] => ([(4,5)],6) => ([],1) => 1
[2,3,1,4,5,6] => [2,4] => ([(3,5),(4,5)],6) => ([(0,1)],2) => 2
[2,3,4,1,5,6] => [3,3] => ([(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 3
[2,3,4,5,1,6] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[2,3,4,5,6,1] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[2,3,4,6,1,5] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[2,3,5,1,4,6] => [3,3] => ([(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 3
[2,3,5,6,1,4] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[2,3,6,1,4,5] => [3,3] => ([(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 3
[2,4,1,3,5,6] => [2,4] => ([(3,5),(4,5)],6) => ([(0,1)],2) => 2
[2,4,5,1,3,6] => [3,3] => ([(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 3
[2,4,5,6,1,3] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[2,4,6,1,3,5] => [3,3] => ([(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 3
[2,5,1,3,4,6] => [2,4] => ([(3,5),(4,5)],6) => ([(0,1)],2) => 2
[2,5,6,1,3,4] => [3,3] => ([(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 3
[2,6,1,3,4,5] => [2,4] => ([(3,5),(4,5)],6) => ([(0,1)],2) => 2
[3,1,2,4,5,6] => [1,5] => ([(4,5)],6) => ([],1) => 1
[3,2,1,4,5,6] => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 3
[3,4,1,2,5,6] => [2,4] => ([(3,5),(4,5)],6) => ([(0,1)],2) => 2
[3,4,5,1,2,6] => [3,3] => ([(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 3
[3,4,5,6,1,2] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[3,4,6,1,2,5] => [3,3] => ([(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => 3
[3,5,1,2,4,6] => [2,4] => ([(3,5),(4,5)],6) => ([(0,1)],2) => 2
>>> Load all 254 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Map
to threshold graph
Description
The threshold graph corresponding to the composition.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
Map
line graph
Description
The line graph of a graph.
Let $G$ be a graph with edge set $E$. Then its line graph is the graph with vertex set $E$, such that two vertices $e$ and $f$ are adjacent if and only if they are incident to a common vertex in $G$.
Let $G$ be a graph with edge set $E$. Then its line graph is the graph with vertex set $E$, such that two vertices $e$ and $f$ are adjacent if and only if they are incident to a common vertex in $G$.
Map
descent composition
Description
The descent composition of a permutation.
The descent composition of a permutation $\pi$ of length $n$ is the integer composition of $n$ whose descent set equals the descent set of $\pi$. The descent set of a permutation $\pi$ is $\{i \mid 1 \leq i < n, \pi(i) > \pi(i+1)\}$. The descent set of a composition $c = (i_1, i_2, \ldots, i_k)$ is the set $\{ i_1, i_1 + i_2, i_1 + i_2 + i_3, \ldots, i_1 + i_2 + \cdots + i_{k-1} \}$.
The descent composition of a permutation $\pi$ of length $n$ is the integer composition of $n$ whose descent set equals the descent set of $\pi$. The descent set of a permutation $\pi$ is $\{i \mid 1 \leq i < n, \pi(i) > \pi(i+1)\}$. The descent set of a composition $c = (i_1, i_2, \ldots, i_k)$ is the set $\{ i_1, i_1 + i_2, i_1 + i_2 + i_3, \ldots, i_1 + i_2 + \cdots + i_{k-1} \}$.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!