Identifier
Values
([],1) => [1] => [1] => ([],1) => 1
([],2) => [2] => [1,1] => ([(0,1)],2) => 2
([(0,1)],2) => [1,1] => [2] => ([],2) => 1
([],3) => [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 3
([(1,2)],3) => [1,2] => [2,1] => ([(0,2),(1,2)],3) => 2
([(0,2),(1,2)],3) => [1,1,1] => [3] => ([],3) => 1
([(0,1),(0,2),(1,2)],3) => [2,1] => [1,2] => ([(1,2)],3) => 2
([],4) => [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
([(1,3),(2,3)],4) => [1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
([(0,3),(1,3),(2,3)],4) => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
([(0,3),(1,2),(2,3)],4) => [1,1,1,1] => [4] => ([],4) => 1
([(0,3),(1,2),(1,3),(2,3)],4) => [1,1,1,1] => [4] => ([],4) => 1
([(0,2),(0,3),(1,2),(1,3)],4) => [1,2,1] => [2,2] => ([(1,3),(2,3)],4) => 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [2,1,1] => [1,3] => ([(2,3)],4) => 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 3
([],5) => [5] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
([(1,4),(2,3),(3,4)],5) => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
([(0,1),(2,4),(3,4)],5) => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
([(0,4),(1,4),(2,3),(3,4)],5) => [1,1,1,1,1] => [5] => ([],5) => 1
([(1,4),(2,3),(2,4),(3,4)],5) => [1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [5] => ([],5) => 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [5] => ([],5) => 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [5] => ([],5) => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 2
([(0,4),(1,3),(2,3),(2,4)],5) => [1,1,1,1,1] => [5] => ([],5) => 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => [1,1,1,1,1] => [5] => ([],5) => 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => [1,2,1,1] => [2,3] => ([(2,4),(3,4)],5) => 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [5] => ([],5) => 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [5] => ([],5) => 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [5] => ([],5) => 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [1,2,1,1] => [2,3] => ([(2,4),(3,4)],5) => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,1,1,1] => [1,4] => ([(3,4)],5) => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => [1,1,1,1,1] => [5] => ([],5) => 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 3
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [4,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
([],6) => [6] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
([(1,5),(2,5),(3,4),(4,5)],6) => [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,2,1] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 2
([(1,5),(2,4),(3,4),(3,5)],6) => [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => [1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 2
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => [1,2,1,1,1] => [2,4] => ([(3,5),(4,5)],6) => 2
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [1,2,1,1,1] => [2,4] => ([(3,5),(4,5)],6) => 2
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) => [1,2,1,1,1] => [2,4] => ([(3,5),(4,5)],6) => 2
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 2
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [1,2,1,1,1] => [2,4] => ([(3,5),(4,5)],6) => 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 2
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => [1,2,1,1,1] => [2,4] => ([(3,5),(4,5)],6) => 2
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 2
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 2
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 2
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
>>> Load all 234 entries. <<<
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,2,1,1,1] => [2,4] => ([(3,5),(4,5)],6) => 2
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,1,1,1,1] => [1,5] => ([(4,5)],6) => 2
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 2
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,2,1,1,1] => [2,4] => ([(3,5),(4,5)],6) => 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,2,1,1,1] => [2,4] => ([(3,5),(4,5)],6) => 2
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6) => [1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 2
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [1,2,1,1,1] => [2,4] => ([(3,5),(4,5)],6) => 2
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [1,2,1,1,1] => [2,4] => ([(3,5),(4,5)],6) => 2
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,1,1,1,1] => [1,5] => ([(4,5)],6) => 2
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,2,1,1,1] => [2,4] => ([(3,5),(4,5)],6) => 2
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [6] => ([],6) => 1
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,2,1,1,1] => [2,4] => ([(3,5),(4,5)],6) => 2
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 3
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [1,1,2,1,1] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 2
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [1,2,1,1,1] => [2,4] => ([(3,5),(4,5)],6) => 2
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [2,1,1,1,1] => [1,5] => ([(4,5)],6) => 2
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
([],7) => [7] => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
([(1,6),(2,6),(3,4),(4,5),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,6),(2,5),(3,4),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,6),(2,5),(3,4),(3,5),(4,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,4),(1,6),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,2),(1,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,2),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,5),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(0,1),(2,5),(3,4),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(0,1),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,3),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(0,1),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [1,1,1,1,1,2] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1] => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
([(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
([],8) => [8] => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 8
([(1,5),(2,7),(3,6),(3,7),(4,6),(4,7),(5,7),(6,7)],8) => [1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
([(1,6),(2,3),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7)],8) => [1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
([(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7)],8) => [1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
([(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8) => [1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
([(1,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(6,7)],8) => [1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
([(1,5),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(6,7)],8) => [1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
([(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8) => [1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
([(1,6),(1,7),(2,5),(2,6),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8) => [1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
([(1,7),(2,6),(3,4),(3,5),(4,6),(5,7)],8) => [1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
([(1,6),(1,7),(2,3),(2,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
([(1,5),(2,5),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(6,7)],8) => [1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
([(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
([(1,4),(1,6),(1,7),(2,4),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8) => [1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
([(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(4,5),(4,6),(4,7),(5,7),(6,7)],8) => [1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
([(1,2),(1,6),(1,7),(2,4),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
([(1,5),(1,6),(1,7),(2,3),(2,5),(2,7),(3,4),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
([(1,4),(1,5),(2,3),(2,6),(2,7),(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8) => [1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
([(1,2),(1,5),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(6,7)],8) => [1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
([(1,2),(1,6),(1,7),(2,5),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
([(1,2),(1,4),(1,5),(1,7),(2,3),(2,5),(2,6),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
([(1,5),(1,6),(1,7),(2,3),(2,4),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
([(0,1),(2,3),(2,7),(3,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
([(0,1),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8) => [1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
([(0,1),(2,3),(2,7),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
([(0,6),(1,6),(2,7),(3,4),(3,5),(4,7),(5,7)],8) => [1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
([(0,1),(2,5),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
([(0,1),(2,7),(3,4),(4,7),(5,6),(5,7),(6,7)],8) => [1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
([(0,1),(2,7),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8) => [1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
([(0,1),(2,7),(3,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
([(0,1),(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8) => [1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
([(0,1),(2,5),(3,5),(3,7),(4,6),(4,7),(5,6),(6,7)],8) => [1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
([(0,6),(1,5),(2,7),(3,4),(3,7),(4,7),(5,6)],8) => [1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
([(0,1),(2,6),(2,7),(3,4),(3,5),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
([(0,1),(2,6),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8) => [1,1,1,1,1,1,2] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Map
to threshold graph
Description
The threshold graph corresponding to the composition.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
Map
Laplacian multiplicities
Description
The composition of multiplicities of the Laplacian eigenvalues.
Let $\lambda_1 > \lambda_2 > \dots$ be the eigenvalues of the Laplacian matrix of a graph on $n$ vertices. Then this map returns the composition $a_1,\dots,a_k$ of $n$ where $a_i$ is the multiplicity of $\lambda_i$.
Map
complement
Description
The complement of a composition.
The complement of a composition $I$ is defined as follows:
If $I$ is the empty composition, then the complement is also the empty composition. Otherwise, let $S$ be the descent set corresponding to $I=(i_1,\dots,i_k)$, that is, the subset
$$\{ i_1, i_1 + i_2, \ldots, i_1 + i_2 + \cdots + i_{k-1} \}$$
of $\{ 1, 2, \ldots, |I|-1 \}$. Then, the complement of $I$ is the composition of the same size as $I$, whose descent set is $\{ 1, 2, \ldots, |I|-1 \} \setminus S$.
The complement of a composition $I$ coincides with the reversal (Mp00038reverse) of the composition conjugate (Mp00041conjugate) to $I$.