Identifier
-
Mp00227:
Dyck paths
—Delest-Viennot-inverse⟶
Dyck paths
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001330: Graphs ⟶ ℤ
Values
[1,0] => [1,0] => [1] => ([],1) => 1
[1,0,1,0] => [1,1,0,0] => [2] => ([],2) => 1
[1,1,0,0] => [1,0,1,0] => [1,1] => ([(0,1)],2) => 2
[1,0,1,0,1,0] => [1,1,1,0,0,0] => [3] => ([],3) => 1
[1,0,1,1,0,0] => [1,1,0,0,1,0] => [2,1] => ([(0,2),(1,2)],3) => 2
[1,1,0,0,1,0] => [1,0,1,1,0,0] => [1,2] => ([(1,2)],3) => 2
[1,1,0,1,0,0] => [1,0,1,0,1,0] => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 3
[1,1,1,0,0,0] => [1,1,0,1,0,0] => [2,1] => ([(0,2),(1,2)],3) => 2
[1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => [4] => ([],4) => 1
[1,0,1,0,1,1,0,0] => [1,1,1,0,0,0,1,0] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => [2,2] => ([(1,3),(2,3)],4) => 2
[1,0,1,1,1,0,0,0] => [1,1,1,0,0,1,0,0] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[1,1,0,0,1,0,1,0] => [1,0,1,1,1,0,0,0] => [1,3] => ([(2,3)],4) => 2
[1,1,0,1,0,0,1,0] => [1,0,1,0,1,1,0,0] => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 3
[1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[1,1,1,0,0,0,1,0] => [1,1,0,1,1,0,0,0] => [2,2] => ([(1,3),(2,3)],4) => 2
[1,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,0] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => [5] => ([],5) => 1
[1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[1,0,1,0,1,1,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 2
[1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,0,0,0,1,0,0] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[1,0,1,1,0,0,1,0,1,0] => [1,1,0,0,1,1,1,0,0,0] => [2,3] => ([(2,4),(3,4)],5) => 2
[1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 2
[1,0,1,1,1,0,1,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[1,1,0,0,1,0,1,0,1,0] => [1,0,1,1,1,1,0,0,0,0] => [1,4] => ([(3,4)],5) => 2
[1,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,1,1,0,0,0] => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 3
[1,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[1,1,1,0,0,0,1,0,1,0] => [1,1,0,1,1,1,0,0,0,0] => [2,3] => ([(2,4),(3,4)],5) => 2
[1,1,1,0,1,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 2
[1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [6] => ([],6) => 1
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 2
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [2,4] => ([(3,5),(4,5)],6) => 2
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 2
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,1,0,0,1,0,1,0,1,0,1,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,5] => ([(4,5)],6) => 2
[1,1,0,1,0,0,1,0,1,0,1,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 3
[1,1,0,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[1,1,0,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[1,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[1,1,1,0,0,0,1,0,1,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [2,4] => ([(3,5),(4,5)],6) => 2
[1,1,1,0,1,0,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 2
[1,1,1,0,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,0,1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,1,1,1,1,0,0,0,0,1,0,0,0] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,0,1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,1,1,0,0,0,1,0,0,0,0] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,0,1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,0,1,0,1,0,1,0,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
[1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[1,1,1,0,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0] => [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,0,1,0,1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 8
[1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0] => [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Map
to threshold graph
Description
The threshold graph corresponding to the composition.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
Map
Delest-Viennot-inverse
Description
Return the Dyck path obtained by applying the inverse of Delest-Viennot's bijection to the corresponding parallelogram polyomino.
Let $D$ be a Dyck path of semilength $n$. The parallelogram polyomino $\gamma(D)$ is defined as follows: let $\tilde D = d_0 d_1 \dots d_{2n+1}$ be the Dyck path obtained by prepending an up step and appending a down step to $D$. Then, the upper path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with even indices, and the lower path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with odd indices.
The Delest-Viennot bijection $\beta$ returns the parallelogram polyomino, whose column heights are the heights of the peaks of the Dyck path, and the intersection heights between columns are the heights of the valleys of the Dyck path.
This map returns the Dyck path $(\beta^{(-1)}\circ\gamma)(D)$.
Let $D$ be a Dyck path of semilength $n$. The parallelogram polyomino $\gamma(D)$ is defined as follows: let $\tilde D = d_0 d_1 \dots d_{2n+1}$ be the Dyck path obtained by prepending an up step and appending a down step to $D$. Then, the upper path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with even indices, and the lower path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with odd indices.
The Delest-Viennot bijection $\beta$ returns the parallelogram polyomino, whose column heights are the heights of the peaks of the Dyck path, and the intersection heights between columns are the heights of the valleys of the Dyck path.
This map returns the Dyck path $(\beta^{(-1)}\circ\gamma)(D)$.
Map
rise composition
Description
Send a Dyck path to the composition of sizes of its rises.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!