Processing math: 100%

Identifier
Values
[1,0] => [1] => ([],1) => ([(0,1)],2) => 2
[1,0,1,0] => [1,1] => ([(0,1)],2) => ([(0,1),(0,2),(1,2)],3) => 3
[1,1,0,0] => [2] => ([],2) => ([(0,2),(1,2)],3) => 2
[1,0,1,0,1,0] => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
[1,1,0,1,0,0] => [3] => ([],3) => ([(0,3),(1,3),(2,3)],4) => 2
[1,1,1,0,0,0] => [3] => ([],3) => ([(0,3),(1,3),(2,3)],4) => 2
[1,0,1,0,1,0,1,0] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
[1,1,0,1,0,1,0,0] => [4] => ([],4) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[1,1,0,1,1,0,0,0] => [4] => ([],4) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[1,1,1,0,0,1,0,0] => [4] => ([],4) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[1,1,1,0,1,0,0,0] => [4] => ([],4) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[1,1,1,1,0,0,0,0] => [4] => ([],4) => ([(0,4),(1,4),(2,4),(3,4)],5) => 2
[1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
[1,1,0,1,0,1,0,1,0,0] => [5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,1,0,1,0,1,1,0,0,0] => [5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,1,0,1,1,0,0,1,0,0] => [5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,1,0,1,1,0,1,0,0,0] => [5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,1,0,1,1,1,0,0,0,0] => [5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,1,1,0,0,1,0,1,0,0] => [5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,1,1,0,0,1,1,0,0,0] => [5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,1,1,0,1,0,0,1,0,0] => [5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,1,1,0,1,0,1,0,0,0] => [5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,1,1,0,1,1,0,0,0,0] => [5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,1,1,1,0,0,0,1,0,0] => [5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,1,1,1,0,0,1,0,0,0] => [5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,1,1,1,0,1,0,0,0,0] => [5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,1,1,1,1,0,0,0,0,0] => [5] => ([],5) => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 7
[1,1,0,1,0,1,0,1,0,1,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,0,1,0,1,0,1,1,0,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,0,1,0,1,1,0,0,1,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,0,1,0,1,1,0,1,0,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,0,1,0,1,1,1,0,0,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,0,1,1,0,0,1,0,1,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,0,1,1,0,0,1,1,0,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,0,1,1,0,1,0,0,1,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,0,1,1,0,1,0,1,0,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,0,1,1,0,1,1,0,0,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,0,1,1,1,0,0,0,1,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,0,1,1,1,0,0,1,0,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,0,1,1,1,0,1,0,0,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,0,1,1,1,1,0,0,0,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,1,0,0,1,0,1,0,1,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,1,0,0,1,0,1,1,0,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,1,0,0,1,1,0,0,1,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,1,0,0,1,1,0,1,0,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,1,0,0,1,1,1,0,0,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,1,0,1,0,0,1,0,1,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,1,0,1,0,0,1,1,0,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,1,0,1,0,1,0,0,1,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,1,0,1,0,1,0,1,0,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,1,0,1,0,1,1,0,0,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,1,0,1,1,0,0,0,1,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,1,0,1,1,0,0,1,0,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,1,0,1,1,0,1,0,0,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,1,0,1,1,1,0,0,0,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,1,1,0,0,0,1,0,1,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,1,1,0,0,0,1,1,0,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,1,1,0,0,1,0,0,1,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,1,1,0,0,1,0,1,0,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,1,1,0,0,1,1,0,0,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,1,1,0,1,0,0,0,1,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,1,1,0,1,0,0,1,0,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,1,1,0,1,0,1,0,0,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,1,1,0,1,1,0,0,0,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,1,1,1,0,0,0,0,1,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,1,1,1,0,0,0,1,0,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,1,1,1,0,0,1,0,0,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,1,1,1,0,1,0,0,0,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,1,1,1,1,1,0,0,0,0,0,0] => [6] => ([],6) => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => 8
[1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,0,1,0,1,0,1,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,0,1,0,1,1,0,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,0,1,0,1,1,0,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,0,1,0,1,1,1,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,0,1,1,0,0,1,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,0,1,1,0,0,1,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,0,1,1,0,1,0,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,0,1,1,0,1,0,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,0,1,1,0,1,1,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,0,1,1,1,0,0,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,0,1,1,1,0,0,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,0,1,1,1,0,1,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,0,1,1,1,1,0,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,1,0,0,1,0,1,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,1,0,0,1,0,1,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,1,0,0,1,1,0,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,1,0,0,1,1,0,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,1,0,0,1,1,1,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,1,0,1,0,0,1,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,1,0,1,0,0,1,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,1,0,1,0,1,0,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,1,0,1,0,1,0,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,1,0,1,0,1,1,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,1,0,1,1,0,0,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,1,0,1,1,0,0,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,1,0,1,1,0,1,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,1,0,1,1,1,0,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,1,1,0,0,0,1,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,1,1,0,0,0,1,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
>>> Load all 203 entries. <<<
[1,1,0,1,1,1,0,0,1,0,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,1,1,0,0,1,0,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,1,1,0,0,1,1,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,1,1,0,1,0,0,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,1,1,0,1,0,0,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,1,1,0,1,0,1,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,1,1,0,1,1,0,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,1,1,1,0,0,0,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,1,1,1,0,0,0,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,1,1,1,0,0,1,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,1,1,1,0,1,0,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,0,1,1,1,1,1,0,0,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,0,1,0,1,0,1,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,0,1,0,1,0,1,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,0,1,0,1,1,0,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,0,1,0,1,1,0,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,0,1,0,1,1,1,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,0,1,1,0,0,1,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,0,1,1,0,0,1,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,0,1,1,0,1,0,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,0,1,1,0,1,0,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,0,1,1,0,1,1,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,0,1,1,1,0,0,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,0,1,1,1,0,0,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,0,1,1,1,0,1,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,0,1,1,1,1,0,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,1,0,0,1,0,1,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,1,0,0,1,0,1,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,1,0,0,1,1,0,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,1,0,0,1,1,0,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,1,0,0,1,1,1,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,1,0,1,0,0,1,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,1,0,1,0,0,1,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,1,0,1,0,1,0,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,1,0,1,0,1,0,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,1,0,1,0,1,1,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,1,0,1,1,0,0,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,1,0,1,1,0,0,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,1,0,1,1,0,1,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,1,0,1,1,1,0,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,1,1,0,0,0,1,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,1,1,0,0,0,1,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,1,1,0,0,1,0,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,1,1,0,0,1,0,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,1,1,0,0,1,1,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,1,1,0,1,0,0,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,1,1,0,1,0,0,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,1,1,0,1,0,1,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,1,1,0,1,1,0,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,1,1,1,0,0,0,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,1,1,1,0,0,0,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,1,1,1,0,0,1,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,1,1,1,0,1,0,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,0,1,1,1,1,0,0,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,0,0,0,1,0,1,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,0,0,0,1,0,1,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,0,0,0,1,1,0,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,0,0,0,1,1,0,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,0,0,0,1,1,1,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,0,0,1,0,0,1,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,0,0,1,0,0,1,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,0,0,1,0,1,0,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,0,0,1,0,1,0,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,0,0,1,0,1,1,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,0,0,1,1,0,0,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,0,0,1,1,0,0,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,0,0,1,1,0,1,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,0,0,1,1,1,0,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,0,1,0,0,0,1,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,0,1,0,0,0,1,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,0,1,0,0,1,0,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,0,1,0,0,1,0,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,0,1,0,0,1,1,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,0,1,0,1,0,0,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,0,1,0,1,0,0,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,0,1,0,1,0,1,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,0,1,0,1,1,0,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,0,1,1,0,0,0,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,0,1,1,0,0,0,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,0,1,1,0,0,1,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,0,1,1,0,1,0,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,0,1,1,1,0,0,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,1,0,0,0,0,1,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,1,0,0,0,0,1,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,1,0,0,0,1,0,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,1,0,0,0,1,0,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,1,0,0,0,1,1,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,1,0,0,1,0,0,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,1,0,0,1,0,0,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,1,0,0,1,0,1,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,1,0,0,1,1,0,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,1,0,1,0,0,0,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,1,0,1,0,0,0,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,1,0,1,0,0,1,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,1,0,1,0,1,0,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,1,0,1,1,0,0,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,1,1,0,0,0,0,0,1,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,1,1,0,0,0,0,1,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,1,1,0,0,0,1,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,1,1,0,0,1,0,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,1,1,0,1,0,0,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
[1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [7] => ([],7) => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8) => 2
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of q possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number HG(G) of a graph G is the largest integer q such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of q possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Map
to threshold graph
Description
The threshold graph corresponding to the composition.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
Map
cone
Description
The cone of a graph.
The cone of a graph is obtained by joining a new vertex to all the vertices of the graph. The added vertex is called a universal vertex or a dominating vertex.
Map
touch composition
Description
Sends a Dyck path to its touch composition given by the composition of lengths of its touch points.