Values
=>
Cc0020;cc-rep
([],1)=>0
([],2)=>1
([(0,1)],2)=>1
([],3)=>2
([(1,2)],3)=>3
([(0,2),(1,2)],3)=>2
([(0,1),(0,2),(1,2)],3)=>2
([],4)=>2
([(2,3)],4)=>4
([(1,3),(2,3)],4)=>3
([(0,3),(1,3),(2,3)],4)=>3
([(0,3),(1,2)],4)=>3
([(0,3),(1,2),(2,3)],4)=>3
([(1,2),(1,3),(2,3)],4)=>4
([(0,3),(1,2),(1,3),(2,3)],4)=>4
([(0,2),(0,3),(1,2),(1,3)],4)=>2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>2
([],5)=>3
([(3,4)],5)=>4
([(2,4),(3,4)],5)=>4
([(1,4),(2,4),(3,4)],5)=>3
([(0,4),(1,4),(2,4),(3,4)],5)=>4
([(1,4),(2,3)],5)=>4
([(1,4),(2,3),(3,4)],5)=>4
([(0,1),(2,4),(3,4)],5)=>4
([(2,3),(2,4),(3,4)],5)=>5
([(0,4),(1,4),(2,3),(3,4)],5)=>4
([(1,4),(2,3),(2,4),(3,4)],5)=>5
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)=>6
([(1,3),(1,4),(2,3),(2,4)],5)=>4
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)=>3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>5
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>5
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>5
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)=>6
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>6
([(0,4),(1,3),(2,3),(2,4)],5)=>3
([(0,1),(2,3),(2,4),(3,4)],5)=>5
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)=>4
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)=>5
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>4
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>4
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)=>4
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)=>4
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>4
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)=>5
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)=>3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>3
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>3
([],6)=>3
([(4,5)],6)=>4
([(3,5),(4,5)],6)=>4
([(2,5),(3,5),(4,5)],6)=>4
([(1,5),(2,5),(3,5),(4,5)],6)=>4
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)=>5
([(2,5),(3,4)],6)=>4
([(2,5),(3,4),(4,5)],6)=>4
([(1,2),(3,5),(4,5)],6)=>4
([(3,4),(3,5),(4,5)],6)=>6
([(1,5),(2,5),(3,4),(4,5)],6)=>4
([(0,1),(2,5),(3,5),(4,5)],6)=>4
([(2,5),(3,4),(3,5),(4,5)],6)=>6
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>5
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>7
([(2,4),(2,5),(3,4),(3,5)],6)=>4
([(0,5),(1,5),(2,4),(3,4)],6)=>4
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>4
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>4
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>5
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)=>5
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>4
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>6
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>7
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>3
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>6
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>6
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(0,5),(1,4),(2,3)],6)=>4
([(1,5),(2,4),(3,4),(3,5)],6)=>4
([(0,1),(2,5),(3,4),(4,5)],6)=>4
([(1,2),(3,4),(3,5),(4,5)],6)=>5
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>4
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>5
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>6
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>5
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>6
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>5
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>4
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>5
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)=>5
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>5
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>5
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>6
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)=>4
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)=>4
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)=>5
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)=>4
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)=>5
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>5
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)=>6
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)=>5
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>6
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>6
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)=>6
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>5
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>6
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>6
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>7
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>7
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>6
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>5
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>5
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)=>3
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)=>3
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>5
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>5
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>5
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>5
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>5
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>5
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>5
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)=>6
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>6
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>6
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>5
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)=>6
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>6
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>6
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)=>5
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)=>5
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)=>5
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>5
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)=>4
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>5
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>5
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6)=>6
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>4
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>4
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>4
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>5
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>5
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>5
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>5
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>3
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([],7)=>3
([(5,6)],7)=>5
([(4,6),(5,6)],7)=>4
([(3,6),(4,6),(5,6)],7)=>4
([(2,6),(3,6),(4,6),(5,6)],7)=>4
([(1,6),(2,6),(3,6),(4,6),(5,6)],7)=>5
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)=>6
([(3,6),(4,5)],7)=>5
([(3,6),(4,5),(5,6)],7)=>5
([(2,3),(4,6),(5,6)],7)=>4
([(4,5),(4,6),(5,6)],7)=>6
([(2,6),(3,6),(4,5),(5,6)],7)=>4
([(1,2),(3,6),(4,6),(5,6)],7)=>5
([(3,6),(4,5),(4,6),(5,6)],7)=>6
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)=>5
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)=>4
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)=>6
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)=>6
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The Hamming dimension of a graph.
Let $H(n, k)$ be the graph whose vertices are the subsets of $\{1,\dots,n\}$, and $(u,v)$ being an edge, for $u\neq v$, if the symmetric difference of $u$ and $v$ has cardinality at most $k$.
This statistic is the smallest $n$ such that the graph is an induced subgraph of $H(n, k)$ for some $k$.
Let $H(n, k)$ be the graph whose vertices are the subsets of $\{1,\dots,n\}$, and $(u,v)$ being an edge, for $u\neq v$, if the symmetric difference of $u$ and $v$ has cardinality at most $k$.
This statistic is the smallest $n$ such that the graph is an induced subgraph of $H(n, k)$ for some $k$.
References
[1] van der Zypen, D. Graph embeddings into Hamming spaces van der Zypen, D. Graph embeddings into Hamming spaces arXiv:1901.03409
[2] van der Zypen, D. Hamming representability of finite graphs van der Zypen, D. Hamming representability of finite graphs MathOverflow:319951
[2] van der Zypen, D. Hamming representability of finite graphs van der Zypen, D. Hamming representability of finite graphs MathOverflow:319951
Code
def Hamming(n, k): V = [frozenset(v) for v in subsets(range(n))] return Graph([V, lambda a,b: 0 < len(a.symmetric_difference(b)) <= k]) @cached_function def statistic(G): n = -1 while True: n += 1 V = [frozenset(v) for v in subsets(range(n))] for k in range(n+1): H = Graph([V, lambda a,b: 0 < len(a.symmetric_difference(b)) <= k]) if H.subgraph_search(G, induced=True): return n
Created
Jan 16, 2019 at 22:36 by Martin Rubey
Updated
Jan 21, 2019 at 11:28 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!