edit this statistic or download as text // json
Identifier
Values
=>
Cc0020;cc-rep
([],1)=>0 ([],2)=>1 ([(0,1)],2)=>1 ([],3)=>2 ([(1,2)],3)=>3 ([(0,2),(1,2)],3)=>2 ([(0,1),(0,2),(1,2)],3)=>2 ([],4)=>2 ([(2,3)],4)=>4 ([(1,3),(2,3)],4)=>3 ([(0,3),(1,3),(2,3)],4)=>3 ([(0,3),(1,2)],4)=>3 ([(0,3),(1,2),(2,3)],4)=>3 ([(1,2),(1,3),(2,3)],4)=>4 ([(0,3),(1,2),(1,3),(2,3)],4)=>4 ([(0,2),(0,3),(1,2),(1,3)],4)=>2 ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>3 ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>2 ([],5)=>3 ([(3,4)],5)=>4 ([(2,4),(3,4)],5)=>4 ([(1,4),(2,4),(3,4)],5)=>3 ([(0,4),(1,4),(2,4),(3,4)],5)=>4 ([(1,4),(2,3)],5)=>4 ([(1,4),(2,3),(3,4)],5)=>4 ([(0,1),(2,4),(3,4)],5)=>4 ([(2,3),(2,4),(3,4)],5)=>5 ([(0,4),(1,4),(2,3),(3,4)],5)=>4 ([(1,4),(2,3),(2,4),(3,4)],5)=>5 ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)=>6 ([(1,3),(1,4),(2,3),(2,4)],5)=>4 ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)=>3 ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>5 ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>5 ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>5 ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)=>6 ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>6 ([(0,4),(1,3),(2,3),(2,4)],5)=>3 ([(0,1),(2,3),(2,4),(3,4)],5)=>5 ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)=>4 ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)=>5 ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>4 ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>4 ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)=>4 ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)=>4 ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>4 ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>4 ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>4 ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)=>5 ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)=>3 ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>3 ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>3 ([],6)=>3 ([(4,5)],6)=>4 ([(3,5),(4,5)],6)=>4 ([(2,5),(3,5),(4,5)],6)=>4 ([(1,5),(2,5),(3,5),(4,5)],6)=>4 ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)=>5 ([(2,5),(3,4)],6)=>4 ([(2,5),(3,4),(4,5)],6)=>4 ([(1,2),(3,5),(4,5)],6)=>4 ([(3,4),(3,5),(4,5)],6)=>6 ([(1,5),(2,5),(3,4),(4,5)],6)=>4 ([(0,1),(2,5),(3,5),(4,5)],6)=>4 ([(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>5 ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>7 ([(2,4),(2,5),(3,4),(3,5)],6)=>4 ([(0,5),(1,5),(2,4),(3,4)],6)=>4 ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>4 ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>4 ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>5 ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)=>5 ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>4 ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>6 ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>7 ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>3 ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>6 ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>6 ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,5),(1,4),(2,3)],6)=>4 ([(1,5),(2,4),(3,4),(3,5)],6)=>4 ([(0,1),(2,5),(3,4),(4,5)],6)=>4 ([(1,2),(3,4),(3,5),(4,5)],6)=>5 ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>4 ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>5 ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>6 ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>5 ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>6 ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>5 ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>4 ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>5 ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)=>5 ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>5 ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>5 ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>6 ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)=>4 ([(0,1),(2,4),(2,5),(3,4),(3,5)],6)=>4 ([(0,5),(1,5),(2,3),(2,4),(3,4)],6)=>5 ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)=>4 ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)=>5 ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>5 ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)=>6 ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)=>5 ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>6 ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>6 ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)=>6 ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>5 ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>6 ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>6 ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>7 ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>7 ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>6 ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>5 ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>5 ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)=>3 ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)=>3 ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>5 ([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>5 ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>5 ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>5 ([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>5 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>5 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>5 ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)=>6 ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>6 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>6 ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>5 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)=>6 ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>6 ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>6 ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)=>5 ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)=>5 ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)=>5 ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>5 ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)=>4 ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>5 ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>5 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6)=>6 ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>4 ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>4 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>4 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>4 ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>4 ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>5 ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>5 ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>5 ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>5 ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>3 ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([],7)=>3 ([(5,6)],7)=>5 ([(4,6),(5,6)],7)=>4 ([(3,6),(4,6),(5,6)],7)=>4 ([(2,6),(3,6),(4,6),(5,6)],7)=>4 ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)=>5 ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)=>6 ([(3,6),(4,5)],7)=>5 ([(3,6),(4,5),(5,6)],7)=>5 ([(2,3),(4,6),(5,6)],7)=>4 ([(4,5),(4,6),(5,6)],7)=>6 ([(2,6),(3,6),(4,5),(5,6)],7)=>4 ([(1,2),(3,6),(4,6),(5,6)],7)=>5 ([(3,6),(4,5),(4,6),(5,6)],7)=>6 ([(1,6),(2,6),(3,6),(4,5),(5,6)],7)=>5 ([(0,1),(2,6),(3,6),(4,6),(5,6)],7)=>4 ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)=>6 ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)=>6
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The Hamming dimension of a graph.
Let $H(n, k)$ be the graph whose vertices are the subsets of $\{1,\dots,n\}$, and $(u,v)$ being an edge, for $u\neq v$, if the symmetric difference of $u$ and $v$ has cardinality at most $k$.
This statistic is the smallest $n$ such that the graph is an induced subgraph of $H(n, k)$ for some $k$.
References
[1] van der Zypen, D. Graph embeddings into Hamming spaces van der Zypen, D. Graph embeddings into Hamming spaces arXiv:1901.03409
[2] van der Zypen, D. Hamming representability of finite graphs van der Zypen, D. Hamming representability of finite graphs MathOverflow:319951
Code
def Hamming(n, k):
    V = [frozenset(v) for v in subsets(range(n))]
    return Graph([V, lambda a,b: 0 < len(a.symmetric_difference(b)) <= k])

@cached_function
def statistic(G):
    n = -1
    while True:
        n += 1
        V = [frozenset(v) for v in subsets(range(n))]
        for k in range(n+1):
            H = Graph([V, lambda a,b: 0 < len(a.symmetric_difference(b)) <= k])
            if H.subgraph_search(G, induced=True):
                return n

Created
Jan 16, 2019 at 22:36 by Martin Rubey
Updated
Jan 21, 2019 at 11:28 by Martin Rubey