Values
[1] => [[1],[]] => [] => 1
[1,1] => [[1,1],[]] => [] => 1
[2] => [[2],[]] => [] => 1
[1,1,1] => [[1,1,1],[]] => [] => 1
[1,2] => [[2,1],[]] => [] => 1
[2,1] => [[2,2],[1]] => [1] => 2
[3] => [[3],[]] => [] => 1
[1,1,1,1] => [[1,1,1,1],[]] => [] => 1
[1,1,2] => [[2,1,1],[]] => [] => 1
[1,2,1] => [[2,2,1],[1]] => [1] => 2
[1,3] => [[3,1],[]] => [] => 1
[2,1,1] => [[2,2,2],[1,1]] => [1,1] => 3
[2,2] => [[3,2],[1]] => [1] => 2
[3,1] => [[3,3],[2]] => [2] => 3
[4] => [[4],[]] => [] => 1
[1,1,1,1,1] => [[1,1,1,1,1],[]] => [] => 1
[1,1,1,2] => [[2,1,1,1],[]] => [] => 1
[1,1,2,1] => [[2,2,1,1],[1]] => [1] => 2
[1,1,3] => [[3,1,1],[]] => [] => 1
[1,2,1,1] => [[2,2,2,1],[1,1]] => [1,1] => 3
[1,2,2] => [[3,2,1],[1]] => [1] => 2
[1,3,1] => [[3,3,1],[2]] => [2] => 3
[1,4] => [[4,1],[]] => [] => 1
[2,1,1,1] => [[2,2,2,2],[1,1,1]] => [1,1,1] => 4
[2,1,2] => [[3,2,2],[1,1]] => [1,1] => 3
[2,2,1] => [[3,3,2],[2,1]] => [2,1] => 6
[2,3] => [[4,2],[1]] => [1] => 2
[3,1,1] => [[3,3,3],[2,2]] => [2,2] => 6
[3,2] => [[4,3],[2]] => [2] => 3
[4,1] => [[4,4],[3]] => [3] => 4
[5] => [[5],[]] => [] => 1
[1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => [] => 1
[1,1,1,1,2] => [[2,1,1,1,1],[]] => [] => 1
[1,1,1,2,1] => [[2,2,1,1,1],[1]] => [1] => 2
[1,1,1,3] => [[3,1,1,1],[]] => [] => 1
[1,1,2,1,1] => [[2,2,2,1,1],[1,1]] => [1,1] => 3
[1,1,2,2] => [[3,2,1,1],[1]] => [1] => 2
[1,1,3,1] => [[3,3,1,1],[2]] => [2] => 3
[1,1,4] => [[4,1,1],[]] => [] => 1
[1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]] => [1,1,1] => 4
[1,2,1,2] => [[3,2,2,1],[1,1]] => [1,1] => 3
[1,2,2,1] => [[3,3,2,1],[2,1]] => [2,1] => 6
[1,2,3] => [[4,2,1],[1]] => [1] => 2
[1,3,1,1] => [[3,3,3,1],[2,2]] => [2,2] => 6
[1,3,2] => [[4,3,1],[2]] => [2] => 3
[1,4,1] => [[4,4,1],[3]] => [3] => 4
[1,5] => [[5,1],[]] => [] => 1
[2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]] => [1,1,1,1] => 5
[2,1,1,2] => [[3,2,2,2],[1,1,1]] => [1,1,1] => 4
[2,1,2,1] => [[3,3,2,2],[2,1,1]] => [2,1,1] => 9
[2,1,3] => [[4,2,2],[1,1]] => [1,1] => 3
[2,2,1,1] => [[3,3,3,2],[2,2,1]] => [2,2,1] => 12
[2,2,2] => [[4,3,2],[2,1]] => [2,1] => 6
[2,3,1] => [[4,4,2],[3,1]] => [3,1] => 9
[2,4] => [[5,2],[1]] => [1] => 2
[3,1,1,1] => [[3,3,3,3],[2,2,2]] => [2,2,2] => 10
[3,1,2] => [[4,3,3],[2,2]] => [2,2] => 6
[3,2,1] => [[4,4,3],[3,2]] => [3,2] => 12
[3,3] => [[5,3],[2]] => [2] => 3
[4,1,1] => [[4,4,4],[3,3]] => [3,3] => 10
[4,2] => [[5,4],[3]] => [3] => 4
[5,1] => [[5,5],[4]] => [4] => 5
[6] => [[6],[]] => [] => 1
[1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1],[]] => [] => 1
[1,1,1,1,1,2] => [[2,1,1,1,1,1],[]] => [] => 1
[1,1,1,1,2,1] => [[2,2,1,1,1,1],[1]] => [1] => 2
[1,1,1,1,3] => [[3,1,1,1,1],[]] => [] => 1
[1,1,1,2,1,1] => [[2,2,2,1,1,1],[1,1]] => [1,1] => 3
[1,1,1,2,2] => [[3,2,1,1,1],[1]] => [1] => 2
[1,1,1,3,1] => [[3,3,1,1,1],[2]] => [2] => 3
[1,1,1,4] => [[4,1,1,1],[]] => [] => 1
[1,1,2,1,1,1] => [[2,2,2,2,1,1],[1,1,1]] => [1,1,1] => 4
[1,1,2,1,2] => [[3,2,2,1,1],[1,1]] => [1,1] => 3
[1,1,2,2,1] => [[3,3,2,1,1],[2,1]] => [2,1] => 6
[1,1,2,3] => [[4,2,1,1],[1]] => [1] => 2
[1,1,3,1,1] => [[3,3,3,1,1],[2,2]] => [2,2] => 6
[1,1,3,2] => [[4,3,1,1],[2]] => [2] => 3
[1,1,4,1] => [[4,4,1,1],[3]] => [3] => 4
[1,1,5] => [[5,1,1],[]] => [] => 1
[1,2,1,1,1,1] => [[2,2,2,2,2,1],[1,1,1,1]] => [1,1,1,1] => 5
[1,2,1,1,2] => [[3,2,2,2,1],[1,1,1]] => [1,1,1] => 4
[1,2,1,2,1] => [[3,3,2,2,1],[2,1,1]] => [2,1,1] => 9
[1,2,1,3] => [[4,2,2,1],[1,1]] => [1,1] => 3
[1,2,2,1,1] => [[3,3,3,2,1],[2,2,1]] => [2,2,1] => 12
[1,2,2,2] => [[4,3,2,1],[2,1]] => [2,1] => 6
[1,2,3,1] => [[4,4,2,1],[3,1]] => [3,1] => 9
[1,2,4] => [[5,2,1],[1]] => [1] => 2
[1,3,1,1,1] => [[3,3,3,3,1],[2,2,2]] => [2,2,2] => 10
[1,3,1,2] => [[4,3,3,1],[2,2]] => [2,2] => 6
[1,3,2,1] => [[4,4,3,1],[3,2]] => [3,2] => 12
[1,3,3] => [[5,3,1],[2]] => [2] => 3
[1,4,1,1] => [[4,4,4,1],[3,3]] => [3,3] => 10
[1,4,2] => [[5,4,1],[3]] => [3] => 4
[1,5,1] => [[5,5,1],[4]] => [4] => 5
[1,6] => [[6,1],[]] => [] => 1
[2,1,1,1,1,1] => [[2,2,2,2,2,2],[1,1,1,1,1]] => [1,1,1,1,1] => 6
[2,1,1,1,2] => [[3,2,2,2,2],[1,1,1,1]] => [1,1,1,1] => 5
[2,1,1,2,1] => [[3,3,2,2,2],[2,1,1,1]] => [2,1,1,1] => 12
[2,1,1,3] => [[4,2,2,2],[1,1,1]] => [1,1,1] => 4
[2,1,2,1,1] => [[3,3,3,2,2],[2,2,1,1]] => [2,2,1,1] => 18
[2,1,2,2] => [[4,3,2,2],[2,1,1]] => [2,1,1] => 9
>>> Load all 251 entries. <<<
[2,1,3,1] => [[4,4,2,2],[3,1,1]] => [3,1,1] => 14
[2,1,4] => [[5,2,2],[1,1]] => [1,1] => 3
[2,2,1,1,1] => [[3,3,3,3,2],[2,2,2,1]] => [2,2,2,1] => 20
[2,2,1,2] => [[4,3,3,2],[2,2,1]] => [2,2,1] => 12
[2,2,2,1] => [[4,4,3,2],[3,2,1]] => [3,2,1] => 26
[2,2,3] => [[5,3,2],[2,1]] => [2,1] => 6
[2,3,1,1] => [[4,4,4,2],[3,3,1]] => [3,3,1] => 24
[2,3,2] => [[5,4,2],[3,1]] => [3,1] => 9
[2,4,1] => [[5,5,2],[4,1]] => [4,1] => 12
[2,5] => [[6,2],[1]] => [1] => 2
[3,1,1,1,1] => [[3,3,3,3,3],[2,2,2,2]] => [2,2,2,2] => 15
[3,1,1,2] => [[4,3,3,3],[2,2,2]] => [2,2,2] => 10
[3,1,2,1] => [[4,4,3,3],[3,2,2]] => [3,2,2] => 24
[3,1,3] => [[5,3,3],[2,2]] => [2,2] => 6
[3,2,1,1] => [[4,4,4,3],[3,3,2]] => [3,3,2] => 30
[3,2,2] => [[5,4,3],[3,2]] => [3,2] => 12
[3,3,1] => [[5,5,3],[4,2]] => [4,2] => 18
[3,4] => [[6,3],[2]] => [2] => 3
[4,1,1,1] => [[4,4,4,4],[3,3,3]] => [3,3,3] => 20
[4,1,2] => [[5,4,4],[3,3]] => [3,3] => 10
[4,2,1] => [[5,5,4],[4,3]] => [4,3] => 20
[4,3] => [[6,4],[3]] => [3] => 4
[5,1,1] => [[5,5,5],[4,4]] => [4,4] => 15
[5,2] => [[6,5],[4]] => [4] => 5
[6,1] => [[6,6],[5]] => [5] => 6
[7] => [[7],[]] => [] => 1
[1,1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1,1],[]] => [] => 1
[1,1,1,1,1,1,2] => [[2,1,1,1,1,1,1],[]] => [] => 1
[1,1,1,1,1,2,1] => [[2,2,1,1,1,1,1],[1]] => [1] => 2
[1,1,1,1,1,3] => [[3,1,1,1,1,1],[]] => [] => 1
[1,1,1,1,2,1,1] => [[2,2,2,1,1,1,1],[1,1]] => [1,1] => 3
[1,1,1,1,2,2] => [[3,2,1,1,1,1],[1]] => [1] => 2
[1,1,1,1,4] => [[4,1,1,1,1],[]] => [] => 1
[1,1,1,2,1,1,1] => [[2,2,2,2,1,1,1],[1,1,1]] => [1,1,1] => 4
[1,1,1,2,1,2] => [[3,2,2,1,1,1],[1,1]] => [1,1] => 3
[1,1,1,2,2,1] => [[3,3,2,1,1,1],[2,1]] => [2,1] => 6
[1,1,1,3,2] => [[4,3,1,1,1],[2]] => [2] => 3
[1,1,1,5] => [[5,1,1,1],[]] => [] => 1
[1,1,2,1,1,1,1] => [[2,2,2,2,2,1,1],[1,1,1,1]] => [1,1,1,1] => 5
[1,1,2,1,1,2] => [[3,2,2,2,1,1],[1,1,1]] => [1,1,1] => 4
[1,1,2,1,2,1] => [[3,3,2,2,1,1],[2,1,1]] => [2,1,1] => 9
[1,1,2,2,1,1] => [[3,3,3,2,1,1],[2,2,1]] => [2,2,1] => 12
[1,1,2,2,2] => [[4,3,2,1,1],[2,1]] => [2,1] => 6
[1,1,2,3,1] => [[4,4,2,1,1],[3,1]] => [3,1] => 9
[1,1,3,1,2] => [[4,3,3,1,1],[2,2]] => [2,2] => 6
[1,1,3,2,1] => [[4,4,3,1,1],[3,2]] => [3,2] => 12
[1,1,3,3] => [[5,3,1,1],[2]] => [2] => 3
[1,1,6] => [[6,1,1],[]] => [] => 1
[1,2,1,1,1,1,1] => [[2,2,2,2,2,2,1],[1,1,1,1,1]] => [1,1,1,1,1] => 6
[1,2,1,1,1,2] => [[3,2,2,2,2,1],[1,1,1,1]] => [1,1,1,1] => 5
[1,2,1,1,2,1] => [[3,3,2,2,2,1],[2,1,1,1]] => [2,1,1,1] => 12
[1,2,1,2,1,1] => [[3,3,3,2,2,1],[2,2,1,1]] => [2,2,1,1] => 18
[1,2,1,2,2] => [[4,3,2,2,1],[2,1,1]] => [2,1,1] => 9
[1,2,1,3,1] => [[4,4,2,2,1],[3,1,1]] => [3,1,1] => 14
[1,2,2,1,1,1] => [[3,3,3,3,2,1],[2,2,2,1]] => [2,2,2,1] => 20
[1,2,2,1,2] => [[4,3,3,2,1],[2,2,1]] => [2,2,1] => 12
[1,2,2,2,1] => [[4,4,3,2,1],[3,2,1]] => [3,2,1] => 26
[1,2,2,3] => [[5,3,2,1],[2,1]] => [2,1] => 6
[1,2,3,1,1] => [[4,4,4,2,1],[3,3,1]] => [3,3,1] => 24
[1,2,3,2] => [[5,4,2,1],[3,1]] => [3,1] => 9
[1,3,1,1,2] => [[4,3,3,3,1],[2,2,2]] => [2,2,2] => 10
[1,3,1,2,1] => [[4,4,3,3,1],[3,2,2]] => [3,2,2] => 24
[1,3,1,3] => [[5,3,3,1],[2,2]] => [2,2] => 6
[1,3,2,1,1] => [[4,4,4,3,1],[3,3,2]] => [3,3,2] => 30
[1,3,2,2] => [[5,4,3,1],[3,2]] => [3,2] => 12
[1,3,3,1] => [[5,5,3,1],[4,2]] => [4,2] => 18
[1,4,1,1,1] => [[4,4,4,4,1],[3,3,3]] => [3,3,3] => 20
[1,4,1,2] => [[5,4,4,1],[3,3]] => [3,3] => 10
[1,4,2,1] => [[5,5,4,1],[4,3]] => [4,3] => 20
[1,4,3] => [[6,4,1],[3]] => [3] => 4
[1,7] => [[7,1],[]] => [] => 1
[2,1,1,1,1,1,1] => [[2,2,2,2,2,2,2],[1,1,1,1,1,1]] => [1,1,1,1,1,1] => 7
[2,1,1,1,1,2] => [[3,2,2,2,2,2],[1,1,1,1,1]] => [1,1,1,1,1] => 6
[2,1,1,1,2,1] => [[3,3,2,2,2,2],[2,1,1,1,1]] => [2,1,1,1,1] => 15
[2,1,1,2,1,1] => [[3,3,3,2,2,2],[2,2,1,1,1]] => [2,2,1,1,1] => 24
[2,1,1,2,2] => [[4,3,2,2,2],[2,1,1,1]] => [2,1,1,1] => 12
[2,1,1,3,1] => [[4,4,2,2,2],[3,1,1,1]] => [3,1,1,1] => 19
[2,1,2,1,1,1] => [[3,3,3,3,2,2],[2,2,2,1,1]] => [2,2,2,1,1] => 30
[2,1,2,1,2] => [[4,3,3,2,2],[2,2,1,1]] => [2,2,1,1] => 18
[2,1,2,2,1] => [[4,4,3,2,2],[3,2,1,1]] => [3,2,1,1] => 40
[2,1,2,3] => [[5,3,2,2],[2,1,1]] => [2,1,1] => 9
[2,1,3,1,1] => [[4,4,4,2,2],[3,3,1,1]] => [3,3,1,1] => 39
[2,1,3,2] => [[5,4,2,2],[3,1,1]] => [3,1,1] => 14
[2,2,1,1,1,1] => [[3,3,3,3,3,2],[2,2,2,2,1]] => [2,2,2,2,1] => 30
[2,2,1,1,2] => [[4,3,3,3,2],[2,2,2,1]] => [2,2,2,1] => 20
[2,2,1,2,1] => [[4,4,3,3,2],[3,2,2,1]] => [3,2,2,1] => 51
[2,2,1,3] => [[5,3,3,2],[2,2,1]] => [2,2,1] => 12
[2,2,2,1,1] => [[4,4,4,3,2],[3,3,2,1]] => [3,3,2,1] => 68
[2,2,2,2] => [[5,4,3,2],[3,2,1]] => [3,2,1] => 26
[2,2,3,1] => [[5,5,3,2],[4,2,1]] => [4,2,1] => 40
[2,3,1,1,1] => [[4,4,4,4,2],[3,3,3,1]] => [3,3,3,1] => 50
[2,3,1,2] => [[5,4,4,2],[3,3,1]] => [3,3,1] => 24
[2,3,2,1] => [[5,5,4,2],[4,3,1]] => [4,3,1] => 51
[2,3,3] => [[6,4,2],[3,1]] => [3,1] => 9
[2,4,1,1] => [[5,5,5,2],[4,4,1]] => [4,4,1] => 40
[2,4,2] => [[6,5,2],[4,1]] => [4,1] => 12
[3,1,1,1,1,1] => [[3,3,3,3,3,3],[2,2,2,2,2]] => [2,2,2,2,2] => 21
[3,1,1,2,1] => [[4,4,3,3,3],[3,2,2,2]] => [3,2,2,2] => 40
[3,1,1,3] => [[5,3,3,3],[2,2,2]] => [2,2,2] => 10
[3,1,2,1,1] => [[4,4,4,3,3],[3,3,2,2]] => [3,3,2,2] => 60
[3,1,2,2] => [[5,4,3,3],[3,2,2]] => [3,2,2] => 24
[3,1,3,1] => [[5,5,3,3],[4,2,2]] => [4,2,2] => 39
[3,2,1,1,1] => [[4,4,4,4,3],[3,3,3,2]] => [3,3,3,2] => 60
[3,2,1,2] => [[5,4,4,3],[3,3,2]] => [3,3,2] => 30
[3,2,2,1] => [[5,5,4,3],[4,3,2]] => [4,3,2] => 68
[3,2,3] => [[6,4,3],[3,2]] => [3,2] => 12
[3,3,1,1] => [[5,5,5,3],[4,4,2]] => [4,4,2] => 60
[3,3,2] => [[6,5,3],[4,2]] => [4,2] => 18
[3,4,1] => [[6,6,3],[5,2]] => [5,2] => 24
[4,1,1,1,1] => [[4,4,4,4,4],[3,3,3,3]] => [3,3,3,3] => 35
[4,1,1,2] => [[5,4,4,4],[3,3,3]] => [3,3,3] => 20
[4,1,2,1] => [[5,5,4,4],[4,3,3]] => [4,3,3] => 50
[4,1,3] => [[6,4,4],[3,3]] => [3,3] => 10
[4,2,1,1] => [[5,5,5,4],[4,4,3]] => [4,4,3] => 60
[4,2,2] => [[6,5,4],[4,3]] => [4,3] => 20
[4,3,1] => [[6,6,4],[5,3]] => [5,3] => 30
[4,4] => [[7,4],[3]] => [3] => 4
[5,1,1,1] => [[5,5,5,5],[4,4,4]] => [4,4,4] => 35
[6,1,1] => [[6,6,6],[5,5]] => [5,5] => 21
[7,1] => [[7,7],[6]] => [6] => 7
[8] => [[8],[]] => [] => 1
[1,1,1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1,1,1],[]] => [] => 1
[1,1,1,1,1,1,1,2] => [[2,1,1,1,1,1,1,1],[]] => [] => 1
[1,1,1,1,1,1,3] => [[3,1,1,1,1,1,1],[]] => [] => 1
[1,1,1,1,1,4] => [[4,1,1,1,1,1],[]] => [] => 1
[1,1,1,1,5] => [[5,1,1,1,1],[]] => [] => 1
[1,1,1,6] => [[6,1,1,1],[]] => [] => 1
[1,1,7] => [[7,1,1],[]] => [] => 1
[1,8] => [[8,1],[]] => [] => 1
[2,1,1,1,1,1,1,1] => [[2,2,2,2,2,2,2,2],[1,1,1,1,1,1,1]] => [1,1,1,1,1,1,1] => 8
[3,1,1,1,1,1,1] => [[3,3,3,3,3,3,3],[2,2,2,2,2,2]] => [2,2,2,2,2,2] => 28
[4,1,1,1,1,1] => [[4,4,4,4,4,4],[3,3,3,3,3]] => [3,3,3,3,3] => 56
[6,1,1,1] => [[6,6,6,6],[5,5,5]] => [5,5,5] => 56
[7,1,1] => [[7,7,7],[6,6]] => [6,6] => 28
[8,1] => [[8,8],[7]] => [7] => 8
[9] => [[9],[]] => [] => 1
[1,1,1,1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1,1,1,1],[]] => [] => 1
[1,1,1,1,1,1,1,1,2] => [[2,1,1,1,1,1,1,1,1],[]] => [] => 1
[1,1,1,1,1,1,1,3] => [[3,1,1,1,1,1,1,1],[]] => [] => 1
[1,1,1,1,1,1,4] => [[4,1,1,1,1,1,1],[]] => [] => 1
[1,1,1,1,1,5] => [[5,1,1,1,1,1],[]] => [] => 1
[1,1,1,1,6] => [[6,1,1,1,1],[]] => [] => 1
[1,1,1,7] => [[7,1,1,1],[]] => [] => 1
[1,1,8] => [[8,1,1],[]] => [] => 1
[1,9] => [[9,1],[]] => [] => 1
[2,1,1,1,1,1,1,1,1] => [[2,2,2,2,2,2,2,2,2],[1,1,1,1,1,1,1,1]] => [1,1,1,1,1,1,1,1] => 9
[3,1,1,1,1,1,1,1] => [[3,3,3,3,3,3,3,3],[2,2,2,2,2,2,2]] => [2,2,2,2,2,2,2] => 36
[8,1,1] => [[8,8,8],[7,7]] => [7,7] => 36
[9,1] => [[9,9],[8]] => [8] => 9
[10] => [[10],[]] => [] => 1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The total number of Littlewood-Richardson tableaux of given shape.
This is the multiplicity of the Schur function $s_\lambda$ in $\sum_{\mu, \nu} s_\mu s_\nu$, where the sum is over all partitions $\mu$ and $\nu$.
Map
to ribbon
Description
The ribbon shape corresponding to an integer composition.
For an integer composition $(a_1, \dots, a_n)$, this is the ribbon shape whose $i$th row from the bottom has $a_i$ cells.
Map
inner shape
Description
The inner shape of a skew partition.