Values
([],1) => -1
([],2) => 1
([(0,1)],2) => -1
([],3) => -1
([(1,2)],3) => 1
([(0,1),(0,2)],3) => 3
([(0,2),(2,1)],3) => -1
([(0,2),(1,2)],3) => -3
([],4) => 1
([(2,3)],4) => -1
([(1,2),(1,3)],4) => -3
([(0,1),(0,2),(0,3)],4) => -5
([(0,2),(0,3),(3,1)],4) => 3
([(0,1),(0,2),(1,3),(2,3)],4) => 1
([(1,2),(2,3)],4) => 1
([(0,3),(3,1),(3,2)],4) => 3
([(1,3),(2,3)],4) => 3
([(0,3),(1,3),(3,2)],4) => -3
([(0,3),(1,3),(2,3)],4) => -11
([(0,3),(1,2)],4) => 1
([(0,3),(1,2),(1,3)],4) => 5
([(0,2),(0,3),(1,2),(1,3)],4) => 21
([(0,3),(2,1),(3,2)],4) => -1
([(0,3),(1,2),(2,3)],4) => -3
([],5) => -1
([(3,4)],5) => 1
([(2,3),(2,4)],5) => 3
([(1,2),(1,3),(1,4)],5) => 5
([(0,1),(0,2),(0,3),(0,4)],5) => 7
([(0,2),(0,3),(0,4),(4,1)],5) => -5
([(0,1),(0,2),(0,3),(2,4),(3,4)],5) => 5
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => 13
([(1,3),(1,4),(4,2)],5) => -3
([(0,3),(0,4),(4,1),(4,2)],5) => -9
([(1,2),(1,3),(2,4),(3,4)],5) => -1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 1
([(0,3),(0,4),(3,2),(4,1)],5) => 3
([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => -3
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5) => -109
([(2,3),(3,4)],5) => -1
([(1,4),(4,2),(4,3)],5) => -3
([(0,4),(4,1),(4,2),(4,3)],5) => -5
([(2,4),(3,4)],5) => -3
([(1,4),(2,4),(4,3)],5) => 3
([(0,4),(1,4),(4,2),(4,3)],5) => 9
([(1,4),(2,4),(3,4)],5) => 11
([(0,4),(1,4),(2,4),(4,3)],5) => -11
([(0,4),(1,4),(2,4),(3,4)],5) => -53
([(0,4),(1,4),(2,3)],5) => 3
([(0,4),(1,3),(2,3),(2,4)],5) => 7
([(0,4),(1,3),(1,4),(2,3),(2,4)],5) => 45
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => 191
([(0,4),(1,4),(2,3),(4,2)],5) => -3
([(0,4),(1,3),(2,3),(3,4)],5) => -9
([(0,4),(1,4),(2,3),(2,4)],5) => 17
([(0,4),(1,4),(2,3),(3,4)],5) => -11
([(1,4),(2,3)],5) => -1
([(1,4),(2,3),(2,4)],5) => -5
([(0,4),(1,2),(1,4),(2,3)],5) => 5
([(0,3),(1,2),(1,3),(2,4),(3,4)],5) => 3
([(1,3),(1,4),(2,3),(2,4)],5) => -21
([(0,3),(0,4),(1,3),(1,4),(4,2)],5) => 21
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5) => -1
([(0,4),(1,2),(1,4),(4,3)],5) => 5
([(0,4),(1,2),(1,3)],5) => -3
([(0,4),(1,2),(1,3),(1,4)],5) => -7
([(0,2),(0,4),(3,1),(4,3)],5) => 3
([(0,4),(1,2),(1,3),(3,4)],5) => 9
([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 11
([(0,3),(0,4),(1,2),(1,4)],5) => -11
([(0,3),(0,4),(1,2),(1,3),(1,4)],5) => -27
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5) => -55
([(0,3),(0,4),(1,2),(1,3),(2,4)],5) => 25
([(0,3),(1,2),(1,4),(3,4)],5) => 5
([(0,3),(0,4),(1,2),(2,3),(2,4)],5) => 21
([(1,4),(3,2),(4,3)],5) => 1
([(0,3),(3,4),(4,1),(4,2)],5) => 3
([(1,4),(2,3),(3,4)],5) => 3
([(0,4),(1,2),(2,4),(4,3)],5) => -3
([(0,3),(1,4),(4,2)],5) => 1
([(0,4),(3,2),(4,1),(4,3)],5) => 3
([(0,4),(1,2),(2,3),(2,4)],5) => 5
([(0,4),(2,3),(3,1),(4,2)],5) => -1
([(0,3),(1,2),(2,4),(3,4)],5) => -3
([(0,4),(1,2),(2,3),(3,4)],5) => -3
([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
([],6) => 1
([(4,5)],6) => -1
([(3,4),(3,5)],6) => -3
([(2,3),(2,4),(2,5)],6) => -5
([(1,2),(1,3),(1,4),(1,5)],6) => -7
([(0,1),(0,2),(0,3),(0,4),(0,5)],6) => -9
([(0,2),(0,3),(0,4),(0,5),(5,1)],6) => 7
([(0,1),(0,2),(0,3),(0,4),(3,5),(4,5)],6) => -11
([(0,1),(0,2),(0,3),(0,4),(2,5),(3,5),(4,5)],6) => 9
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 115
([(1,3),(1,4),(1,5),(5,2)],6) => 5
([(0,3),(0,4),(0,5),(5,1),(5,2)],6) => 15
([(1,2),(1,3),(1,4),(3,5),(4,5)],6) => -5
([(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6) => -13
>>> Load all 1200 entries. <<<([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6) => 13
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6) => 5
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5)],6) => -9
([(0,1),(0,2),(0,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => -337
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => -2637
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6) => -55
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => 7
([(0,2),(0,3),(0,4),(3,5),(4,5),(5,1)],6) => 5
([(0,3),(0,4),(0,5),(4,2),(5,1)],6) => -5
([(0,2),(0,3),(0,4),(3,5),(4,1),(4,5)],6) => -7
([(0,1),(0,2),(0,3),(2,4),(2,5),(3,4),(3,5)],6) => 67
([(2,3),(2,4),(4,5)],6) => 3
([(1,4),(1,5),(5,2),(5,3)],6) => 9
([(0,4),(0,5),(5,1),(5,2),(5,3)],6) => 15
([(2,3),(2,4),(3,5),(4,5)],6) => 1
([(1,2),(1,3),(2,5),(3,5),(5,4)],6) => -1
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6) => -3
([(1,4),(1,5),(4,3),(5,2)],6) => -3
([(1,3),(1,4),(3,5),(4,2),(4,5)],6) => 3
([(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => 109
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6) => -109
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => -1
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6) => -3
([(0,4),(0,5),(4,3),(5,1),(5,2)],6) => -9
([(0,3),(0,4),(3,5),(4,1),(4,2),(4,5)],6) => 5
([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6) => 17
([(0,2),(0,3),(2,4),(2,5),(3,1),(3,4),(3,5)],6) => 171
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 609
([(3,4),(4,5)],6) => 1
([(2,3),(3,4),(3,5)],6) => 3
([(1,5),(5,2),(5,3),(5,4)],6) => 5
([(0,5),(5,1),(5,2),(5,3),(5,4)],6) => 7
([(2,3),(3,5),(5,4)],6) => -1
([(1,4),(4,5),(5,2),(5,3)],6) => -3
([(0,4),(4,5),(5,1),(5,2),(5,3)],6) => -5
([(3,5),(4,5)],6) => 3
([(2,5),(3,5),(5,4)],6) => -3
([(1,5),(2,5),(5,3),(5,4)],6) => -9
([(0,5),(1,5),(5,2),(5,3),(5,4)],6) => -15
([(2,5),(3,5),(4,5)],6) => -11
([(1,5),(2,5),(3,5),(5,4)],6) => 11
([(0,5),(1,5),(2,5),(5,3),(5,4)],6) => 33
([(1,5),(2,5),(3,5),(4,5)],6) => 53
([(0,5),(1,5),(2,5),(3,5),(5,4)],6) => -53
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => -309
([(0,5),(1,5),(2,5),(3,4)],6) => 11
([(0,5),(1,5),(2,5),(3,4),(5,3)],6) => -11
([(0,5),(1,5),(2,5),(3,4),(5,4)],6) => -33
([(0,5),(1,5),(2,5),(3,4),(3,5)],6) => 75
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => -53
([(1,5),(2,5),(3,4)],6) => -3
([(1,5),(2,4),(3,4),(3,5)],6) => -7
([(0,5),(1,4),(2,4),(2,5),(5,3)],6) => 7
([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6) => 5
([(1,5),(2,4),(2,5),(3,4),(3,5)],6) => -45
([(0,5),(1,4),(1,5),(2,4),(2,5),(4,3)],6) => 45
([(0,5),(1,3),(1,5),(2,3),(2,5),(3,4),(5,4)],6) => 3
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => -191
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(5,3)],6) => 191
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => 3
([(0,5),(1,4),(1,5),(2,4),(2,5),(5,3)],6) => 45
([(1,5),(2,5),(3,4),(5,3)],6) => 3
([(1,5),(2,4),(3,4),(4,5)],6) => 9
([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => -9
([(0,5),(1,5),(2,3),(5,4)],6) => 3
([(0,5),(1,5),(4,2),(5,3),(5,4)],6) => 9
([(0,5),(1,5),(2,4),(5,3),(5,4)],6) => 15
([(1,5),(2,5),(3,4),(3,5)],6) => -17
([(0,5),(1,5),(2,3),(2,5),(5,4)],6) => 17
([(0,5),(1,5),(2,3),(2,5),(3,4)],6) => 17
([(0,5),(1,5),(2,3),(2,5),(3,4),(5,4)],6) => 11
([(0,5),(1,5),(2,3),(2,4)],6) => -9
([(0,5),(1,5),(4,2),(4,3),(5,4)],6) => 9
([(0,4),(1,4),(2,3),(2,5),(4,5)],6) => 15
([(0,3),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => 63
([(0,5),(1,5),(2,3),(2,4),(2,5)],6) => -23
([(0,5),(1,2),(1,4),(3,5),(4,3)],6) => 9
([(0,3),(0,4),(1,5),(2,5),(4,1),(4,2)],6) => -3
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => 1
([(0,5),(1,5),(2,3),(2,4),(4,5)],6) => 33
([(0,5),(1,3),(1,4),(2,5),(3,5),(4,2)],6) => 11
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6) => -5
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 103
([(1,5),(2,5),(3,4),(4,5)],6) => 11
([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => -11
([(0,5),(1,5),(2,3),(3,4)],6) => 3
([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => -3
([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => -9
([(0,5),(1,4),(3,5),(4,2),(4,3)],6) => 9
([(0,4),(2,5),(3,5),(4,1),(4,2),(4,3)],6) => 5
([(0,5),(1,5),(2,3),(3,4),(3,5)],6) => 17
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => -11
([(0,5),(1,4),(2,5),(3,5),(4,2),(4,3)],6) => 11
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6) => 13
([(0,5),(1,5),(2,4),(3,4)],6) => 9
([(0,5),(1,5),(2,4),(3,4),(3,5)],6) => 23
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 171
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 85
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 509
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 2169
([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => -9
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6) => 3
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => -33
([(2,5),(3,4)],6) => 1
([(2,5),(3,4),(3,5)],6) => 5
([(1,5),(2,3),(2,5),(3,4)],6) => -5
([(0,5),(1,4),(1,5),(4,2),(4,3)],6) => -15
([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6) => -5
([(0,5),(1,2),(1,5),(2,3),(2,4),(5,3),(5,4)],6) => -235
([(1,4),(2,3),(2,4),(3,5),(4,5)],6) => -3
([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6) => 3
([(0,5),(1,4),(1,5),(4,2),(5,3)],6) => 5
([(0,4),(1,2),(1,4),(2,5),(4,3),(4,5)],6) => -9
([(2,4),(2,5),(3,4),(3,5)],6) => 21
([(1,4),(1,5),(2,4),(2,5),(5,3)],6) => -21
([(0,4),(0,5),(1,4),(1,5),(5,2),(5,3)],6) => -63
([(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 1
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6) => 21
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2),(5,3)],6) => -1
([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6) => 477
([(0,4),(0,5),(1,4),(1,5),(2,3)],6) => -21
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6) => 21
([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6) => -1
([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6) => -1
([(0,5),(1,3),(1,4),(2,3),(2,4),(4,5)],6) => 63
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 7
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5)],6) => -87
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,5),(3,4)],6) => 201
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => -233
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(3,5)],6) => 279
([(0,4),(0,5),(1,4),(1,5),(2,3),(3,5)],6) => 45
([(0,4),(0,5),(1,4),(1,5),(2,3),(3,4),(3,5)],6) => 191
([(1,5),(2,3),(2,5),(5,4)],6) => -5
([(0,5),(1,2),(1,5),(5,3),(5,4)],6) => -15
([(1,5),(2,3),(2,4)],6) => 3
([(1,5),(2,3),(2,4),(2,5)],6) => 7
([(0,5),(1,3),(1,4),(1,5),(4,2)],6) => -7
([(0,4),(1,2),(1,3),(1,4),(3,5),(4,5)],6) => 3
([(0,4),(1,2),(1,3),(1,4),(2,5),(3,5)],6) => 11
([(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6) => 71
([(0,5),(1,2),(1,3),(1,5),(5,4)],6) => -7
([(0,5),(1,2),(1,3),(1,4)],6) => 5
([(0,5),(1,2),(1,3),(1,4),(1,5)],6) => 9
([(0,2),(0,3),(0,5),(4,1),(5,4)],6) => -5
([(0,5),(1,2),(1,3),(1,4),(4,5)],6) => -15
([(0,2),(0,3),(0,4),(1,5),(3,5),(4,1)],6) => 5
([(0,5),(1,2),(1,3),(1,4),(3,5),(4,5)],6) => 11
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6) => 13
([(0,5),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6) => 159
([(0,4),(1,2),(1,3),(1,5),(4,5)],6) => -7
([(0,3),(1,2),(1,4),(1,5),(3,4),(3,5)],6) => -27
([(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => -55
([(1,3),(1,5),(4,2),(5,4)],6) => -3
([(0,3),(0,4),(4,5),(5,1),(5,2)],6) => -9
([(0,4),(0,5),(3,2),(4,3),(5,1)],6) => 3
([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6) => -3
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => -1
([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6) => -3
([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6) => -145
([(1,5),(2,3),(2,4),(4,5)],6) => -9
([(0,5),(1,2),(1,3),(3,5),(5,4)],6) => 9
([(1,3),(1,4),(2,5),(3,5),(4,2)],6) => -1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => -11
([(0,5),(1,2),(1,3),(2,5),(3,5),(5,4)],6) => 11
([(0,5),(1,3),(1,4),(3,5),(4,2)],6) => 9
([(0,4),(1,2),(1,3),(2,5),(3,4),(3,5)],6) => -5
([(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => -331
([(0,4),(1,2),(1,3),(2,5),(3,4),(4,5)],6) => 15
([(0,3),(0,4),(2,5),(3,5),(4,1),(4,2)],6) => -15
([(0,5),(1,3),(1,4),(3,5),(4,2),(4,5)],6) => -33
([(0,4),(1,3),(1,5),(5,2)],6) => -3
([(0,3),(0,5),(4,2),(5,1),(5,4)],6) => -9
([(0,5),(1,3),(1,4),(4,2),(4,5)],6) => -15
([(0,4),(1,2),(1,3),(3,5),(4,5)],6) => 9
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => 1
([(0,4),(1,2),(1,3),(2,5),(3,5)],6) => -1
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => 11
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 1
([(0,4),(1,2),(1,3),(2,5),(3,5),(5,4)],6) => 3
([(1,4),(1,5),(2,3),(2,5)],6) => 11
([(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 27
([(0,4),(0,5),(1,3),(1,4),(1,5),(5,2)],6) => -27
([(0,4),(0,5),(1,2),(1,4),(1,5),(4,3),(5,3)],6) => -1
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 55
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(5,2)],6) => -55
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(4,2),(5,2)],6) => 23
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6) => 15
([(0,4),(0,5),(1,2),(1,4),(1,5),(2,3)],6) => -27
([(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(5,3)],6) => 23
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6) => 23
([(0,4),(0,5),(1,3),(1,5),(5,2)],6) => -11
([(1,4),(1,5),(2,3),(2,4),(3,5)],6) => -25
([(0,4),(0,5),(1,2),(1,4),(2,5),(4,3)],6) => 25
([(0,4),(0,5),(1,2),(1,4),(2,5),(5,3)],6) => 25
([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6) => 5
([(0,3),(0,5),(1,4),(1,5),(4,2)],6) => -11
([(0,2),(0,4),(1,3),(1,4),(3,5),(4,5)],6) => -5
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5)],6) => -63
([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6) => -21
([(0,3),(0,4),(1,2),(1,4),(2,5),(3,5)],6) => 41
([(0,3),(0,4),(1,2),(1,4),(2,5),(3,5),(4,5)],6) => -9
([(0,4),(0,5),(1,2),(1,4),(2,3),(3,5)],6) => 25
([(0,4),(0,5),(1,2),(1,3)],6) => 9
([(0,4),(0,5),(1,2),(1,3),(1,5)],6) => 17
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)],6) => 33
([(0,4),(0,5),(1,2),(1,3),(1,4),(3,5)],6) => -35
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,5),(3,5)],6) => 27
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5)],6) => 37
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)],6) => 65
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)],6) => 105
([(0,2),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3)],6) => -63
([(0,3),(0,4),(1,2),(1,4),(1,5),(3,5)],6) => -31
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4)],6) => -135
([(0,4),(0,5),(1,2),(1,3),(3,5)],6) => -15
([(0,4),(0,5),(1,2),(1,3),(3,4),(3,5)],6) => -63
([(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,1)],6) => -109
([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6) => -3
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,5)],6) => -13
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => 29
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4),(3,5)],6) => -73
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => -1411
([(0,3),(0,5),(1,2),(1,4),(2,5),(3,4)],6) => 33
([(1,4),(2,3),(2,5),(4,5)],6) => -5
([(0,4),(1,3),(1,5),(4,5),(5,2)],6) => 5
([(1,4),(1,5),(2,3),(3,4),(3,5)],6) => -21
([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6) => 21
([(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => -1
([(0,3),(1,4),(1,5),(3,5),(4,2)],6) => 5
([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6) => 3
([(0,3),(1,2),(1,4),(2,5),(3,4),(3,5)],6) => 25
([(0,5),(1,3),(1,4),(5,2)],6) => -3
([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => 3
([(0,5),(4,2),(4,3),(5,1),(5,4)],6) => -9
([(0,4),(1,3),(1,5),(4,2),(4,5)],6) => -11
([(0,4),(0,5),(1,2),(2,3),(2,4),(2,5)],6) => -27
([(0,4),(0,5),(1,2),(2,3),(2,5),(3,4)],6) => 25
([(2,5),(3,4),(4,5)],6) => -3
([(1,5),(2,3),(3,5),(5,4)],6) => 3
([(0,5),(1,2),(2,5),(5,3),(5,4)],6) => 9
([(1,3),(2,4),(4,5)],6) => -1
([(1,5),(4,3),(5,2),(5,4)],6) => -3
([(1,5),(2,3),(3,4),(3,5)],6) => -5
([(0,5),(1,4),(4,2),(4,5),(5,3)],6) => 5
([(0,4),(1,5),(5,2),(5,3)],6) => -3
([(0,5),(4,3),(5,1),(5,2),(5,4)],6) => -5
([(0,5),(1,4),(4,2),(4,3),(4,5)],6) => -7
([(1,5),(3,4),(4,2),(5,3)],6) => 1
([(0,4),(3,5),(4,3),(5,1),(5,2)],6) => 3
([(1,4),(2,3),(3,5),(4,5)],6) => 3
([(0,4),(1,3),(3,5),(4,5),(5,2)],6) => -3
([(0,5),(1,4),(4,2),(5,3)],6) => 1
([(0,5),(3,4),(4,2),(5,1),(5,3)],6) => 3
([(0,3),(1,4),(3,5),(4,2),(4,5)],6) => 5
([(0,3),(1,2),(2,4),(2,5),(3,4),(3,5)],6) => 21
([(1,5),(2,3),(3,4),(4,5)],6) => 3
([(1,4),(2,5),(3,5),(4,2),(4,3)],6) => -1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 1
([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => -3
([(0,5),(1,4),(2,3)],6) => -1
([(0,5),(1,3),(2,4),(2,5)],6) => -5
([(0,5),(1,4),(2,3),(2,4),(2,5)],6) => -9
([(0,5),(1,4),(1,5),(3,2),(4,3)],6) => 5
([(0,4),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => 3
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => 15
([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6) => 3
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 29
([(0,5),(1,3),(1,5),(4,2),(5,4)],6) => 5
([(0,5),(1,4),(2,3),(2,4),(4,5)],6) => 15
([(0,4),(1,4),(1,5),(2,3),(2,5)],6) => -17
([(0,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => -33
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => -95
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4)],6) => -61
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5)],6) => -163
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => -389
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => -827
([(0,4),(1,3),(1,5),(2,3),(2,4),(4,5)],6) => 39
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => -55
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,5)],6) => 85
([(0,5),(1,4),(1,5),(2,3),(2,5)],6) => -27
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 53
([(0,4),(1,4),(1,5),(2,3),(3,5)],6) => 7
([(0,5),(1,4),(1,5),(2,3),(3,4),(3,5)],6) => 45
([(0,4),(1,3),(1,5),(2,5),(4,2)],6) => 5
([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6) => 21
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2)],6) => -109
([(0,4),(2,5),(3,1),(3,5),(4,2),(4,3)],6) => -3
([(0,5),(1,4),(2,3),(2,5),(4,5)],6) => 17
([(0,5),(1,3),(4,2),(5,4)],6) => 1
([(0,5),(3,2),(4,1),(5,3),(5,4)],6) => 3
([(0,5),(1,4),(3,2),(4,3),(4,5)],6) => 5
([(0,5),(1,2),(2,3),(2,5),(3,4),(5,4)],6) => 3
([(0,4),(3,2),(4,5),(5,1),(5,3)],6) => 3
([(0,5),(1,3),(3,4),(4,2),(4,5)],6) => 5
([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => -1
([(0,5),(1,3),(2,4),(4,5)],6) => 3
([(0,5),(1,4),(2,3),(3,4),(3,5)],6) => 7
([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => -3
([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => -9
([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => -3
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 1
([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => -3
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => -11
([],7) => -1
([(5,6)],7) => 1
([(4,5),(4,6)],7) => 3
([(3,4),(3,5),(3,6)],7) => 5
([(2,3),(2,4),(2,5),(2,6)],7) => 7
([(1,2),(1,3),(1,4),(1,5),(1,6)],7) => 9
([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6)],7) => 11
([(0,2),(0,3),(0,4),(0,5),(0,6),(6,1)],7) => -9
([(0,1),(0,2),(0,3),(0,4),(0,5),(4,6),(5,6)],7) => 17
([(0,1),(0,2),(0,3),(0,4),(0,5),(3,6),(4,6),(5,6)],7) => -31
([(0,1),(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6)],7) => -9
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 971
([(1,3),(1,4),(1,5),(1,6),(6,2)],7) => -7
([(0,3),(0,4),(0,5),(0,6),(6,1),(6,2)],7) => -21
([(1,2),(1,3),(1,4),(1,5),(4,6),(5,6)],7) => 11
([(1,2),(1,3),(1,4),(1,5),(3,6),(4,6),(5,6)],7) => -9
([(1,2),(1,3),(1,4),(1,5),(2,6),(3,6),(4,6),(5,6)],7) => -115
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7) => 115
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,1)],7) => 9
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,1),(5,6)],7) => -441
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7) => 35
([(0,2),(0,3),(0,4),(0,5),(3,6),(4,6),(5,6),(6,1)],7) => 9
([(0,2),(0,3),(0,4),(0,5),(3,6),(4,6),(5,1)],7) => -11
([(0,1),(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(4,6)],7) => -5
([(0,1),(0,2),(0,3),(0,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 247
([(0,1),(0,2),(0,3),(0,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 2255
([(0,2),(0,3),(0,4),(0,5),(3,6),(4,6),(5,1),(5,6)],7) => 21
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5)],7) => 3
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(4,6)],7) => -81
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => -1863
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => -741
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => -8523
([(0,1),(0,2),(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => -53325
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 51
([(0,1),(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6)],7) => 11
([(0,2),(0,3),(0,4),(0,5),(4,6),(5,6),(6,1)],7) => -11
([(0,3),(0,4),(0,5),(0,6),(5,2),(6,1)],7) => 7
([(0,2),(0,3),(0,4),(0,5),(4,6),(5,1),(5,6)],7) => 17
([(0,1),(0,2),(0,3),(0,4),(3,5),(3,6),(4,5),(4,6)],7) => -25
([(2,4),(2,5),(2,6),(6,3)],7) => -5
([(1,4),(1,5),(1,6),(6,2),(6,3)],7) => -15
([(0,4),(0,5),(0,6),(6,1),(6,2),(6,3)],7) => -25
([(2,3),(2,4),(2,5),(4,6),(5,6)],7) => 5
([(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => 13
([(1,2),(1,3),(1,4),(2,6),(3,6),(4,6),(6,5)],7) => -13
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,6),(6,1),(6,2)],7) => -39
([(1,3),(1,4),(1,5),(3,6),(4,6),(5,2)],7) => -5
([(1,2),(1,3),(1,4),(2,6),(3,5),(4,5),(4,6)],7) => 9
([(1,2),(1,3),(1,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 337
([(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 2637
([(0,2),(0,3),(0,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(6,1)],7) => -2637
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7) => -13
([(0,2),(0,3),(0,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,1)],7) => -337
([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7) => -5
([(0,2),(0,3),(0,4),(2,6),(3,5),(3,6),(4,5),(4,6),(6,1)],7) => -337
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(4,6),(6,1)],7) => -9
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => -3
([(1,3),(1,4),(1,5),(3,6),(4,6),(5,2),(5,6)],7) => 55
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,1),(5,6),(6,2)],7) => -55
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,1),(5,2)],7) => -15
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,1),(5,2),(5,6)],7) => 97
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,6),(5,6)],7) => -37
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => -395
([(1,2),(1,3),(1,4),(2,6),(3,5),(4,5),(5,6)],7) => -7
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7) => 7
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,1),(6,2)],7) => 5
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,5),(6,1),(6,5)],7) => -21
([(1,2),(1,3),(1,4),(3,6),(4,6),(6,5)],7) => -5
([(0,3),(0,4),(0,5),(4,6),(5,6),(6,1),(6,2)],7) => -15
([(1,4),(1,5),(1,6),(5,3),(6,2)],7) => 5
([(1,3),(1,4),(1,5),(4,6),(5,2),(5,6)],7) => 7
([(1,2),(1,3),(1,4),(3,5),(3,6),(4,5),(4,6)],7) => -67
([(0,2),(0,3),(0,4),(2,5),(2,6),(3,5),(3,6),(4,1)],7) => 67
([(0,2),(0,3),(0,4),(2,5),(2,6),(3,5),(3,6),(4,1),(4,6)],7) => 931
([(0,2),(0,3),(0,4),(2,5),(2,6),(3,5),(3,6),(4,1),(4,5),(4,6)],7) => 3851
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5)],7) => -2735
([(0,1),(0,2),(0,3),(1,6),(2,4),(2,5),(3,4),(3,5),(5,6)],7) => -475
([(0,1),(0,2),(0,3),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => -9
([(0,2),(0,3),(0,4),(3,5),(3,6),(4,5),(4,6),(6,1)],7) => 67
([(0,1),(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => 3
([(0,3),(0,4),(0,5),(4,6),(5,1),(5,6),(6,2)],7) => -7
([(0,4),(0,5),(0,6),(5,3),(6,1),(6,2)],7) => 15
([(0,3),(0,4),(0,5),(4,6),(5,1),(5,2),(5,6)],7) => 9
([(0,3),(0,4),(0,5),(4,2),(4,6),(5,1),(5,6)],7) => 5
([(0,2),(0,3),(0,4),(3,5),(3,6),(4,1),(4,5),(4,6)],7) => -117
([(0,1),(0,2),(0,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => -499
([(0,4),(0,5),(0,6),(4,3),(5,2),(6,1)],7) => -5
([(0,3),(0,4),(0,5),(3,6),(4,2),(5,1),(5,6)],7) => -7
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,1),(4,5),(4,6)],7) => 15
([(0,2),(0,3),(0,4),(2,5),(3,5),(3,6),(4,1),(4,6)],7) => 51
([(0,1),(0,2),(0,3),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 245
([(0,1),(0,2),(0,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 1309
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5)],7) => 601
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6)],7) => 2625
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 8645
([(0,1),(0,2),(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 23717
([(0,2),(0,3),(0,4),(2,6),(3,5),(3,6),(4,1),(4,5),(4,6)],7) => 511
([(0,1),(0,2),(0,3),(1,5),(2,4),(2,6),(3,4),(3,5),(5,6)],7) => -279
([(0,3),(0,4),(0,5),(3,6),(4,2),(4,6),(5,1),(5,6)],7) => 141
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,1),(4,5),(5,6)],7) => -49
([(3,4),(3,5),(5,6)],7) => -3
([(2,5),(2,6),(6,3),(6,4)],7) => -9
([(1,5),(1,6),(6,2),(6,3),(6,4)],7) => -15
([(0,5),(0,6),(6,1),(6,2),(6,3),(6,4)],7) => -21
([(3,4),(3,5),(4,6),(5,6)],7) => -1
([(2,3),(2,4),(3,6),(4,6),(6,5)],7) => 1
([(1,2),(1,3),(2,6),(3,6),(6,4),(6,5)],7) => 3
([(0,4),(0,5),(4,6),(5,6),(6,1),(6,2),(6,3)],7) => 5
([(2,5),(2,6),(5,4),(6,3)],7) => 3
([(2,3),(2,4),(3,6),(4,5),(4,6)],7) => -3
([(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => -109
([(1,3),(1,4),(3,5),(3,6),(4,5),(4,6),(6,2)],7) => 109
([(0,3),(0,4),(3,5),(3,6),(4,5),(4,6),(6,1),(6,2)],7) => 327
([(1,2),(1,3),(2,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7) => 1
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6),(6,1)],7) => -1
([(0,3),(0,4),(3,5),(3,6),(4,5),(4,6),(5,2),(6,1)],7) => -109
([(0,2),(0,3),(2,4),(2,6),(3,4),(3,6),(4,5),(6,1),(6,5)],7) => 3
([(0,1),(0,2),(1,5),(1,6),(2,5),(2,6),(5,3),(5,4),(6,3),(6,4)],7) => 3567
([(1,3),(1,5),(3,6),(5,2),(5,6),(6,4)],7) => 3
([(0,4),(0,5),(4,6),(5,1),(5,6),(6,2),(6,3)],7) => 9
([(1,5),(1,6),(5,4),(6,2),(6,3)],7) => 9
([(1,4),(1,5),(4,6),(5,2),(5,3),(5,6)],7) => -5
([(0,4),(0,5),(4,6),(5,1),(5,2),(5,6),(6,3)],7) => 5
([(0,5),(0,6),(5,4),(6,1),(6,2),(6,3)],7) => 15
([(0,4),(0,5),(4,6),(5,1),(5,2),(5,3),(5,6)],7) => -7
([(1,4),(1,5),(4,3),(4,6),(5,2),(5,6)],7) => -17
([(1,3),(1,4),(3,5),(3,6),(4,2),(4,5),(4,6)],7) => -171
([(1,2),(1,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => -609
([(0,2),(0,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(6,1)],7) => 609
([(0,1),(0,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(5,3),(6,3)],7) => -43
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => -13
([(0,3),(0,4),(3,5),(3,6),(4,2),(4,5),(4,6),(6,1)],7) => 171
([(0,2),(0,3),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7) => 3
([(0,4),(0,5),(4,2),(4,6),(5,1),(5,6),(6,3)],7) => 17
([(0,5),(0,6),(5,3),(5,4),(6,1),(6,2)],7) => 27
([(0,4),(0,5),(4,3),(4,6),(5,1),(5,2),(5,6)],7) => -31
([(0,3),(0,4),(3,5),(3,6),(4,1),(4,2),(4,5),(4,6)],7) => -233
([(0,3),(0,4),(3,2),(3,5),(3,6),(4,1),(4,5),(4,6)],7) => -269
([(0,2),(0,3),(2,4),(2,5),(2,6),(3,1),(3,4),(3,5),(3,6)],7) => -795
([(0,1),(0,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7) => -1789
([(2,3),(2,4),(3,5),(4,6),(5,6)],7) => 1
([(1,3),(1,5),(2,6),(3,6),(5,2),(6,4)],7) => -1
([(0,4),(0,5),(1,6),(4,6),(5,1),(6,2),(6,3)],7) => -3
([(4,5),(5,6)],7) => -1
([(3,4),(4,5),(4,6)],7) => -3
([(2,6),(6,3),(6,4),(6,5)],7) => -5
([(1,6),(6,2),(6,3),(6,4),(6,5)],7) => -7
([(0,6),(6,1),(6,2),(6,3),(6,4),(6,5)],7) => -9
([(3,4),(4,6),(6,5)],7) => 1
([(2,5),(5,6),(6,3),(6,4)],7) => 3
([(1,5),(5,6),(6,2),(6,3),(6,4)],7) => 5
([(0,5),(5,6),(6,1),(6,2),(6,3),(6,4)],7) => 7
([(4,6),(5,6)],7) => -3
([(3,6),(4,6),(6,5)],7) => 3
([(2,6),(3,6),(6,4),(6,5)],7) => 9
([(1,6),(2,6),(6,3),(6,4),(6,5)],7) => 15
([(0,6),(1,6),(6,2),(6,3),(6,4),(6,5)],7) => 21
([(3,6),(4,6),(5,6)],7) => 11
([(2,6),(3,6),(4,6),(6,5)],7) => -11
([(1,6),(2,6),(3,6),(6,4),(6,5)],7) => -33
([(0,6),(1,6),(2,6),(6,3),(6,4),(6,5)],7) => -55
([(2,6),(3,6),(4,6),(5,6)],7) => -53
([(1,6),(2,6),(3,6),(4,6),(6,5)],7) => 53
([(0,6),(1,6),(2,6),(3,6),(6,4),(6,5)],7) => 159
([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => 309
([(0,6),(1,6),(2,6),(3,6),(4,6),(6,5)],7) => -309
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => -2119
([(0,6),(1,6),(2,6),(3,6),(4,5)],7) => 53
([(0,6),(1,6),(2,6),(3,6),(4,5),(6,4)],7) => -53
([(0,6),(1,6),(2,6),(3,6),(4,5),(6,5)],7) => -159
([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6)],7) => 415
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => -309
([(1,6),(2,6),(3,6),(4,5)],7) => -11
([(1,6),(2,6),(3,6),(4,5),(6,4)],7) => 11
([(1,6),(2,6),(3,6),(4,5),(6,5)],7) => 33
([(0,6),(1,6),(2,6),(3,4),(6,5)],7) => 11
([(0,6),(1,6),(2,6),(4,5),(6,3),(6,4)],7) => 33
([(0,6),(1,6),(2,6),(3,5),(6,4),(6,5)],7) => 55
([(1,6),(2,6),(3,6),(4,5),(4,6)],7) => -75
([(0,6),(1,6),(2,6),(3,4),(3,6),(6,5)],7) => 75
([(0,6),(1,6),(2,6),(3,4),(3,6),(4,5)],7) => 75
([(0,6),(1,6),(2,6),(3,4),(3,6),(4,5),(6,5)],7) => 53
([(0,6),(1,6),(2,6),(3,4),(3,5)],7) => -33
([(0,6),(1,6),(2,6),(3,4),(3,5),(6,3)],7) => 33
([(0,6),(1,6),(2,6),(3,4),(3,5),(6,5)],7) => 55
([(0,6),(1,6),(2,6),(3,4),(3,5),(6,4),(6,5)],7) => 231
([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6)],7) => -97
([(0,6),(1,6),(2,6),(3,4),(3,5),(5,6)],7) => 159
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => 905
([(1,6),(2,6),(3,6),(4,5),(5,6)],7) => 53
([(0,6),(1,6),(2,6),(3,4),(4,6),(6,5)],7) => -53
([(0,6),(1,6),(2,6),(3,4),(4,5)],7) => 11
([(0,6),(1,6),(2,6),(3,5),(5,4),(6,3)],7) => -11
([(0,6),(1,6),(2,6),(3,5),(5,4),(6,5)],7) => -33
([(0,6),(1,6),(2,6),(3,4),(4,5),(6,5)],7) => -33
([(0,6),(1,6),(2,6),(3,4),(4,5),(4,6)],7) => 75
([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7) => -11
([(0,6),(1,4),(2,6),(3,6),(4,5),(5,2),(5,3)],7) => 11
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7) => 13
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => -53
([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => 33
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => 75
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => 307
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 2169
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 1211
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 6889
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 29259
([(0,6),(1,6),(2,6),(3,5),(4,5),(6,4)],7) => -33
([(0,6),(1,6),(2,6),(3,5),(4,5),(6,3),(6,4)],7) => 11
([(0,6),(1,6),(2,5),(3,5),(4,5),(5,6)],7) => -121
([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6)],7) => 97
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 843
([(0,6),(1,6),(2,5),(3,5),(4,6),(5,4)],7) => -33
([(0,6),(1,5),(2,5),(3,6),(4,6),(5,3),(5,4)],7) => 33
([(0,5),(1,5),(2,6),(3,6),(4,6),(5,2),(5,3),(5,4)],7) => 39
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => -159
([(2,6),(3,6),(4,5)],7) => 3
([(2,6),(3,5),(4,5),(4,6)],7) => 7
([(1,6),(2,5),(3,5),(3,6),(6,4)],7) => -7
([(0,6),(1,5),(2,5),(2,6),(6,3),(6,4)],7) => -21
([(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => -5
([(0,5),(1,4),(2,4),(2,5),(4,6),(5,6),(6,3)],7) => 5
([(0,6),(1,5),(2,5),(2,6),(5,3),(6,4)],7) => 7
([(0,6),(1,4),(2,4),(2,6),(4,5),(6,3),(6,5)],7) => -11
([(0,6),(1,5),(2,5),(2,6),(5,3),(5,4),(6,3),(6,4)],7) => -361
([(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 45
([(1,6),(2,5),(2,6),(3,5),(3,6),(5,4)],7) => -45
([(0,6),(1,5),(1,6),(2,5),(2,6),(5,3),(5,4)],7) => -135
([(0,6),(1,5),(1,6),(2,5),(2,6),(5,3),(5,4),(6,4)],7) => -5
([(0,6),(1,3),(1,6),(2,3),(2,6),(3,4),(3,5),(6,4),(6,5)],7) => 1757
([(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7) => -3
([(0,6),(1,5),(1,6),(2,5),(2,6),(5,4),(6,3)],7) => 45
([(0,6),(1,4),(1,6),(2,4),(2,6),(4,5),(6,3),(6,5)],7) => -13
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 191
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(6,4)],7) => -191
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(6,3),(6,4)],7) => -573
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7) => -3
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(5,4),(6,3)],7) => 191
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(5,4),(6,3),(6,4)],7) => -17
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(5,3),(5,4),(6,3),(6,4)],7) => -1701
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4)],7) => -191
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(6,3)],7) => 191
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(4,3),(5,4),(6,4)],7) => 3
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(6,4)],7) => 573
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(5,4),(6,3)],7) => 3
([(0,6),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => 53
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6)],7) => -891
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(5,4)],7) => 2077
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => -2551
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(4,6)],7) => 3729
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(4,6)],7) => 509
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(4,5),(4,6)],7) => 2169
([(1,6),(2,5),(2,6),(3,5),(3,6),(6,4)],7) => -45
([(0,6),(1,5),(1,6),(2,5),(2,6),(6,3),(6,4)],7) => -135
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4)],7) => -45
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(5,3)],7) => 45
([(0,6),(1,4),(1,6),(2,4),(2,6),(4,5),(5,3),(6,5)],7) => 3
([(0,6),(1,4),(1,6),(2,4),(2,6),(3,5),(4,3),(6,5)],7) => 3
([(0,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5)],7) => 135
([(0,6),(1,4),(1,6),(2,4),(2,6),(3,5),(4,5),(6,3)],7) => 3
([(0,6),(1,5),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => 27
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(6,3)],7) => 45
([(0,6),(1,5),(2,4),(2,6),(3,4),(3,6),(6,5)],7) => 135
([(0,5),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6)],7) => -175
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(6,4)],7) => 417
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => -599
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(4,6)],7) => 1073
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6)],7) => -261
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5)],7) => 543
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => 733
([(0,5),(1,5),(1,6),(2,5),(2,6),(3,4),(4,6)],7) => 85
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(4,5),(4,6)],7) => 509
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(4,6)],7) => 171
([(0,6),(1,5),(2,5),(2,6),(3,4)],7) => -7
([(0,6),(1,5),(2,4),(3,4),(3,5),(3,6)],7) => -11
([(0,6),(1,5),(2,5),(2,6),(3,4),(6,3)],7) => 7
([(0,6),(1,4),(2,5),(3,4),(3,5),(5,6)],7) => 21
([(0,5),(1,4),(2,4),(2,5),(3,6),(4,6),(5,3)],7) => 5
([(0,6),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => 47
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,6)],7) => -37
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5)],7) => -133
([(0,5),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6)],7) => -299
([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => -919
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6)],7) => -445
([(0,6),(1,5),(1,6),(2,4),(3,4),(3,6),(4,5)],7) => 75
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => -99
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(4,6)],7) => 177
([(0,6),(1,5),(2,5),(2,6),(3,4),(4,6)],7) => 23
([(0,6),(1,5),(2,5),(2,6),(3,4),(4,5),(4,6)],7) => 85
([(2,6),(3,6),(4,5),(6,4)],7) => -3
([(2,6),(3,5),(4,5),(5,6)],7) => -9
([(1,6),(2,5),(3,5),(5,6),(6,4)],7) => 9
([(0,6),(1,5),(2,5),(5,6),(6,3),(6,4)],7) => 27
([(1,6),(2,6),(3,4),(6,5)],7) => -3
([(1,6),(2,6),(4,5),(6,3),(6,4)],7) => -9
([(1,6),(2,6),(3,5),(6,4),(6,5)],7) => -15
([(0,6),(1,5),(2,5),(5,3),(5,6),(6,4)],7) => 15
([(0,6),(1,6),(2,3),(6,4),(6,5)],7) => -9
([(0,6),(1,6),(5,2),(6,3),(6,4),(6,5)],7) => -15
([(0,6),(1,6),(2,5),(6,3),(6,4),(6,5)],7) => -21
([(2,6),(3,6),(4,5),(4,6)],7) => 17
([(1,6),(2,6),(3,4),(3,6),(6,5)],7) => -17
([(0,6),(1,6),(2,3),(2,6),(6,4),(6,5)],7) => -51
([(1,6),(2,6),(3,4),(3,6),(4,5)],7) => -17
([(1,6),(2,6),(3,4),(3,6),(4,5),(6,5)],7) => -11
([(0,6),(1,6),(2,3),(2,6),(3,5),(6,4)],7) => 17
([(0,6),(1,6),(2,4),(2,6),(4,5),(6,3),(6,5)],7) => -33
([(0,6),(1,6),(2,3),(2,6),(3,4),(3,5)],7) => -51
([(0,6),(1,6),(2,3),(2,6),(3,4),(3,5),(6,5)],7) => -17
([(0,6),(1,6),(2,3),(2,6),(3,4),(3,5),(6,4),(6,5)],7) => -831
([(0,6),(1,6),(2,3),(2,6),(3,5),(5,4)],7) => 17
([(0,6),(1,6),(2,3),(2,6),(3,5),(5,4),(6,5)],7) => 11
([(0,6),(1,6),(2,3),(2,6),(3,4),(4,5),(6,5)],7) => 11
([(1,6),(2,6),(3,4),(3,5)],7) => 9
([(1,6),(2,6),(3,4),(3,5),(6,3)],7) => -9
([(1,5),(2,5),(3,4),(3,6),(5,6)],7) => -15
([(1,4),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => -63
([(0,5),(0,6),(1,4),(2,4),(4,5),(4,6),(6,3)],7) => 63
([(0,5),(1,5),(2,4),(2,6),(5,6),(6,3)],7) => 15
([(0,6),(1,6),(2,3),(2,4),(6,5)],7) => -9
([(0,6),(1,6),(5,2),(5,3),(6,4),(6,5)],7) => -27
([(0,6),(1,6),(2,4),(2,5),(6,3),(6,5)],7) => -33
([(0,6),(1,6),(2,4),(2,5),(6,3),(6,4),(6,5)],7) => -81
([(1,6),(2,6),(3,4),(3,5),(3,6)],7) => 23
([(0,6),(1,6),(2,3),(2,4),(2,6),(6,5)],7) => -23
([(0,6),(1,6),(2,3),(2,4),(2,6),(4,5)],7) => -23
([(0,6),(1,6),(2,3),(2,4),(2,6),(4,5),(6,5)],7) => 7
([(0,6),(1,6),(2,3),(2,4),(2,6),(3,5),(4,5)],7) => 39
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => 271
([(0,6),(1,6),(2,3),(2,4),(2,5)],7) => 15
([(0,6),(1,6),(5,2),(5,3),(5,4),(6,5)],7) => -15
([(0,5),(1,5),(2,3),(2,4),(2,6),(5,6)],7) => -21
([(0,4),(1,4),(2,3),(2,5),(2,6),(4,5),(4,6)],7) => -81
([(0,6),(1,6),(2,3),(2,4),(2,5),(6,3),(6,4),(6,5)],7) => -165
([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6)],7) => 29
([(0,6),(1,2),(1,3),(1,5),(4,6),(5,4)],7) => -15
([(0,3),(0,4),(0,5),(1,6),(2,6),(5,1),(5,2)],7) => 5
([(0,3),(0,4),(0,5),(1,6),(2,6),(4,2),(5,1)],7) => 5
([(0,6),(1,6),(2,3),(2,4),(2,5),(5,6)],7) => -55
([(0,6),(1,2),(1,4),(1,5),(3,6),(4,6),(5,3)],7) => 11
([(0,3),(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2)],7) => -17
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7) => 13
([(0,6),(1,6),(2,3),(2,4),(2,5),(4,6),(5,6)],7) => 3
([(0,6),(1,3),(1,4),(1,5),(2,6),(3,6),(4,6),(5,2)],7) => 159
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7) => -153
([(0,6),(1,6),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => 1523
([(1,6),(2,6),(3,4),(3,5),(5,6)],7) => -33
([(0,6),(1,6),(2,3),(2,4),(4,6),(6,5)],7) => 33
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => -103
([(0,6),(1,6),(2,3),(2,4),(3,6),(4,6),(6,5)],7) => 103
([(0,6),(1,6),(2,3),(2,4),(4,5)],7) => -9
([(0,6),(1,6),(4,3),(5,2),(5,4),(6,5)],7) => 9
([(0,5),(1,5),(2,3),(2,6),(3,4),(5,6)],7) => 15
([(0,4),(1,4),(2,3),(2,5),(3,6),(4,5),(4,6)],7) => 75
([(0,4),(1,4),(2,3),(2,5),(3,6),(4,5),(5,6)],7) => 9
([(0,6),(1,6),(2,4),(2,5),(4,3),(5,3),(6,4),(6,5)],7) => -3
([(0,5),(1,5),(2,3),(2,4),(4,6),(5,6)],7) => 27
([(0,6),(1,3),(1,5),(4,6),(5,2),(5,4)],7) => -27
([(0,4),(0,5),(2,6),(3,6),(5,1),(5,2),(5,3)],7) => -15
([(0,6),(1,6),(2,3),(2,4),(4,5),(4,6)],7) => -51
([(0,6),(1,4),(1,5),(3,6),(4,2),(5,3)],7) => 9
([(0,6),(1,3),(1,4),(2,6),(3,5),(4,2),(6,5)],7) => 15
([(0,6),(1,4),(1,5),(3,6),(4,3),(5,2),(5,6)],7) => -33
([(0,4),(0,5),(2,6),(3,6),(4,1),(4,6),(5,2),(5,3)],7) => 15
([(0,3),(0,4),(1,6),(2,6),(3,5),(3,6),(4,1),(4,2),(4,5)],7) => -247
([(0,6),(1,3),(1,4),(2,6),(3,5),(3,6),(4,2),(4,5)],7) => -671
([(0,4),(0,5),(2,6),(3,6),(4,3),(5,1),(5,2)],7) => -15
([(0,3),(0,4),(1,5),(2,5),(3,2),(3,6),(4,1),(4,6)],7) => -289
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7) => 3
([(0,4),(0,5),(2,6),(3,6),(4,1),(5,2),(5,3)],7) => -3
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7) => -1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(4,6)],7) => -5
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7) => -13
([(0,6),(1,3),(1,4),(2,6),(3,5),(4,2),(4,5)],7) => -9
([(0,6),(1,3),(1,4),(2,6),(3,5),(4,2),(4,5),(5,6)],7) => -11
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7) => -1
([(0,6),(1,6),(2,3),(2,4),(3,5),(4,6)],7) => 33
([(0,6),(1,6),(2,3),(2,4),(3,6),(4,5),(6,5)],7) => 107
([(0,6),(1,4),(1,5),(3,6),(4,6),(5,2),(5,3)],7) => -105
([(0,4),(0,5),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7) => -49
([(0,6),(1,6),(2,3),(2,4),(3,6),(4,5),(4,6)],7) => -237
([(0,6),(1,6),(2,3),(2,4),(3,5),(4,6),(5,6)],7) => 103
([(0,6),(1,4),(1,5),(2,6),(3,6),(4,6),(5,2),(5,3)],7) => -127
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7) => -73
([(0,5),(1,5),(2,3),(2,4),(3,6),(4,6)],7) => -3
([(0,6),(1,6),(2,5),(3,5),(4,2),(4,3),(6,4)],7) => 3
([(0,5),(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7) => 33
([(0,6),(1,6),(2,3),(2,4),(3,5),(4,5),(4,6)],7) => -17
([(0,6),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => -1491
([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(6,4)],7) => 3
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => -1
([(0,6),(1,6),(2,3),(2,4),(3,5),(4,5),(5,6)],7) => 11
([(0,6),(1,6),(2,3),(2,4),(4,5),(5,6)],7) => 33
([(0,6),(1,2),(1,5),(3,6),(4,6),(5,3),(5,4)],7) => -33
([(0,4),(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3)],7) => -39
([(0,6),(1,4),(1,5),(2,6),(3,6),(4,3),(5,2)],7) => 11
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7) => -5
([(2,6),(3,6),(4,5),(5,6)],7) => -11
([(1,6),(2,6),(3,4),(4,6),(6,5)],7) => 11
([(0,6),(1,6),(2,3),(3,6),(6,4),(6,5)],7) => 33
([(1,6),(2,6),(3,4),(4,5)],7) => -3
([(1,6),(2,6),(3,5),(5,4),(6,3)],7) => 3
([(1,5),(2,5),(3,4),(4,6),(5,6)],7) => 9
([(0,5),(1,5),(2,3),(3,6),(5,6),(6,4)],7) => -9
([(0,6),(1,6),(2,3),(3,5),(6,4)],7) => 3
([(0,6),(1,6),(4,2),(5,4),(6,3),(6,5)],7) => 9
([(0,5),(1,5),(2,3),(3,6),(5,4),(5,6)],7) => 15
([(1,6),(2,6),(3,4),(4,5),(4,6)],7) => -17
([(0,6),(1,6),(2,3),(3,5),(3,6),(6,4)],7) => 17
([(0,3),(1,6),(2,6),(3,5),(3,6),(5,4)],7) => 17
([(0,6),(1,6),(2,3),(3,4),(3,6),(4,5),(6,5)],7) => 11
([(0,3),(1,6),(2,6),(3,4),(3,5)],7) => -9
([(0,6),(1,6),(4,5),(5,2),(5,3),(6,4)],7) => 9
([(0,5),(1,5),(2,3),(3,4),(3,6),(5,6)],7) => 15
([(0,4),(1,4),(2,3),(3,5),(3,6),(4,5),(4,6)],7) => 63
([(0,6),(1,5),(4,6),(5,2),(5,3),(5,4)],7) => -15
([(0,5),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7) => -11
([(0,3),(1,6),(2,6),(3,4),(3,5),(3,6)],7) => -23
([(0,3),(1,6),(2,6),(3,4),(3,5),(5,6)],7) => 33
([(0,6),(1,5),(3,6),(4,6),(5,2),(5,3),(5,4)],7) => 11
([(0,5),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7) => 9
([(0,3),(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => 103
([(0,6),(1,5),(2,6),(3,6),(4,6),(5,2),(5,3),(5,4)],7) => 159
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7) => 115
([(1,3),(2,6),(3,5),(4,6),(5,4)],7) => 3
([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7) => -3
([(1,4),(2,6),(3,6),(4,5),(5,2),(5,3)],7) => -1
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 1
([(1,6),(2,6),(3,4),(4,5),(5,6)],7) => 11
([(0,6),(1,6),(2,3),(3,5),(5,6),(6,4)],7) => -11
([(0,3),(1,6),(2,6),(3,5),(5,4)],7) => 3
([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7) => -3
([(0,5),(1,5),(2,3),(3,4),(4,6),(5,6)],7) => -9
([(0,6),(1,4),(3,6),(4,5),(5,2),(5,3)],7) => 9
([(0,4),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7) => 5
([(0,3),(1,6),(2,6),(3,5),(5,4),(5,6)],7) => 17
([(1,6),(2,6),(3,5),(4,5)],7) => -9
([(1,6),(2,6),(3,5),(4,5),(4,6)],7) => -23
([(0,6),(1,6),(2,5),(3,5),(3,6),(5,4)],7) => 23
([(0,6),(1,6),(2,4),(3,4),(3,6),(4,5),(6,5)],7) => 17
([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => -171
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(5,4)],7) => 171
([(0,6),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7) => 13
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(6,4)],7) => 171
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => -85
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(6,4)],7) => 85
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7) => 7
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => -509
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(5,4)],7) => 509
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7) => 21
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(6,4)],7) => 509
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => -2169
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(6,4)],7) => 2169
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7) => 17
([(0,6),(1,6),(2,5),(3,5),(3,6),(6,4)],7) => 23
([(1,6),(2,5),(3,5),(4,6),(5,4)],7) => 9
([(1,5),(2,5),(3,6),(4,6),(5,3),(5,4)],7) => -3
([(0,6),(1,5),(2,5),(4,6),(5,4),(6,3)],7) => -9
([(0,6),(1,6),(2,5),(3,5),(5,4),(6,2),(6,3)],7) => 3
([(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 33
([(0,6),(1,6),(2,5),(3,5),(5,6),(6,4)],7) => -33
([(0,6),(1,6),(2,5),(3,5),(6,4)],7) => 9
([(0,6),(1,5),(2,5),(4,6),(5,3),(5,4)],7) => 27
([(0,6),(1,6),(3,5),(4,5),(6,2),(6,3),(6,4)],7) => 15
([(0,6),(1,6),(2,5),(3,5),(5,4),(5,6)],7) => 51
([(0,5),(1,5),(2,4),(3,4),(4,6),(5,6)],7) => -27
([(0,6),(1,6),(2,5),(3,4)],7) => -3
([(0,6),(1,6),(2,3),(4,5),(6,4)],7) => 3
([(0,6),(1,6),(4,3),(5,2),(6,4),(6,5)],7) => 9
([(0,6),(1,6),(2,5),(3,4),(6,3),(6,5)],7) => 15
([(0,6),(1,5),(2,5),(3,4),(5,6)],7) => 9
([(0,4),(1,4),(2,6),(3,5),(4,5),(4,6)],7) => 21
([(0,6),(1,5),(2,5),(3,4),(5,6),(6,3)],7) => -9
([(0,4),(1,4),(2,5),(3,6),(4,6),(6,5)],7) => -27
([(0,6),(1,6),(2,5),(3,4),(3,6)],7) => -17
([(0,6),(1,6),(2,3),(2,6),(4,5),(6,4)],7) => 17
([(0,6),(1,6),(2,5),(3,4),(3,6),(6,5)],7) => 51
([(0,6),(1,6),(2,5),(3,4),(3,6),(4,5)],7) => 51
([(0,6),(1,6),(2,3),(2,6),(3,5),(4,5),(6,4)],7) => 11
([(0,6),(1,5),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => 105
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6)],7) => -109
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => 199
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5)],7) => -57
([(0,6),(1,6),(2,4),(2,6),(3,4),(3,5),(6,5)],7) => 131
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => -205
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,6)],7) => 375
([(0,6),(1,6),(2,5),(3,4),(3,6),(5,6)],7) => 75
([(0,6),(1,6),(2,5),(2,6),(3,4),(4,5)],7) => 23
([(0,6),(1,6),(2,5),(2,6),(3,4),(4,5),(4,6)],7) => 171
([(0,5),(1,5),(2,6),(3,4),(3,6)],7) => -15
([(0,5),(1,4),(2,4),(2,6),(3,5),(3,6)],7) => -27
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => -65
([(0,6),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => -151
([(0,5),(1,4),(1,5),(2,4),(2,6),(3,6),(5,3)],7) => 39
([(0,6),(1,5),(2,4),(2,6),(3,4),(3,5),(5,6)],7) => 139
([(0,6),(1,5),(2,5),(3,4),(3,6),(5,3)],7) => 15
([(0,4),(1,5),(2,5),(3,4),(3,6),(5,6)],7) => 21
([(0,6),(1,5),(1,6),(2,4),(3,4),(4,5),(4,6)],7) => 135
([(0,5),(1,5),(2,3),(2,6),(4,6),(5,4)],7) => 15
([(0,6),(1,6),(3,5),(4,2),(4,5),(6,3),(6,4)],7) => -9
([(0,5),(1,5),(2,4),(2,6),(3,6),(5,3),(5,4)],7) => 75
([(0,6),(1,5),(2,5),(3,4),(3,6),(5,6)],7) => 51
([(0,6),(1,6),(2,5),(3,4),(3,5),(3,6)],7) => -29
([(0,6),(1,6),(2,5),(3,4),(3,5),(4,6)],7) => 55
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,6),(5,4)],7) => 29
([(0,5),(1,2),(1,5),(2,6),(3,6),(4,6),(5,3),(5,4)],7) => -15
([(0,6),(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => 245
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6)],7) => -63
([(0,5),(1,4),(1,6),(2,4),(2,6),(3,5),(3,6)],7) => -129
([(0,5),(0,6),(1,5),(1,6),(2,4),(3,4),(3,5),(3,6)],7) => -275
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => -605
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => -1709
([(0,5),(0,6),(1,5),(1,6),(2,4),(3,4),(3,5),(4,6)],7) => 433
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6)],7) => -741
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5)],7) => 2529
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5)],7) => -551
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6)],7) => -1531
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => -3907
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6)],7) => -1193
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => -3049
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => -7173
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => -15565
([(0,6),(1,5),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6)],7) => 693
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,6),(3,5),(4,3)],7) => 201
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(4,3)],7) => 63
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(6,2),(6,3)],7) => -327
([(0,5),(1,5),(2,4),(2,6),(3,4),(3,6),(5,6)],7) => 135
([(0,5),(0,6),(1,5),(1,6),(2,4),(3,4),(4,5),(4,6)],7) => 573
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6)],7) => -105
([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => -337
([(0,6),(1,4),(1,5),(2,4),(2,5),(3,6),(5,3)],7) => 63
([(0,5),(0,6),(1,5),(1,6),(2,4),(3,4),(6,2),(6,3)],7) => -21
([(0,3),(1,5),(1,6),(2,5),(2,6),(4,3),(5,4),(6,4)],7) => -3
([(0,5),(0,6),(1,5),(1,6),(2,4),(3,4),(5,3),(6,2)],7) => -1
([(0,5),(0,6),(1,5),(1,6),(2,3),(4,3),(5,4),(6,2),(6,4)],7) => 1
([(0,5),(0,6),(1,5),(1,6),(3,2),(4,2),(5,3),(5,4),(6,3),(6,4)],7) => -3
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(5,6)],7) => 231
([(0,6),(1,4),(1,5),(2,4),(2,5),(3,6),(4,6),(5,3)],7) => 7
([(0,4),(0,5),(1,4),(1,5),(2,6),(3,6),(4,6),(5,2),(5,3)],7) => 1
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => 53
([(0,6),(1,5),(2,3),(2,5),(4,6),(5,4)],7) => 15
([(0,6),(1,2),(1,6),(3,5),(4,5),(6,3),(6,4)],7) => -5
([(0,6),(1,6),(2,5),(3,4),(3,5),(5,6)],7) => 55
([(0,6),(1,6),(2,4),(3,5),(5,6)],7) => 11
([(0,6),(1,6),(2,3),(3,6),(4,5),(6,4)],7) => -11
([(0,6),(1,6),(2,5),(3,4),(4,6),(6,5)],7) => -33
([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => -53
([(0,6),(1,5),(2,5),(3,4),(4,6)],7) => 9
([(0,6),(1,6),(2,5),(3,4),(4,5),(6,3)],7) => -9
([(0,5),(1,5),(2,3),(3,6),(4,6),(5,4)],7) => -9
([(0,6),(1,6),(2,5),(3,5),(4,3),(6,2),(6,4)],7) => 3
([(0,5),(1,5),(2,4),(3,6),(4,6),(5,3),(5,4)],7) => 9
([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => -33
([(0,6),(1,6),(2,5),(3,4),(4,5),(4,6)],7) => 23
([(0,6),(1,5),(2,3),(3,6),(4,5),(6,4)],7) => -9
([(0,6),(1,2),(2,6),(3,5),(4,5),(6,3),(6,4)],7) => 3
([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7) => -33
([(3,6),(4,5)],7) => -1
([(3,6),(4,5),(4,6)],7) => -5
([(2,6),(3,4),(3,6),(4,5)],7) => 5
([(1,6),(2,3),(2,6),(3,4),(3,5)],7) => 15
([(0,6),(1,5),(1,6),(5,2),(5,3),(5,4)],7) => 25
([(0,6),(1,4),(1,6),(4,2),(4,3),(4,5),(6,5)],7) => 7
([(0,6),(1,3),(1,6),(3,2),(3,4),(3,5),(6,4),(6,5)],7) => 325
([(0,6),(1,2),(1,6),(2,3),(2,4),(2,5),(6,3),(6,4),(6,5)],7) => 1267
([(1,5),(2,3),(2,5),(3,4),(3,6),(5,6)],7) => 5
([(1,4),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => 235
([(0,5),(1,4),(1,5),(4,3),(4,6),(5,6),(6,2)],7) => -5
([(0,6),(1,5),(1,6),(5,2),(5,3),(6,4)],7) => -15
([(0,6),(1,4),(1,6),(4,3),(4,5),(6,2),(6,5)],7) => 31
([(0,6),(1,3),(1,6),(3,4),(3,5),(6,2),(6,4),(6,5)],7) => 365
([(2,5),(3,4),(3,5),(4,6),(5,6)],7) => 3
([(1,5),(2,3),(2,5),(3,6),(5,6),(6,4)],7) => -3
([(0,5),(1,4),(1,5),(4,6),(5,6),(6,2),(6,3)],7) => -9
([(1,6),(2,3),(2,6),(3,5),(6,4)],7) => -5
([(1,5),(2,3),(2,5),(3,6),(5,4),(5,6)],7) => 9
([(0,6),(1,5),(1,6),(5,2),(6,3),(6,4)],7) => -15
([(0,6),(1,4),(1,6),(4,5),(6,2),(6,3),(6,5)],7) => 15
([(1,6),(2,3),(2,6),(3,5),(5,4)],7) => -5
([(1,5),(2,3),(2,5),(3,4),(4,6),(5,6)],7) => -3
([(0,5),(1,4),(1,5),(3,6),(4,3),(5,6),(6,2)],7) => 3
([(0,6),(1,5),(1,6),(4,2),(5,4),(6,3)],7) => 5
([(0,6),(1,3),(1,6),(3,5),(5,4),(6,2),(6,5)],7) => -9
([(0,6),(1,4),(1,6),(3,5),(4,3),(6,2),(6,5)],7) => -9
([(0,6),(1,4),(1,6),(4,5),(5,2),(5,3)],7) => -15
([(0,6),(1,3),(1,6),(3,4),(4,2),(4,5),(6,5)],7) => -5
([(0,6),(1,2),(1,6),(2,3),(3,4),(3,5),(6,4),(6,5)],7) => -235
([(3,5),(3,6),(4,5),(4,6)],7) => -21
([(2,5),(2,6),(3,5),(3,6),(6,4)],7) => 21
([(1,5),(1,6),(2,5),(2,6),(6,3),(6,4)],7) => 63
([(0,5),(0,6),(1,5),(1,6),(6,2),(6,3),(6,4)],7) => 105
([(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => -1
([(1,4),(1,5),(2,4),(2,5),(4,6),(5,6),(6,3)],7) => 1
([(1,5),(1,6),(2,5),(2,6),(5,4),(6,3)],7) => -21
([(1,4),(1,6),(2,4),(2,6),(4,5),(6,3),(6,5)],7) => 1
([(1,5),(1,6),(2,5),(2,6),(5,3),(5,4),(6,3),(6,4)],7) => -477
([(0,5),(0,6),(1,5),(1,6),(5,4),(6,2),(6,3)],7) => -63
([(0,5),(0,6),(1,5),(1,6),(5,4),(6,2),(6,3),(6,4)],7) => 3
([(0,5),(0,6),(1,5),(1,6),(5,3),(5,4),(6,2),(6,4)],7) => 23
([(0,5),(0,6),(1,5),(1,6),(5,3),(5,4),(6,2),(6,3),(6,4)],7) => -883
([(0,5),(0,6),(1,5),(1,6),(5,2),(5,3),(5,4),(6,2),(6,3),(6,4)],7) => -7209
([(1,5),(1,6),(2,5),(2,6),(3,4)],7) => 21
([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6)],7) => 33
([(0,4),(1,5),(1,6),(2,4),(2,5),(2,6),(6,3)],7) => -33
([(0,4),(1,5),(1,6),(2,4),(2,5),(2,6),(5,3),(6,3)],7) => -3
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(5,3),(6,3)],7) => 21
([(0,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => -59
([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 95
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(5,3)],7) => -95
([(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(4,5)],7) => 63
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => -1
([(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(4,5),(6,5)],7) => 3
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(6,3)],7) => -95
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(6,3)],7) => -33
([(1,5),(1,6),(2,5),(2,6),(3,4),(6,3)],7) => -21
([(0,5),(0,6),(1,5),(1,6),(4,3),(5,4),(6,2)],7) => 21
([(0,5),(0,6),(1,5),(1,6),(2,3),(5,4),(6,2),(6,4)],7) => -1
([(0,5),(0,6),(1,5),(1,6),(4,2),(5,3),(5,4),(6,3),(6,4)],7) => 477
([(0,5),(0,6),(1,5),(1,6),(2,4),(5,2),(5,3),(6,3),(6,4)],7) => 693
([(0,5),(0,6),(1,5),(1,6),(4,3),(5,4),(6,2),(6,4)],7) => -1
([(0,5),(0,6),(1,5),(1,6),(3,4),(5,3),(6,2),(6,4)],7) => -1
([(1,6),(2,4),(2,5),(3,4),(3,5),(5,6)],7) => -63
([(1,4),(1,5),(2,4),(2,5),(3,6),(4,6),(5,3)],7) => 1
([(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => -7
([(0,6),(1,4),(1,5),(2,4),(2,5),(4,6),(5,6),(6,3)],7) => 7
([(0,5),(1,4),(1,6),(2,4),(2,6),(4,5),(6,3)],7) => 63
([(0,6),(1,4),(1,5),(2,4),(2,5),(4,6),(5,3),(5,6)],7) => -29
([(0,6),(1,4),(1,5),(2,4),(2,5),(5,6),(6,3)],7) => 63
([(0,4),(1,5),(1,6),(2,5),(2,6),(4,3),(5,4),(6,3)],7) => 13
([(0,5),(0,6),(1,5),(1,6),(2,4),(6,3)],7) => -21
([(0,5),(0,6),(1,5),(1,6),(4,3),(6,2),(6,4)],7) => -63
([(0,5),(0,6),(1,5),(1,6),(3,4),(5,2),(5,3),(6,4)],7) => -13
([(0,5),(1,4),(1,6),(2,4),(2,6),(6,3),(6,5)],7) => -105
([(0,4),(0,5),(1,4),(1,5),(2,3),(4,6),(5,6)],7) => 1
([(0,4),(1,5),(1,6),(2,5),(2,6),(5,3),(6,3),(6,4)],7) => -3
([(0,6),(1,3),(1,4),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => 2069
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,6)],7) => 87
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(6,4)],7) => -87
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5)],7) => -201
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,6),(4,5),(6,3)],7) => 201
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,6),(4,5),(5,3)],7) => 201
([(0,3),(0,6),(1,3),(1,6),(2,5),(2,6),(3,5),(5,4),(6,4)],7) => 9
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(5,4)],7) => -87
([(0,4),(0,6),(1,4),(1,6),(2,3),(2,6),(4,5),(6,5)],7) => -1
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(5,3),(5,4)],7) => -535
([(0,3),(0,6),(1,3),(1,6),(2,4),(2,6),(3,4),(3,5),(6,5)],7) => -17
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6)],7) => 233
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(6,3)],7) => -233
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,5),(2,6),(5,4),(6,4)],7) => -1
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4)],7) => -233
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(6,4)],7) => 201
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => 31
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(4,6)],7) => -279
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,5),(3,6),(5,4)],7) => 279
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,5),(3,6),(5,4),(6,4)],7) => 7
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,5),(3,6),(6,4)],7) => 279
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(3,4)],7) => -87
([(0,4),(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(6,5)],7) => -45
([(0,4),(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(4,5)],7) => 333
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,6),(4,6),(5,6)],7) => -7
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,5),(3,4),(3,6)],7) => -613
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,5),(3,4),(3,6),(5,4)],7) => -191
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,5),(3,4),(4,6)],7) => 279
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4)],7) => 63
([(0,5),(0,6),(1,5),(1,6),(4,2),(4,3),(6,4)],7) => -63
([(0,5),(0,6),(1,5),(1,6),(4,2),(4,3),(5,4),(6,4)],7) => 3
([(0,5),(0,6),(1,5),(1,6),(3,2),(3,4),(5,3),(6,4)],7) => -1
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(5,2),(6,3),(6,4)],7) => 477
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,6),(5,6)],7) => -105
([(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(6,3),(6,4)],7) => -441
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,6),(4,6),(5,6)],7) => -5
([(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(5,4),(6,3)],7) => 211
([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(3,6),(4,5),(4,6)],7) => -61
([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => 8711
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6)],7) => 129
([(0,4),(0,6),(1,4),(1,6),(2,3),(2,5),(2,6),(4,5)],7) => -243
([(0,3),(0,6),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5)],7) => -1103
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7) => 275
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(4,6)],7) => -369
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,6),(4,6)],7) => 277
([(0,5),(0,6),(1,2),(1,4),(3,5),(3,6),(4,3)],7) => -63
([(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(4,1),(4,2)],7) => 327
([(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(3,2),(4,1)],7) => -109
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(4,6)],7) => -135
([(0,4),(0,6),(1,4),(1,6),(2,3),(2,5),(3,6),(4,5)],7) => 321
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(4,5),(4,6)],7) => -573
([(0,5),(0,6),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,2)],7) => -1411
([(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,1),(4,2)],7) => 11507
([(0,5),(0,6),(1,2),(1,4),(2,6),(3,5),(3,6),(4,3)],7) => -73
([(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(3,6),(4,1),(4,2)],7) => 737
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,6),(4,6)],7) => -201
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7) => 383
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,6),(4,5),(4,6)],7) => -1363
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => -20625
([(1,5),(1,6),(2,5),(2,6),(3,4),(4,6)],7) => -45
([(0,5),(0,6),(1,5),(1,6),(2,3),(3,6),(6,4)],7) => 45
([(0,5),(0,6),(1,5),(1,6),(2,3),(3,6),(5,4)],7) => 45
([(0,4),(0,6),(1,4),(1,6),(2,3),(3,6),(4,5),(6,5)],7) => 3
([(1,5),(1,6),(2,5),(2,6),(3,4),(4,5),(4,6)],7) => -191
([(0,5),(0,6),(1,5),(1,6),(2,4),(4,5),(4,6),(6,3)],7) => 191
([(0,5),(0,6),(1,5),(1,6),(2,3),(3,5),(3,6),(5,4),(6,4)],7) => 3
([(0,5),(0,6),(1,5),(1,6),(2,3),(3,4)],7) => -21
([(0,5),(0,6),(1,5),(1,6),(3,4),(4,2),(6,3)],7) => 21
([(0,5),(0,6),(1,5),(1,6),(2,3),(4,2),(5,4),(6,4)],7) => -1
([(0,5),(0,6),(1,5),(1,6),(3,4),(4,2),(5,3),(6,4)],7) => -1
([(0,5),(0,6),(1,5),(1,6),(2,3),(3,4),(5,2),(6,4)],7) => -1
([(0,4),(0,5),(1,4),(1,5),(2,3),(3,6),(5,6)],7) => 63
([(0,4),(0,5),(1,4),(1,5),(2,3),(3,6),(4,6),(5,6)],7) => 7
([(0,5),(0,6),(1,4),(3,5),(3,6),(4,2),(4,3)],7) => -63
([(0,4),(2,5),(2,6),(3,5),(3,6),(4,1),(4,2),(4,3)],7) => 67
([(0,5),(0,6),(1,5),(1,6),(2,3),(3,4),(3,6)],7) => -87
([(0,4),(0,6),(1,4),(1,6),(2,3),(3,5),(3,6),(4,5)],7) => 201
([(0,5),(0,6),(1,5),(1,6),(2,3),(3,4),(3,5),(3,6)],7) => -233
([(0,5),(0,6),(1,5),(1,6),(2,3),(3,4),(3,6),(4,5)],7) => 279
([(0,5),(0,6),(1,5),(1,6),(2,3),(3,4),(4,6)],7) => 45
([(0,5),(0,6),(1,4),(2,6),(3,5),(3,6),(4,2),(4,3)],7) => -73
([(0,4),(1,6),(2,5),(2,6),(3,5),(3,6),(4,1),(4,2),(4,3)],7) => -337
([(0,5),(0,6),(1,5),(1,6),(2,3),(3,4),(4,5),(4,6)],7) => 191
([(0,5),(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,2),(4,3)],7) => -1411
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,1),(4,2),(4,3)],7) => -2637
([(2,6),(3,4),(3,6),(6,5)],7) => 5
([(1,6),(2,3),(2,6),(6,4),(6,5)],7) => 15
([(0,6),(1,2),(1,6),(6,3),(6,4),(6,5)],7) => 25
([(2,6),(3,4),(3,5)],7) => -3
([(2,6),(3,4),(3,5),(3,6)],7) => -7
([(1,6),(2,3),(2,4),(2,6),(4,5)],7) => 7
([(0,6),(1,4),(1,5),(1,6),(5,2),(5,3)],7) => 21
([(0,6),(1,3),(1,4),(1,6),(4,2),(4,5),(6,5)],7) => -5
([(0,6),(1,2),(1,3),(1,6),(3,4),(3,5),(6,4),(6,5)],7) => 193
([(1,5),(2,3),(2,4),(2,5),(4,6),(5,6)],7) => -3
([(0,5),(1,3),(1,4),(1,5),(4,6),(5,6),(6,2)],7) => 3
([(0,6),(1,3),(1,5),(1,6),(5,2),(6,4)],7) => -7
([(0,6),(1,3),(1,4),(1,6),(4,5),(6,2),(6,5)],7) => -1
([(1,5),(2,3),(2,4),(2,5),(3,6),(4,6)],7) => -11
([(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => -71
([(0,5),(1,2),(1,3),(1,5),(2,6),(3,6),(5,6),(6,4)],7) => 71
([(0,6),(1,3),(1,4),(1,6),(3,5),(4,5),(6,2)],7) => 11
([(0,5),(1,2),(1,3),(1,5),(2,6),(3,6),(5,4),(5,6)],7) => -181
([(0,5),(1,3),(1,4),(1,5),(3,6),(4,6),(6,2)],7) => 11
([(0,6),(1,2),(1,3),(1,6),(2,5),(3,5),(5,4),(6,4)],7) => 21
([(0,6),(1,4),(1,5),(1,6),(4,3),(5,2)],7) => -7
([(0,6),(1,3),(1,4),(1,6),(3,5),(4,2),(4,5)],7) => -17
([(0,6),(1,2),(1,3),(1,6),(2,5),(3,4),(3,5),(6,4)],7) => -15
([(0,4),(1,2),(1,3),(1,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => -903
([(0,5),(1,3),(1,4),(1,5),(3,6),(4,2),(4,6),(5,6)],7) => -137
([(0,6),(1,2),(1,3),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => 25
([(0,4),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,6)],7) => -575
([(0,4),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => -6175
([(0,6),(1,3),(1,4),(1,6),(3,5),(4,2),(6,5)],7) => 3
([(0,6),(1,2),(1,3),(1,6),(2,5),(3,4),(6,4),(6,5)],7) => -43
([(1,6),(2,3),(2,4),(2,6),(6,5)],7) => 7
([(0,6),(1,2),(1,3),(1,6),(6,4),(6,5)],7) => 21
([(1,6),(2,3),(2,4),(2,5)],7) => -5
([(1,6),(2,3),(2,4),(2,5),(2,6)],7) => -9
([(0,6),(1,3),(1,4),(1,5),(1,6),(5,2)],7) => 9
([(0,6),(1,2),(1,3),(1,4),(1,6),(4,5),(6,5)],7) => -9
([(0,6),(1,2),(1,3),(1,4),(1,6),(3,5),(4,5)],7) => -17
([(0,5),(1,2),(1,3),(1,4),(1,5),(3,6),(4,6),(5,6)],7) => -49
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,6),(3,6),(4,6)],7) => 31
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,6),(3,6),(4,6),(5,6)],7) => 753
([(0,6),(1,2),(1,3),(1,4),(1,6),(6,5)],7) => 9
([(0,6),(1,2),(1,3),(1,4),(1,5)],7) => -7
([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6)],7) => -11
([(0,2),(0,3),(0,4),(0,6),(5,1),(6,5)],7) => 7
([(0,6),(1,2),(1,3),(1,4),(1,5),(5,6)],7) => 21
([(0,2),(0,3),(0,4),(0,5),(1,6),(4,6),(5,1)],7) => -11
([(0,6),(1,2),(1,3),(1,4),(1,5),(4,6),(5,6)],7) => -33
([(0,2),(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1)],7) => 9
([(0,6),(1,2),(1,3),(1,4),(1,5),(3,6),(4,6),(5,6)],7) => -53
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7) => 115
([(0,6),(1,2),(1,3),(1,4),(1,5),(2,6),(3,6),(4,6),(5,6)],7) => 1545
([(0,5),(1,2),(1,3),(1,4),(1,6),(5,6)],7) => 9
([(0,4),(1,2),(1,3),(1,5),(1,6),(4,5),(4,6)],7) => 33
([(0,3),(1,2),(1,4),(1,5),(1,6),(3,4),(3,5),(3,6)],7) => 65
([(0,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7) => 105
([(1,3),(1,4),(1,6),(5,2),(6,5)],7) => 5
([(0,3),(0,4),(0,5),(5,6),(6,1),(6,2)],7) => 15
([(1,6),(2,3),(2,4),(2,5),(5,6)],7) => 15
([(0,6),(1,2),(1,3),(1,4),(4,6),(6,5)],7) => -15
([(1,2),(1,4),(1,5),(3,6),(4,6),(5,3)],7) => -5
([(0,3),(0,4),(0,5),(1,6),(4,6),(5,1),(6,2)],7) => 5
([(1,6),(2,3),(2,4),(2,5),(4,6),(5,6)],7) => -11
([(0,6),(1,2),(1,3),(1,4),(3,6),(4,6),(6,5)],7) => 11
([(1,3),(1,4),(1,5),(2,6),(3,6),(4,6),(5,2)],7) => -13
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7) => 13
([(1,6),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => -159
([(0,6),(1,2),(1,3),(1,4),(2,6),(3,6),(4,6),(6,5)],7) => 159
([(0,6),(1,3),(1,4),(1,5),(3,6),(4,6),(5,2)],7) => 11
([(0,6),(1,2),(1,3),(1,4),(2,6),(3,6),(4,5),(6,5)],7) => 101
([(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,1),(5,2)],7) => -183
([(0,6),(1,3),(1,4),(1,5),(3,6),(4,6),(5,2),(5,6)],7) => -409
([(0,6),(1,3),(1,4),(1,5),(4,6),(5,2)],7) => -15
([(0,6),(1,2),(1,3),(1,4),(3,6),(4,5),(6,5)],7) => 3
([(0,3),(0,4),(0,5),(2,6),(4,6),(5,1),(5,2)],7) => -3
([(0,6),(1,3),(1,4),(1,5),(4,6),(5,2),(5,6)],7) => -1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Generating function
click to show known generating functions
Search the OEIS for these generating functions
Search the Online Encyclopedia of Integer
Sequences for the coefficients of a few of the
first generating functions, in the case at hand:
1,0,1 1,0,2,0,1,0,1 1,0,0,0,0,0,1,0,3,0,2,0,4,0,3,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1
$F_{1} = q^{-1}$
$F_{2} = q^{-1} + q$
$F_{3} = q^{-3} + 2\ q^{-1} + q + q^{3}$
$F_{4} = q^{-11} + q^{-5} + 3\ q^{-3} + 2\ q^{-1} + 4\ q + 3\ q^{3} + q^{5} + q^{21}$
$F_{5} = q^{-109} + q^{-55} + q^{-53} + q^{-27} + q^{-21} + 3\ q^{-11} + 2\ q^{-9} + q^{-7} + 3\ q^{-5} + 9\ q^{-3} + 6\ q^{-1} + 6\ q + 9\ q^{3} + 6\ q^{5} + 2\ q^{7} + 2\ q^{9} + 2\ q^{11} + q^{13} + q^{17} + 2\ q^{21} + q^{25} + q^{45} + q^{191}$
$F_{6} = q^{-2637} + q^{-1411} + q^{-827} + q^{-389} + q^{-337} + q^{-331} + q^{-309} + q^{-235} + q^{-233} + q^{-191} + q^{-163} + q^{-145} + q^{-135} + 3\ q^{-109} + q^{-95} + q^{-87} + q^{-73} + 4\ q^{-63} + q^{-61} + 4\ q^{-55} + 2\ q^{-53} + q^{-45} + q^{-35} + 4\ q^{-33} + q^{-31} + 5\ q^{-27} + q^{-25} + q^{-23} + 4\ q^{-21} + 2\ q^{-17} + 7\ q^{-15} + 2\ q^{-13} + 10\ q^{-11} + 16\ q^{-9} + 7\ q^{-7} + 15\ q^{-5} + 25\ q^{-3} + 16\ q^{-1} + 15\ q + 28\ q^{3} + 21\ q^{5} + 8\ q^{7} + 14\ q^{9} + 11\ q^{11} + 3\ q^{13} + 8\ q^{15} + 6\ q^{17} + 6\ q^{21} + 4\ q^{23} + 5\ q^{25} + 2\ q^{27} + 2\ q^{29} + 4\ q^{33} + q^{37} + q^{39} + q^{41} + 4\ q^{45} + 2\ q^{53} + q^{55} + 2\ q^{63} + q^{65} + q^{67} + q^{71} + q^{75} + 2\ q^{85} + q^{103} + q^{105} + q^{109} + q^{115} + q^{159} + 2\ q^{171} + 2\ q^{191} + q^{201} + q^{279} + q^{477} + q^{509} + q^{609} + q^{2169}$
Description
The permanent of the Coxeter matrix of the poset.
References
[1] Mare Permanent of the coxeter matrix MathOverflow:343203
Code
def statistic(P):
return P.coxeter_transformation().permanent()
Created
Oct 05, 2019 at 15:04 by Martin Rubey
Updated
Mar 06, 2022 at 10:25 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!