Identifier
Values
([],1) => [1] => [1,0] => 0
([],2) => [2] => [1,1,0,0] => 0
([(0,1)],2) => [1,1] => [1,0,1,0] => 1
([],3) => [3] => [1,1,1,0,0,0] => 0
([(1,2)],3) => [2,1] => [1,1,0,0,1,0] => 1
([(0,2),(1,2)],3) => [2,1] => [1,1,0,0,1,0] => 1
([(0,1),(0,2),(1,2)],3) => [1,1,1] => [1,0,1,0,1,0] => 2
([],4) => [4] => [1,1,1,1,0,0,0,0] => 0
([(2,3)],4) => [3,1] => [1,1,1,0,0,0,1,0] => 1
([(1,3),(2,3)],4) => [3,1] => [1,1,1,0,0,0,1,0] => 1
([(0,3),(1,3),(2,3)],4) => [3,1] => [1,1,1,0,0,0,1,0] => 1
([(0,3),(1,2)],4) => [2,2] => [1,1,0,0,1,1,0,0] => 2
([(0,3),(1,2),(2,3)],4) => [2,2] => [1,1,0,0,1,1,0,0] => 2
([(1,2),(1,3),(2,3)],4) => [2,1,1] => [1,1,0,0,1,0,1,0] => 2
([(0,3),(1,2),(1,3),(2,3)],4) => [2,1,1] => [1,1,0,0,1,0,1,0] => 2
([(0,2),(0,3),(1,2),(1,3)],4) => [2,2] => [1,1,0,0,1,1,0,0] => 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [2,1,1] => [1,1,0,0,1,0,1,0] => 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [1,1,1,1] => [1,0,1,0,1,0,1,0] => 3
([],5) => [5] => [1,1,1,1,1,0,0,0,0,0] => 0
([(3,4)],5) => [4,1] => [1,1,1,1,0,0,0,0,1,0] => 1
([(2,4),(3,4)],5) => [4,1] => [1,1,1,1,0,0,0,0,1,0] => 1
([(1,4),(2,4),(3,4)],5) => [4,1] => [1,1,1,1,0,0,0,0,1,0] => 1
([(0,4),(1,4),(2,4),(3,4)],5) => [4,1] => [1,1,1,1,0,0,0,0,1,0] => 1
([(1,4),(2,3)],5) => [3,2] => [1,1,1,0,0,0,1,1,0,0] => 2
([(1,4),(2,3),(3,4)],5) => [3,2] => [1,1,1,0,0,0,1,1,0,0] => 2
([(0,1),(2,4),(3,4)],5) => [3,2] => [1,1,1,0,0,0,1,1,0,0] => 2
([(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1,1,0,0,0,1,0,1,0] => 2
([(0,4),(1,4),(2,3),(3,4)],5) => [3,2] => [1,1,1,0,0,0,1,1,0,0] => 2
([(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1,1,0,0,0,1,0,1,0] => 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1,1,0,0,0,1,0,1,0] => 2
([(1,3),(1,4),(2,3),(2,4)],5) => [3,2] => [1,1,1,0,0,0,1,1,0,0] => 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [3,2] => [1,1,1,0,0,0,1,1,0,0] => 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1,1,0,0,0,1,0,1,0] => 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1,1,0,0,0,1,0,1,0] => 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1,1,0,0,0,1,0,1,0] => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => [3,2] => [1,1,1,0,0,0,1,1,0,0] => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1,1,0,0,0,1,0,1,0] => 2
([(0,4),(1,3),(2,3),(2,4)],5) => [3,2] => [1,1,1,0,0,0,1,1,0,0] => 2
([(0,1),(2,3),(2,4),(3,4)],5) => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => 3
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => 3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => 3
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => 4
([],6) => [6] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
([(4,5)],6) => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0] => 1
([(3,5),(4,5)],6) => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0] => 1
([(2,5),(3,5),(4,5)],6) => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0] => 1
([(1,5),(2,5),(3,5),(4,5)],6) => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0] => 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0] => 1
([(2,5),(3,4)],6) => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
([(2,5),(3,4),(4,5)],6) => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
([(1,2),(3,5),(4,5)],6) => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
([(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => 2
([(1,5),(2,5),(3,4),(4,5)],6) => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
([(0,1),(2,5),(3,5),(4,5)],6) => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
([(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => 2
([(2,4),(2,5),(3,4),(3,5)],6) => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
([(0,5),(1,5),(2,4),(3,4)],6) => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => 2
([(0,5),(1,4),(2,3)],6) => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => 3
([(1,5),(2,4),(3,4),(3,5)],6) => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
([(0,1),(2,5),(3,4),(4,5)],6) => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => 3
([(1,2),(3,4),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => 3
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => 3
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
>>> Load all 208 entries. <<<
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => 3
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => 3
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => 3
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0] => 3
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0] => 3
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0] => 3
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0] => 3
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0] => 3
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0] => 3
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0] => 3
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => 3
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => 3
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => 3
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => 3
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0] => 3
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0] => 3
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0] => 3
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0] => 3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0] => 3
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0] => 3
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => 3
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0] => 3
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => 4
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => 4
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0] => 4
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => 4
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0] => 4
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0] => 4
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6) => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => 4
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => 4
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0] => 4
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => 4
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0] => 4
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0] => 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0] => 4
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => 4
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0] => 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6) => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => 4
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => 4
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => 4
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0] => 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0] => 4
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0] => 4
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0] => 4
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0] => 4
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0] => 4
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0] => 4
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0] => 4
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0] => 4
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0] => 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => 4
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0] => 4
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0] => 4
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0] => 4
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => 4
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0] => 4
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0] => 4
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => 5
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The degree of the standard monomial associated to a Dyck path relative to the trivial lower boundary.
Given two lattice paths $U,L$ from $(0,0)$ to $(d,n-d)$, [1] describes a bijection between lattice paths weakly between $U$ and $L$ and subsets of $\{1,\dots,n\}$ such that the set of all such subsets gives the standard complex of the lattice path matroid $M[U,L]$.
This statistic gives the cardinality of the image of this bijection when a Dyck path is considered as a path weakly below the diagonal and relative to the trivial lower boundary.
Map
chromatic difference sequence
Description
The chromatic difference sequence of a graph.
Let $G$ be a simple graph with chromatic number $\kappa$. Let $\alpha_m$ be the maximum number of vertices in a $m$-colorable subgraph of $G$. Set $\delta_m=\alpha_m-\alpha_{m-1}$. The sequence $\delta_1,\delta_2,\dots\delta_\kappa$ is the chromatic difference sequence of $G$.
All entries of the chromatic difference sequence are positive: $\alpha_m > \alpha_{m-1}$ for $m < \kappa$, because we can assign any uncolored vertex of a partial coloring with $m-1$ colors the color $m$. Therefore, the chromatic difference sequence is a composition of the number of vertices of $G$ into $\kappa$ parts.
Map
bounce path
Description
The bounce path determined by an integer composition.