Identifier
-
Mp00324:
Graphs
—chromatic difference sequence⟶
Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001509: Dyck paths ⟶ ℤ
Values
([],1) => [1] => [1,0] => 0
([],2) => [2] => [1,1,0,0] => 0
([(0,1)],2) => [1,1] => [1,0,1,0] => 1
([],3) => [3] => [1,1,1,0,0,0] => 0
([(1,2)],3) => [2,1] => [1,1,0,0,1,0] => 1
([(0,2),(1,2)],3) => [2,1] => [1,1,0,0,1,0] => 1
([(0,1),(0,2),(1,2)],3) => [1,1,1] => [1,0,1,0,1,0] => 2
([],4) => [4] => [1,1,1,1,0,0,0,0] => 0
([(2,3)],4) => [3,1] => [1,1,1,0,0,0,1,0] => 1
([(1,3),(2,3)],4) => [3,1] => [1,1,1,0,0,0,1,0] => 1
([(0,3),(1,3),(2,3)],4) => [3,1] => [1,1,1,0,0,0,1,0] => 1
([(0,3),(1,2)],4) => [2,2] => [1,1,0,0,1,1,0,0] => 2
([(0,3),(1,2),(2,3)],4) => [2,2] => [1,1,0,0,1,1,0,0] => 2
([(1,2),(1,3),(2,3)],4) => [2,1,1] => [1,1,0,0,1,0,1,0] => 2
([(0,3),(1,2),(1,3),(2,3)],4) => [2,1,1] => [1,1,0,0,1,0,1,0] => 2
([(0,2),(0,3),(1,2),(1,3)],4) => [2,2] => [1,1,0,0,1,1,0,0] => 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [2,1,1] => [1,1,0,0,1,0,1,0] => 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [1,1,1,1] => [1,0,1,0,1,0,1,0] => 3
([],5) => [5] => [1,1,1,1,1,0,0,0,0,0] => 0
([(3,4)],5) => [4,1] => [1,1,1,1,0,0,0,0,1,0] => 1
([(2,4),(3,4)],5) => [4,1] => [1,1,1,1,0,0,0,0,1,0] => 1
([(1,4),(2,4),(3,4)],5) => [4,1] => [1,1,1,1,0,0,0,0,1,0] => 1
([(0,4),(1,4),(2,4),(3,4)],5) => [4,1] => [1,1,1,1,0,0,0,0,1,0] => 1
([(1,4),(2,3)],5) => [3,2] => [1,1,1,0,0,0,1,1,0,0] => 2
([(1,4),(2,3),(3,4)],5) => [3,2] => [1,1,1,0,0,0,1,1,0,0] => 2
([(0,1),(2,4),(3,4)],5) => [3,2] => [1,1,1,0,0,0,1,1,0,0] => 2
([(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1,1,0,0,0,1,0,1,0] => 2
([(0,4),(1,4),(2,3),(3,4)],5) => [3,2] => [1,1,1,0,0,0,1,1,0,0] => 2
([(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1,1,0,0,0,1,0,1,0] => 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1,1,0,0,0,1,0,1,0] => 2
([(1,3),(1,4),(2,3),(2,4)],5) => [3,2] => [1,1,1,0,0,0,1,1,0,0] => 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [3,2] => [1,1,1,0,0,0,1,1,0,0] => 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1,1,0,0,0,1,0,1,0] => 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1,1,0,0,0,1,0,1,0] => 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1,1,0,0,0,1,0,1,0] => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => [3,2] => [1,1,1,0,0,0,1,1,0,0] => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1,1,0,0,0,1,0,1,0] => 2
([(0,4),(1,3),(2,3),(2,4)],5) => [3,2] => [1,1,1,0,0,0,1,1,0,0] => 2
([(0,1),(2,3),(2,4),(3,4)],5) => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => 3
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => 3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => [2,2,1] => [1,1,0,0,1,1,0,0,1,0] => 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => 3
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => 4
([],6) => [6] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
([(4,5)],6) => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0] => 1
([(3,5),(4,5)],6) => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0] => 1
([(2,5),(3,5),(4,5)],6) => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0] => 1
([(1,5),(2,5),(3,5),(4,5)],6) => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0] => 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0] => 1
([(2,5),(3,4)],6) => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
([(2,5),(3,4),(4,5)],6) => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
([(1,2),(3,5),(4,5)],6) => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
([(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => 2
([(1,5),(2,5),(3,4),(4,5)],6) => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
([(0,1),(2,5),(3,5),(4,5)],6) => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
([(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => 2
([(2,4),(2,5),(3,4),(3,5)],6) => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
([(0,5),(1,5),(2,4),(3,4)],6) => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => 2
([(0,5),(1,4),(2,3)],6) => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => 3
([(1,5),(2,4),(3,4),(3,5)],6) => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => 2
([(0,1),(2,5),(3,4),(4,5)],6) => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => 3
([(1,2),(3,4),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => 3
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => 3
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => 3
>>> Load all 208 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The degree of the standard monomial associated to a Dyck path relative to the trivial lower boundary.
Given two lattice paths $U,L$ from $(0,0)$ to $(d,n-d)$, [1] describes a bijection between lattice paths weakly between $U$ and $L$ and subsets of $\{1,\dots,n\}$ such that the set of all such subsets gives the standard complex of the lattice path matroid $M[U,L]$.
This statistic gives the cardinality of the image of this bijection when a Dyck path is considered as a path weakly below the diagonal and relative to the trivial lower boundary.
Given two lattice paths $U,L$ from $(0,0)$ to $(d,n-d)$, [1] describes a bijection between lattice paths weakly between $U$ and $L$ and subsets of $\{1,\dots,n\}$ such that the set of all such subsets gives the standard complex of the lattice path matroid $M[U,L]$.
This statistic gives the cardinality of the image of this bijection when a Dyck path is considered as a path weakly below the diagonal and relative to the trivial lower boundary.
Map
chromatic difference sequence
Description
The chromatic difference sequence of a graph.
Let $G$ be a simple graph with chromatic number $\kappa$. Let $\alpha_m$ be the maximum number of vertices in a $m$-colorable subgraph of $G$. Set $\delta_m=\alpha_m-\alpha_{m-1}$. The sequence $\delta_1,\delta_2,\dots\delta_\kappa$ is the chromatic difference sequence of $G$.
All entries of the chromatic difference sequence are positive: $\alpha_m > \alpha_{m-1}$ for $m < \kappa$, because we can assign any uncolored vertex of a partial coloring with $m-1$ colors the color $m$. Therefore, the chromatic difference sequence is a composition of the number of vertices of $G$ into $\kappa$ parts.
Let $G$ be a simple graph with chromatic number $\kappa$. Let $\alpha_m$ be the maximum number of vertices in a $m$-colorable subgraph of $G$. Set $\delta_m=\alpha_m-\alpha_{m-1}$. The sequence $\delta_1,\delta_2,\dots\delta_\kappa$ is the chromatic difference sequence of $G$.
All entries of the chromatic difference sequence are positive: $\alpha_m > \alpha_{m-1}$ for $m < \kappa$, because we can assign any uncolored vertex of a partial coloring with $m-1$ colors the color $m$. Therefore, the chromatic difference sequence is a composition of the number of vertices of $G$ into $\kappa$ parts.
Map
bounce path
Description
The bounce path determined by an integer composition.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!