Identifier
-
Mp00231:
Integer compositions
—bounce path⟶
Dyck paths
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
St001549: Permutations ⟶ ℤ
Values
[1] => [1,0] => [1,0] => [1] => 0
[1,1] => [1,0,1,0] => [1,1,0,0] => [1,2] => 0
[2] => [1,1,0,0] => [1,0,1,0] => [2,1] => 0
[1,1,1] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => [1,2,3] => 0
[1,2] => [1,0,1,1,0,0] => [1,0,1,1,0,0] => [2,1,3] => 0
[2,1] => [1,1,0,0,1,0] => [1,1,0,1,0,0] => [3,1,2] => 0
[3] => [1,1,1,0,0,0] => [1,0,1,0,1,0] => [2,3,1] => 0
[1,1,1,1] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => [1,2,3,4] => 0
[1,1,2] => [1,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0] => [2,1,3,4] => 0
[1,2,1] => [1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => [3,1,2,4] => 0
[1,3] => [1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,0] => [2,3,1,4] => 0
[2,1,1] => [1,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,0] => [4,1,2,3] => 0
[2,2] => [1,1,0,0,1,1,0,0] => [1,0,1,1,0,1,0,0] => [2,4,1,3] => 0
[3,1] => [1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,0,0] => [3,4,1,2] => 1
[4] => [1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => [2,3,4,1] => 0
[1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => [1,2,3,4,5] => 0
[1,1,1,2] => [1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,0,0,0,0] => [2,1,3,4,5] => 0
[1,1,2,1] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,0,0,0,0] => [3,1,2,4,5] => 0
[1,1,3] => [1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => [2,3,1,4,5] => 0
[1,2,1,1] => [1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => [4,1,2,3,5] => 0
[1,2,2] => [1,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,1,1,0,0,0] => [2,4,1,3,5] => 0
[1,3,1] => [1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,0,0,0] => [3,4,1,2,5] => 1
[1,4] => [1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0] => [2,3,4,1,5] => 0
[2,1,1,1] => [1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,0,0,0,0] => [5,1,2,3,4] => 0
[2,1,2] => [1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => [2,5,1,3,4] => 0
[2,2,1] => [1,1,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,0] => [3,5,1,2,4] => 1
[2,3] => [1,1,0,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,1,0,0] => [2,3,5,1,4] => 0
[3,1,1] => [1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,1,0,1,0,0,0] => [4,5,1,2,3] => 1
[3,2] => [1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,0,1,0,1,0,0] => [2,4,5,1,3] => 1
[4,1] => [1,1,1,1,0,0,0,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [3,4,5,1,2] => 2
[5] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [2,3,4,5,1] => 0
[1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,2,3,4,5,6] => 0
[1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => [2,1,3,4,5,6] => 0
[1,1,1,2,1] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [3,1,2,4,5,6] => 0
[1,1,1,3] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => [2,3,1,4,5,6] => 0
[1,1,2,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [4,1,2,3,5,6] => 0
[1,1,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,1,1,1,0,0,0,0] => [2,4,1,3,5,6] => 0
[1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [3,4,1,2,5,6] => 1
[1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => [2,3,4,1,5,6] => 0
[1,2,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [5,1,2,3,4,6] => 0
[1,2,1,2] => [1,0,1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,1,0,1,1,0,0,0,0] => [2,5,1,3,4,6] => 0
[1,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => [3,5,1,2,4,6] => 1
[1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,1,1,0,0,0] => [2,3,5,1,4,6] => 0
[1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [4,5,1,2,3,6] => 1
[1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0] => [1,0,1,1,0,1,0,1,1,0,0,0] => [2,4,5,1,3,6] => 1
[1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [3,4,5,1,2,6] => 2
[1,5] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => [2,3,4,5,1,6] => 0
[2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [6,1,2,3,4,5] => 0
[2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,0,1,0,0,0,0] => [2,6,1,3,4,5] => 0
[2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => [3,6,1,2,4,5] => 1
[2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,0,1,0,0,0] => [2,3,6,1,4,5] => 0
[2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => [4,6,1,2,3,5] => 1
[2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,1,1,0,1,0,0,0] => [2,4,6,1,3,5] => 1
[2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => [3,4,6,1,2,5] => 2
[2,4] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,1,0,0] => [2,3,4,6,1,5] => 0
[3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [5,6,1,2,3,4] => 1
[3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0] => [1,0,1,1,1,0,1,0,1,0,0,0] => [2,5,6,1,3,4] => 1
[3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [3,5,6,1,2,4] => 2
[3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,1,0,1,0,0] => [2,3,5,6,1,4] => 1
[4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [4,5,6,1,2,3] => 3
[4,2] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,1,0,1,0,1,0,1,0,0] => [2,4,5,6,1,3] => 2
[5,1] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [3,4,5,6,1,2] => 3
[6] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [2,3,4,5,6,1] => 0
[1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,2,3,4,5,6,7] => 0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of restricted non-inversions between exceedances.
This is for a permutation $\sigma$ of length $n$ given by
$$\operatorname{nie}(\sigma) = \#\{1 \leq i, j \leq n \mid i < j < \sigma(i) < \sigma(j) \}.$$
This is for a permutation $\sigma$ of length $n$ given by
$$\operatorname{nie}(\sigma) = \#\{1 \leq i, j \leq n \mid i < j < \sigma(i) < \sigma(j) \}.$$
Map
bounce path
Description
The bounce path determined by an integer composition.
Map
to 321-avoiding permutation (Billey-Jockusch-Stanley)
Description
The Billey-Jockusch-Stanley bijection to 321-avoiding permutations.
Map
inverse zeta map
Description
The inverse zeta map on Dyck paths.
See its inverse, the zeta map Mp00030zeta map, for the definition and details.
See its inverse, the zeta map Mp00030zeta map, for the definition and details.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!