Identifier
-
Mp00028:
Dyck paths
—reverse⟶
Dyck paths
Mp00137: Dyck paths —to symmetric ASM⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
St001557: Permutations ⟶ ℤ
Values
[1,0,1,0] => [1,0,1,0] => [[1,0],[0,1]] => [1,2] => 0
[1,1,0,0] => [1,1,0,0] => [[0,1],[1,0]] => [2,1] => 0
[1,0,1,0,1,0] => [1,0,1,0,1,0] => [[1,0,0],[0,1,0],[0,0,1]] => [1,2,3] => 0
[1,0,1,1,0,0] => [1,1,0,0,1,0] => [[0,1,0],[1,0,0],[0,0,1]] => [2,1,3] => 0
[1,1,0,0,1,0] => [1,0,1,1,0,0] => [[1,0,0],[0,0,1],[0,1,0]] => [1,3,2] => 1
[1,1,0,1,0,0] => [1,1,0,1,0,0] => [[0,1,0],[1,-1,1],[0,1,0]] => [1,3,2] => 1
[1,1,1,0,0,0] => [1,1,1,0,0,0] => [[0,0,1],[0,1,0],[1,0,0]] => [3,2,1] => 1
[1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0] => [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]] => [1,2,3,4] => 0
[1,0,1,0,1,1,0,0] => [1,1,0,0,1,0,1,0] => [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]] => [2,1,3,4] => 0
[1,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,0] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]] => [1,3,2,4] => 1
[1,0,1,1,0,1,0,0] => [1,1,0,1,0,0,1,0] => [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]] => [1,3,2,4] => 1
[1,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,0] => [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]] => [3,2,1,4] => 1
[1,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,0] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]] => [1,2,4,3] => 0
[1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]] => [2,1,4,3] => 0
[1,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,0] => [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]] => [1,2,4,3] => 0
[1,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,0] => [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]] => [1,2,4,3] => 0
[1,1,0,1,1,0,0,0] => [1,1,1,0,0,1,0,0] => [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]] => [2,1,4,3] => 0
[1,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0] => [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]] => [1,4,3,2] => 2
[1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,0] => [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]] => [1,4,3,2] => 2
[1,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,0] => [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]] => [1,4,3,2] => 2
[1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0] => [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]] => [4,3,2,1] => 2
[1,0,1,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0] => [1,1,0,0,1,0,1,0,1,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [2,1,3,4,5] => 0
[1,0,1,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,0,1,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [1,3,2,4,5] => 1
[1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [1,3,2,4,5] => 1
[1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [3,2,1,4,5] => 1
[1,0,1,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,0,1,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [1,2,4,3,5] => 0
[1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [2,1,4,3,5] => 0
[1,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,0,1,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [1,2,4,3,5] => 0
[1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [1,2,4,3,5] => 0
[1,0,1,1,0,1,1,0,0,0] => [1,1,1,0,0,1,0,0,1,0] => [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [2,1,4,3,5] => 0
[1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,0,1,0] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]] => [1,4,3,2,5] => 2
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]] => [1,4,3,2,5] => 2
[1,0,1,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,0,1,0] => [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]] => [1,4,3,2,5] => 2
[1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0,1,0] => [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1]] => [4,3,2,1,5] => 2
[1,1,0,0,1,0,1,0,1,0] => [1,0,1,0,1,0,1,1,0,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [1,2,3,5,4] => 0
[1,1,0,0,1,0,1,1,0,0] => [1,1,0,0,1,0,1,1,0,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [2,1,3,5,4] => 0
[1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [1,3,2,5,4] => 1
[1,1,0,0,1,1,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [1,3,2,5,4] => 1
[1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,1,0,0] => [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [3,2,1,5,4] => 1
[1,1,0,1,0,0,1,0,1,0] => [1,0,1,0,1,1,0,1,0,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => [1,2,3,5,4] => 0
[1,1,0,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => [2,1,3,5,4] => 0
[1,1,0,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,1,0,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => [1,2,3,5,4] => 0
[1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,1,0,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => [1,2,3,5,4] => 0
[1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,0,1,0,1,0,0] => [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => [2,1,3,5,4] => 0
[1,1,0,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,1,0,0] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]] => [1,3,2,5,4] => 1
[1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0] => [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]] => [1,3,2,5,4] => 1
[1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,1,0,0] => [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]] => [1,3,2,5,4] => 1
[1,1,0,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,1,0,0] => [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,-1,1],[0,0,0,1,0]] => [3,2,1,5,4] => 1
[1,1,1,0,0,0,1,0,1,0] => [1,0,1,0,1,1,1,0,0,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]] => [1,2,5,4,3] => 0
[1,1,1,0,0,0,1,1,0,0] => [1,1,0,0,1,1,1,0,0,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]] => [2,1,5,4,3] => 0
[1,1,1,0,0,1,0,0,1,0] => [1,0,1,1,0,1,1,0,0,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]] => [1,2,5,4,3] => 0
[1,1,1,0,0,1,0,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]] => [1,2,5,4,3] => 0
[1,1,1,0,0,1,1,0,0,0] => [1,1,1,0,0,1,1,0,0,0] => [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]] => [2,1,5,4,3] => 0
[1,1,1,0,1,0,0,0,1,0] => [1,0,1,1,1,0,1,0,0,0] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]] => [1,2,5,4,3] => 0
[1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]] => [1,2,5,4,3] => 0
[1,1,1,0,1,0,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]] => [1,2,5,4,3] => 0
[1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[1,0,-1,1,0],[0,0,1,0,0]] => [2,1,5,4,3] => 0
[1,1,1,1,0,0,0,0,1,0] => [1,0,1,1,1,1,0,0,0,0] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]] => [1,5,4,3,2] => 3
[1,1,1,1,0,0,0,1,0,0] => [1,1,0,1,1,1,0,0,0,0] => [[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]] => [1,5,4,3,2] => 3
[1,1,1,1,0,0,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [[0,0,1,0,0],[0,1,-1,0,1],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]] => [1,5,4,3,2] => 3
[1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0]] => [1,5,4,3,2] => 3
[1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0]] => [5,4,3,2,1] => 3
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of inversions of the second entry of a permutation.
This is, for a permutation π of length n,
#{2<k≤n∣π(2)>π(k)}.
The number of inversions of the first entry is St000054The first entry of the permutation. and the number of inversions of the third entry is St001556The number of inversions of the third entry of a permutation.. The sequence of inversions of all the entries define the Lehmer code of a permutation.
This is, for a permutation π of length n,
#{2<k≤n∣π(2)>π(k)}.
The number of inversions of the first entry is St000054The first entry of the permutation. and the number of inversions of the third entry is St001556The number of inversions of the third entry of a permutation.. The sequence of inversions of all the entries define the Lehmer code of a permutation.
Map
to left key permutation
Description
Return the permutation of the left key of an alternating sign matrix.
This was originally defined by Lascoux and then further studied by Aval [1].
This was originally defined by Lascoux and then further studied by Aval [1].
Map
reverse
Description
The reversal of a Dyck path.
This is the Dyck path obtained by reading the path backwards.
This is the Dyck path obtained by reading the path backwards.
Map
to symmetric ASM
Description
The diagonally symmetric alternating sign matrix corresponding to a Dyck path.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!