edit this statistic or download as text // json
Identifier
Values
=>
[1]=>1 [1,1]=>1 [2]=>1 [1,1,1]=>1 [1,2]=>1 [2,1]=>1 [3]=>1 [1,1,1,1]=>2 [1,1,2]=>1 [1,2,1]=>2 [1,3]=>1 [2,1,1]=>1 [2,2]=>2 [3,1]=>1 [4]=>1 [1,1,1,1,1]=>10 [1,1,1,2]=>3 [1,1,2,1]=>2 [1,1,3]=>1 [1,2,1,1]=>2 [1,2,2]=>2 [1,3,1]=>1 [1,4]=>1 [2,1,1,1]=>1 [2,1,2]=>2 [2,2,1]=>3 [2,3]=>2 [3,1,1]=>1 [3,2]=>1 [4,1]=>1 [5]=>1 [1,1,1,1,1,1]=>53 [1,1,1,1,2]=>11 [1,1,1,2,1]=>1 [1,1,1,3]=>3 [1,1,2,1,1]=>13 [1,1,2,2]=>3 [1,1,3,1]=>3 [1,1,4]=>1 [1,2,1,1,1]=>13 [1,2,1,2]=>3 [1,2,2,1]=>6 [1,2,3]=>2 [1,3,1,1]=>4 [1,3,2]=>2 [1,4,1]=>2 [1,5]=>1 [2,1,1,1,1]=>3 [2,1,1,2]=>1 [2,1,2,1]=>4 [2,1,3]=>2 [2,2,1,1]=>3 [2,2,2]=>5 [2,3,1]=>2 [2,4]=>2 [3,1,1,1]=>1 [3,1,2]=>3 [3,2,1]=>2 [3,3]=>2 [4,1,1]=>1 [4,2]=>2 [5,1]=>1 [6]=>1 [1,1,1,1,1,1,1]=>589 [1,1,1,1,1,2]=>61 [1,1,1,1,2,1]=>4 [1,1,1,1,3]=>11 [1,1,1,2,1,1]=>53 [1,1,1,2,2]=>3 [1,1,1,3,1]=>3 [1,1,1,4]=>3 [1,1,2,1,1,1]=>42 [1,1,2,1,2]=>16 [1,1,2,2,1]=>5 [1,1,2,3]=>3 [1,1,3,1,1]=>9 [1,1,3,2]=>6 [1,1,4,1]=>2 [1,1,5]=>1 [1,2,1,1,1,1]=>40 [1,2,1,1,2]=>16 [1,2,1,2,1]=>16 [1,2,1,3]=>4 [1,2,2,1,1]=>9 [1,2,2,2]=>9 [1,2,3,1]=>3 [1,2,4]=>2 [1,3,1,1,1]=>10 [1,3,1,2]=>5 [1,3,2,1]=>3 [1,3,3]=>2 [1,4,1,1]=>2 [1,4,2]=>2 [1,5,1]=>1 [1,6]=>1 [2,1,1,1,1,1]=>11 [2,1,1,1,2]=>4 [2,1,1,2,1]=>3 [2,1,1,3]=>1 [2,1,2,1,1]=>14 [2,1,2,2]=>6 [2,1,3,1]=>3 [2,1,4]=>2 [2,2,1,1,1]=>3 [2,2,1,2]=>5 [2,2,2,1]=>8 [2,2,3]=>6 [2,3,1,1]=>2 [2,3,2]=>3 [2,4,1]=>2 [2,5]=>2 [3,1,1,1,1]=>3 [3,1,1,2]=>3 [3,1,2,1]=>2 [3,1,3]=>3 [3,2,1,1]=>2 [3,2,2]=>3 [3,3,1]=>4 [3,4]=>2 [4,1,1,1]=>1 [4,1,2]=>2 [4,2,1]=>2 [4,3]=>2 [5,1,1]=>1 [5,2]=>1 [6,1]=>1 [7]=>1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of graphs with the given composition of multiplicities of Laplacian eigenvalues.
Code
def mapping(G):
    if G.num_verts() > 30:
        raise ValueError("Graph too big for this map")
    s = G.spectrum(laplacian=True)
    c = []
    i, o = 0, None
    for v in s:
        if v != o:
            c.append(i)
            i, o = 0, v
        i += 1
    c.append(i)
    return Composition(c[1:])
@cached_function
def preimages(level):
    print("computing preimages for level", level)
    result = dict()
    for el in graphs(level):
        image = mapping(el)
        result[image] = result.get(image, 0) + 1
    return result

def statistic(x):
    return preimages(x.size()).get(x, 0)

Created
Sep 12, 2020 at 09:17 by Martin Rubey
Updated
Sep 12, 2020 at 09:17 by Martin Rubey