Identifier
- St001591: Integer compositions ⟶ ℤ
Values
=>
[1]=>1
[1,1]=>1
[2]=>1
[1,1,1]=>1
[1,2]=>1
[2,1]=>1
[3]=>1
[1,1,1,1]=>2
[1,1,2]=>1
[1,2,1]=>2
[1,3]=>1
[2,1,1]=>1
[2,2]=>2
[3,1]=>1
[4]=>1
[1,1,1,1,1]=>10
[1,1,1,2]=>3
[1,1,2,1]=>2
[1,1,3]=>1
[1,2,1,1]=>2
[1,2,2]=>2
[1,3,1]=>1
[1,4]=>1
[2,1,1,1]=>1
[2,1,2]=>2
[2,2,1]=>3
[2,3]=>2
[3,1,1]=>1
[3,2]=>1
[4,1]=>1
[5]=>1
[1,1,1,1,1,1]=>53
[1,1,1,1,2]=>11
[1,1,1,2,1]=>1
[1,1,1,3]=>3
[1,1,2,1,1]=>13
[1,1,2,2]=>3
[1,1,3,1]=>3
[1,1,4]=>1
[1,2,1,1,1]=>13
[1,2,1,2]=>3
[1,2,2,1]=>6
[1,2,3]=>2
[1,3,1,1]=>4
[1,3,2]=>2
[1,4,1]=>2
[1,5]=>1
[2,1,1,1,1]=>3
[2,1,1,2]=>1
[2,1,2,1]=>4
[2,1,3]=>2
[2,2,1,1]=>3
[2,2,2]=>5
[2,3,1]=>2
[2,4]=>2
[3,1,1,1]=>1
[3,1,2]=>3
[3,2,1]=>2
[3,3]=>2
[4,1,1]=>1
[4,2]=>2
[5,1]=>1
[6]=>1
[1,1,1,1,1,1,1]=>589
[1,1,1,1,1,2]=>61
[1,1,1,1,2,1]=>4
[1,1,1,1,3]=>11
[1,1,1,2,1,1]=>53
[1,1,1,2,2]=>3
[1,1,1,3,1]=>3
[1,1,1,4]=>3
[1,1,2,1,1,1]=>42
[1,1,2,1,2]=>16
[1,1,2,2,1]=>5
[1,1,2,3]=>3
[1,1,3,1,1]=>9
[1,1,3,2]=>6
[1,1,4,1]=>2
[1,1,5]=>1
[1,2,1,1,1,1]=>40
[1,2,1,1,2]=>16
[1,2,1,2,1]=>16
[1,2,1,3]=>4
[1,2,2,1,1]=>9
[1,2,2,2]=>9
[1,2,3,1]=>3
[1,2,4]=>2
[1,3,1,1,1]=>10
[1,3,1,2]=>5
[1,3,2,1]=>3
[1,3,3]=>2
[1,4,1,1]=>2
[1,4,2]=>2
[1,5,1]=>1
[1,6]=>1
[2,1,1,1,1,1]=>11
[2,1,1,1,2]=>4
[2,1,1,2,1]=>3
[2,1,1,3]=>1
[2,1,2,1,1]=>14
[2,1,2,2]=>6
[2,1,3,1]=>3
[2,1,4]=>2
[2,2,1,1,1]=>3
[2,2,1,2]=>5
[2,2,2,1]=>8
[2,2,3]=>6
[2,3,1,1]=>2
[2,3,2]=>3
[2,4,1]=>2
[2,5]=>2
[3,1,1,1,1]=>3
[3,1,1,2]=>3
[3,1,2,1]=>2
[3,1,3]=>3
[3,2,1,1]=>2
[3,2,2]=>3
[3,3,1]=>4
[3,4]=>2
[4,1,1,1]=>1
[4,1,2]=>2
[4,2,1]=>2
[4,3]=>2
[5,1,1]=>1
[5,2]=>1
[6,1]=>1
[7]=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of graphs with the given composition of multiplicities of Laplacian eigenvalues.
Code
def mapping(G): if G.num_verts() > 30: raise ValueError("Graph too big for this map") s = G.spectrum(laplacian=True) c = [] i, o = 0, None for v in s: if v != o: c.append(i) i, o = 0, v i += 1 c.append(i) return Composition(c[1:]) @cached_function def preimages(level): print("computing preimages for level", level) result = dict() for el in graphs(level): image = mapping(el) result[image] = result.get(image, 0) + 1 return result def statistic(x): return preimages(x.size()).get(x, 0)
Created
Sep 12, 2020 at 09:17 by Martin Rubey
Updated
Sep 12, 2020 at 09:17 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!