Identifier
Values
([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [3,1] => 0
([(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,1),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [3,1] => 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [3,1] => 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [3,1] => 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [3,1] => 0
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [4,1] => 0
([(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(1,2),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [3,1] => 0
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [3,1] => 0
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [3,1] => 0
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => 4
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [3,1] => 0
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [3,1] => 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [3,1] => 0
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [3,1] => 0
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [3,1] => 0
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [3,1] => 0
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [3,1] => 0
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => [2,1] => 0
>>> Load all 147 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles.
Map
Laplacian multiplicities
Description
The composition of multiplicities of the Laplacian eigenvalues.
Let $\lambda_1 > \lambda_2 > \dots$ be the eigenvalues of the Laplacian matrix of a graph on $n$ vertices. Then this map returns the composition $a_1,\dots,a_k$ of $n$ where $a_i$ is the multiplicity of $\lambda_i$.
Let $\lambda_1 > \lambda_2 > \dots$ be the eigenvalues of the Laplacian matrix of a graph on $n$ vertices. Then this map returns the composition $a_1,\dots,a_k$ of $n$ where $a_i$ is the multiplicity of $\lambda_i$.
Map
Ore closure
Description
The Ore closure of a graph.
The Ore closure of a connected graph $G$ has the same vertices as $G$, and the smallest set of edges containing the edges of $G$ such that for any two vertices $u$ and $v$ whose sum of degrees is at least the number of vertices, then $(u,v)$ is also an edge.
For disconnected graphs, we compute the closure separately for each component.
The Ore closure of a connected graph $G$ has the same vertices as $G$, and the smallest set of edges containing the edges of $G$ such that for any two vertices $u$ and $v$ whose sum of degrees is at least the number of vertices, then $(u,v)$ is also an edge.
For disconnected graphs, we compute the closure separately for each component.
Map
core
Description
The core of a graph.
The core of a graph $G$ is the smallest graph $C$ such that there is a homomorphism from $G$ to $C$ and a homomorphism from $C$ to $G$.
Note that the core of a graph is not necessarily connected, see [2].
The core of a graph $G$ is the smallest graph $C$ such that there is a homomorphism from $G$ to $C$ and a homomorphism from $C$ to $G$.
Note that the core of a graph is not necessarily connected, see [2].
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!