Identifier
Values
([],1) => ([],1) => ([],1) => [1] => 0
([(0,1)],2) => ([(0,1)],2) => ([],2) => [2] => 0
([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => ([],3) => [3] => 0
([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(2,3)],4) => [3,1] => 1
([(0,3),(2,1),(3,2)],4) => ([(0,3),(2,1),(3,2)],4) => ([],4) => [4] => 0
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => ([(2,3),(2,4),(3,4)],5) => [3,1,1] => 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(2,4),(3,4)],5) => [4,1] => 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(3,4)],5) => [4,1] => 1
([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => [5] => 0
([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(3,4)],5) => [4,1] => 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6) => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6) => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => 1
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6) => ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6) => ([(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6) => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6) => ([(3,4),(3,5),(4,5)],6) => [4,1,1] => 1
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => ([(3,5),(4,5)],6) => [5,1] => 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => ([(4,5)],6) => [5,1] => 1
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => ([(2,5),(3,5),(4,5)],6) => [5,1] => 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(4,5)],6) => [5,1] => 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => ([(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(4,5)],6) => [5,1] => 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6) => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6) => ([(3,4),(3,5),(4,5)],6) => [4,1,1] => 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => ([(2,4),(2,5),(3,4),(3,5)],6) => [4,2] => 1
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(2,5),(3,4),(4,5)],6) => [4,2] => 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => [6] => 0
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => ([(3,5),(4,5)],6) => [5,1] => 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => 1
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7) => ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7) => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7) => ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7) => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7) => ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7) => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => 1
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7) => ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7) => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => 1
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7) => ([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7) => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => 1
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7) => ([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7) => ([(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => 1
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7) => ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7) => ([(4,5),(4,6),(5,6)],7) => [5,1,1] => 1
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7) => ([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7) => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => 1
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7) => ([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7) => ([(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7) => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => 1
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => ([(5,6)],7) => [6,1] => 1
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7) => ([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7) => ([(3,5),(3,6),(4,5),(4,6)],7) => [5,2] => 1
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => ([(3,6),(4,5),(5,6)],7) => [5,2] => 1
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7) => ([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7) => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => 1
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7) => ([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7) => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => 1
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7) => ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7) => ([(4,5),(4,6),(5,6)],7) => [5,1,1] => 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7) => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7) => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => ([(3,6),(4,5)],7) => [5,2] => 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7) => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7) => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7) => ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7) => ([(4,5),(4,6),(5,6)],7) => [5,1,1] => 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7) => ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7) => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => 1
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7) => ([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7) => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [4,2,1] => 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [4,2,1] => 1
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(5,6)],7) => [6,1] => 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7) => ([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7) => ([(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7) => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7) => ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [4,2,1] => 1
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7) => ([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7) => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => 1
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7) => ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7) => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [4,2,1] => 1
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7) => ([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7) => ([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,1] => 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7) => ([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7) => ([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [5,2] => 1
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => ([(3,6),(4,5),(5,6)],7) => [5,2] => 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7) => ([(2,6),(3,6),(4,5),(5,6)],7) => [5,2] => 1
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7) => ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7) => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [4,2,1] => 1
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7) => ([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7) => ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [4,2,1] => 1
([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7) => ([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7) => ([(3,6),(4,6),(5,6)],7) => [6,1] => 1
([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7) => ([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7) => ([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => 1
([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => ([(4,6),(5,6)],7) => [6,1] => 1
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7) => ([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7) => ([(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => 1
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7) => ([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7) => ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [4,2,1] => 1
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7) => ([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7) => ([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [5,2] => 1
([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => ([(2,6),(3,6),(4,6),(5,6)],7) => [6,1] => 1
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(5,6)],7) => [6,1] => 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7) => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7) => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => 1
([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7) => ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7) => ([(4,6),(5,6)],7) => [6,1] => 1
([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7) => ([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7) => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [5,2] => 1
([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7) => ([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7) => ([(4,6),(5,6)],7) => [6,1] => 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7) => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7) => ([(2,6),(3,6),(4,5),(5,6)],7) => [5,2] => 1
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => [7] => 0
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7) => ([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7) => ([(3,5),(3,6),(4,5),(4,6)],7) => [5,2] => 1
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7) => ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7) => ([(3,6),(4,6),(5,6)],7) => [6,1] => 1
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(5,6)],7) => [6,1] => 1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The degree of asymmetry of an integer composition.
This is the number of pairs of symmetrically positioned distinct entries.
This is the number of pairs of symmetrically positioned distinct entries.
Map
incomparability graph
Description
The incomparability graph of a poset.
Map
to poset
Description
Return the poset corresponding to the lattice.
Map
chromatic difference sequence
Description
The chromatic difference sequence of a graph.
Let $G$ be a simple graph with chromatic number $\kappa$. Let $\alpha_m$ be the maximum number of vertices in a $m$-colorable subgraph of $G$. Set $\delta_m=\alpha_m-\alpha_{m-1}$. The sequence $\delta_1,\delta_2,\dots\delta_\kappa$ is the chromatic difference sequence of $G$.
All entries of the chromatic difference sequence are positive: $\alpha_m > \alpha_{m-1}$ for $m < \kappa$, because we can assign any uncolored vertex of a partial coloring with $m-1$ colors the color $m$. Therefore, the chromatic difference sequence is a composition of the number of vertices of $G$ into $\kappa$ parts.
Let $G$ be a simple graph with chromatic number $\kappa$. Let $\alpha_m$ be the maximum number of vertices in a $m$-colorable subgraph of $G$. Set $\delta_m=\alpha_m-\alpha_{m-1}$. The sequence $\delta_1,\delta_2,\dots\delta_\kappa$ is the chromatic difference sequence of $G$.
All entries of the chromatic difference sequence are positive: $\alpha_m > \alpha_{m-1}$ for $m < \kappa$, because we can assign any uncolored vertex of a partial coloring with $m-1$ colors the color $m$. Therefore, the chromatic difference sequence is a composition of the number of vertices of $G$ into $\kappa$ parts.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!