Identifier
- St001741: Permutations ⟶ ℤ
Values
[1] => 1
[1,2] => 1
[2,1] => 1
[1,2,3] => 1
[1,3,2] => 2
[2,1,3] => 2
[2,3,1] => 2
[3,1,2] => 2
[3,2,1] => 1
[1,2,3,4] => 1
[1,2,4,3] => 2
[1,3,2,4] => 2
[1,3,4,2] => 2
[1,4,2,3] => 2
[1,4,3,2] => 2
[2,1,3,4] => 2
[2,1,4,3] => 2
[2,3,1,4] => 2
[2,3,4,1] => 2
[2,4,1,3] => 2
[2,4,3,1] => 2
[3,1,2,4] => 2
[3,1,4,2] => 2
[3,2,1,4] => 2
[3,2,4,1] => 2
[3,4,1,2] => 2
[3,4,2,1] => 2
[4,1,2,3] => 2
[4,1,3,2] => 2
[4,2,1,3] => 2
[4,2,3,1] => 2
[4,3,1,2] => 2
[4,3,2,1] => 1
[1,2,3,4,5] => 1
[1,2,3,5,4] => 2
[1,2,4,3,5] => 2
[1,2,4,5,3] => 2
[1,2,5,3,4] => 2
[1,2,5,4,3] => 2
[1,3,2,4,5] => 2
[1,3,2,5,4] => 2
[1,3,4,2,5] => 2
[1,3,4,5,2] => 2
[1,3,5,2,4] => 2
[1,3,5,4,2] => 2
[1,4,2,3,5] => 2
[1,4,2,5,3] => 2
[1,4,3,2,5] => 2
[1,4,3,5,2] => 2
[1,4,5,2,3] => 2
[1,4,5,3,2] => 2
[1,5,2,3,4] => 2
[1,5,2,4,3] => 2
[1,5,3,2,4] => 2
[1,5,3,4,2] => 2
[1,5,4,2,3] => 2
[1,5,4,3,2] => 2
[2,1,3,4,5] => 2
[2,1,3,5,4] => 2
[2,1,4,3,5] => 2
[2,1,4,5,3] => 2
[2,1,5,3,4] => 2
[2,1,5,4,3] => 2
[2,3,1,4,5] => 2
[2,3,1,5,4] => 2
[2,3,4,1,5] => 2
[2,3,4,5,1] => 2
[2,3,5,1,4] => 2
[2,3,5,4,1] => 2
[2,4,1,3,5] => 2
[2,4,1,5,3] => 2
[2,4,3,1,5] => 2
[2,4,3,5,1] => 2
[2,4,5,1,3] => 2
[2,4,5,3,1] => 2
[2,5,1,3,4] => 2
[2,5,1,4,3] => 2
[2,5,3,1,4] => 3
[2,5,3,4,1] => 2
[2,5,4,1,3] => 2
[2,5,4,3,1] => 2
[3,1,2,4,5] => 2
[3,1,2,5,4] => 2
[3,1,4,2,5] => 2
[3,1,4,5,2] => 2
[3,1,5,2,4] => 2
[3,1,5,4,2] => 2
[3,2,1,4,5] => 2
[3,2,1,5,4] => 2
[3,2,4,1,5] => 2
[3,2,4,5,1] => 2
[3,2,5,1,4] => 2
[3,2,5,4,1] => 2
[3,4,1,2,5] => 2
[3,4,1,5,2] => 2
[3,4,2,1,5] => 2
[3,4,2,5,1] => 2
[3,4,5,1,2] => 2
[3,4,5,2,1] => 2
[3,5,1,2,4] => 2
[3,5,1,4,2] => 2
>>> Load all 1200 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The largest integer such that all patterns of this size are contained in the permutation.
Code
def statistic(pi):
for n in range(len(pi)+2):
if not all(pi.has_pattern(sigma) for sigma in Permutations(n)):
return n-1
Created
Sep 13, 2021 at 16:43 by Martin Rubey
Updated
Sep 13, 2021 at 16:43 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!