Identifier
Values
[[1]] => [1] => ([],1) => 0
[[1,2]] => [2] => ([],2) => 0
[[1],[2]] => [1,1] => ([(0,1)],2) => 0
[[1,2,3]] => [3] => ([],3) => 0
[[1,3],[2]] => [1,2] => ([(1,2)],3) => 1
[[1,2],[3]] => [2,1] => ([(0,2),(1,2)],3) => 1
[[1],[2],[3]] => [1,1,1] => ([(0,1),(0,2),(1,2)],3) => 0
[[1,2,3,4]] => [4] => ([],4) => 0
[[1,3,4],[2]] => [1,3] => ([(2,3)],4) => 1
[[1,2,4],[3]] => [2,2] => ([(1,3),(2,3)],4) => 2
[[1,2,3],[4]] => [3,1] => ([(0,3),(1,3),(2,3)],4) => 2
[[1,3],[2,4]] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 2
[[1,2],[3,4]] => [2,2] => ([(1,3),(2,3)],4) => 2
[[1,4],[2],[3]] => [1,1,2] => ([(1,2),(1,3),(2,3)],4) => 2
[[1,3],[2],[4]] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 2
[[1,2],[3],[4]] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 1
[[1],[2],[3],[4]] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 0
[[1,2,3,4,5]] => [5] => ([],5) => 0
[[1,3,4,5],[2]] => [1,4] => ([(3,4)],5) => 1
[[1,2,4,5],[3]] => [2,3] => ([(2,4),(3,4)],5) => 2
[[1,2,3,5],[4]] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[[1,2,3,4],[5]] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
[[1,3,5],[2,4]] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,2,5],[3,4]] => [2,3] => ([(2,4),(3,4)],5) => 2
[[1,3,4],[2,5]] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,2,4],[3,5]] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,2,3],[4,5]] => [3,2] => ([(1,4),(2,4),(3,4)],5) => 3
[[1,4,5],[2],[3]] => [1,1,3] => ([(2,3),(2,4),(3,4)],5) => 2
[[1,3,5],[2],[4]] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,2,5],[3],[4]] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,3,4],[2],[5]] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,2,4],[3],[5]] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,2,3],[4],[5]] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[[1,4],[2,5],[3]] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,3],[2,5],[4]] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,2],[3,5],[4]] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,3],[2,4],[5]] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[[1,2],[3,4],[5]] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,5],[2],[3],[4]] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,4],[2],[3],[5]] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[1,3],[2],[4],[5]] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[[1,2],[3],[4],[5]] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[[1],[2],[3],[4],[5]] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 0
[[1,2,3,4,5,6]] => [6] => ([],6) => 0
[[1,3,4,5,6],[2]] => [1,5] => ([(4,5)],6) => 1
[[1,2,4,5,6],[3]] => [2,4] => ([(3,5),(4,5)],6) => 2
[[1,2,3,5,6],[4]] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[[1,2,3,4,6],[5]] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 4
[[1,2,3,4,5],[6]] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 4
[[1,3,5,6],[2,4]] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 3
[[1,2,5,6],[3,4]] => [2,4] => ([(3,5),(4,5)],6) => 2
[[1,3,4,6],[2,5]] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,2,4,6],[3,5]] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,2,3,6],[4,5]] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[[1,3,4,5],[2,6]] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,2,4,5],[3,6]] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,2,3,5],[4,6]] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,2,3,4],[5,6]] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => 4
[[1,4,5,6],[2],[3]] => [1,1,4] => ([(3,4),(3,5),(4,5)],6) => 2
[[1,3,5,6],[2],[4]] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 3
[[1,2,5,6],[3],[4]] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[1,3,4,6],[2],[5]] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,2,4,6],[3],[5]] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,2,3,6],[4],[5]] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,3,4,5],[2],[6]] => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,2,4,5],[3],[6]] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,2,3,5],[4],[6]] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,2,3,4],[5],[6]] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[1,3,5],[2,4,6]] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,2,5],[3,4,6]] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,3,4],[2,5,6]] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,2,4],[3,5,6]] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,2,3],[4,5,6]] => [3,3] => ([(2,5),(3,5),(4,5)],6) => 3
[[1,4,6],[2,5],[3]] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,3,6],[2,5],[4]] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => 3
[[1,2,6],[3,5],[4]] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[1,3,6],[2,4],[5]] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,2,6],[3,4],[5]] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,4,5],[2,6],[3]] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,3,5],[2,6],[4]] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,2,5],[3,6],[4]] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,3,4],[2,6],[5]] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,2,4],[3,6],[5]] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,2,3],[4,6],[5]] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,3,5],[2,4],[6]] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,2,5],[3,4],[6]] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,3,4],[2,5],[6]] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[1,2,4],[3,5],[6]] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[1,2,3],[4,5],[6]] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,5,6],[2],[3],[4]] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[1,4,6],[2],[3],[5]] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,3,6],[2],[4],[5]] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,2,6],[3],[4],[5]] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,4,5],[2],[3],[6]] => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,3,5],[2],[4],[6]] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,2,5],[3],[4],[6]] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,3,4],[2],[5],[6]] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[1,2,4],[3],[5],[6]] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[1,2,3],[4],[5],[6]] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,4],[2,5],[3,6]] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,3],[2,5],[4,6]] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
>>> Load all 119 entries. <<<
[[1,2],[3,5],[4,6]] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,3],[2,4],[5,6]] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,2],[3,4],[5,6]] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,5],[2,6],[3],[4]] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,4],[2,6],[3],[5]] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,3],[2,6],[4],[5]] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,2],[3,6],[4],[5]] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,4],[2,5],[3],[6]] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[1,3],[2,5],[4],[6]] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,2],[3,5],[4],[6]] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,3],[2,4],[5],[6]] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,2],[3,4],[5],[6]] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[1,6],[2],[3],[4],[5]] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,5],[2],[3],[4],[6]] => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[1,4],[2],[3],[5],[6]] => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[1,3],[2],[4],[5],[6]] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[1,2],[3],[4],[5],[6]] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[1],[2],[3],[4],[5],[6]] => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The difference of the maximal and the minimal degree in a graph.
The graph is regular if and only if this statistic is zero.
Map
horizontal strip sizes
Description
The composition of horizontal strip sizes.
We associate to a standard Young tableau $T$ the composition $(c_1,\dots,c_k)$, such that $k$ is minimal and the numbers $c_1+\dots+c_i + 1,\dots,c_1+\dots+c_{i+1}$ form a horizontal strip in $T$ for all $i$.
Map
to threshold graph
Description
The threshold graph corresponding to the composition.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.