Identifier
Values
[(1,2)] => 1
[(1,2),(3,4)] => 1
[(1,3),(2,4)] => 2
[(1,4),(2,3)] => 1
[(1,2),(3,4),(5,6)] => 1
[(1,3),(2,4),(5,6)] => 2
[(1,4),(2,3),(5,6)] => 1
[(1,5),(2,3),(4,6)] => 2
[(1,6),(2,3),(4,5)] => 1
[(1,6),(2,4),(3,5)] => 2
[(1,5),(2,4),(3,6)] => 4
[(1,4),(2,5),(3,6)] => 5
[(1,3),(2,5),(4,6)] => 4
[(1,2),(3,5),(4,6)] => 2
[(1,2),(3,6),(4,5)] => 1
[(1,3),(2,6),(4,5)] => 2
[(1,4),(2,6),(3,5)] => 4
[(1,5),(2,6),(3,4)] => 2
[(1,6),(2,5),(3,4)] => 1
[(1,2),(3,4),(5,6),(7,8)] => 1
[(1,3),(2,4),(5,6),(7,8)] => 2
[(1,4),(2,3),(5,6),(7,8)] => 1
[(1,5),(2,3),(4,6),(7,8)] => 2
[(1,6),(2,3),(4,5),(7,8)] => 1
[(1,7),(2,3),(4,5),(6,8)] => 2
[(1,8),(2,3),(4,5),(6,7)] => 1
[(1,8),(2,4),(3,5),(6,7)] => 2
[(1,7),(2,4),(3,5),(6,8)] => 4
[(1,6),(2,4),(3,5),(7,8)] => 2
[(1,5),(2,4),(3,6),(7,8)] => 4
[(1,4),(2,5),(3,6),(7,8)] => 5
[(1,3),(2,5),(4,6),(7,8)] => 4
[(1,2),(3,5),(4,6),(7,8)] => 2
[(1,2),(3,6),(4,5),(7,8)] => 1
[(1,3),(2,6),(4,5),(7,8)] => 2
[(1,4),(2,6),(3,5),(7,8)] => 4
[(1,5),(2,6),(3,4),(7,8)] => 2
[(1,6),(2,5),(3,4),(7,8)] => 1
[(1,7),(2,5),(3,4),(6,8)] => 2
[(1,8),(2,5),(3,4),(6,7)] => 1
[(1,8),(2,6),(3,4),(5,7)] => 2
[(1,7),(2,6),(3,4),(5,8)] => 4
[(1,6),(2,7),(3,4),(5,8)] => 5
[(1,5),(2,7),(3,4),(6,8)] => 4
[(1,4),(2,7),(3,5),(6,8)] => 8
[(1,3),(2,7),(4,5),(6,8)] => 4
[(1,2),(3,7),(4,5),(6,8)] => 2
[(1,2),(3,8),(4,5),(6,7)] => 1
[(1,3),(2,8),(4,5),(6,7)] => 2
[(1,4),(2,8),(3,5),(6,7)] => 4
[(1,5),(2,8),(3,4),(6,7)] => 2
[(1,6),(2,8),(3,4),(5,7)] => 4
[(1,7),(2,8),(3,4),(5,6)] => 2
[(1,8),(2,7),(3,4),(5,6)] => 1
[(1,8),(2,7),(3,5),(4,6)] => 2
[(1,7),(2,8),(3,5),(4,6)] => 4
[(1,6),(2,8),(3,5),(4,7)] => 8
[(1,5),(2,8),(3,6),(4,7)] => 10
[(1,4),(2,8),(3,6),(5,7)] => 8
[(1,3),(2,8),(4,6),(5,7)] => 4
[(1,2),(3,8),(4,6),(5,7)] => 2
[(1,2),(3,7),(4,6),(5,8)] => 4
[(1,3),(2,7),(4,6),(5,8)] => 8
[(1,4),(2,7),(3,6),(5,8)] => 12
[(1,5),(2,7),(3,6),(4,8)] => 13
[(1,6),(2,7),(3,5),(4,8)] => 10
[(1,7),(2,6),(3,5),(4,8)] => 8
[(1,8),(2,6),(3,5),(4,7)] => 4
[(1,8),(2,5),(3,6),(4,7)] => 5
[(1,7),(2,5),(3,6),(4,8)] => 10
[(1,6),(2,5),(3,7),(4,8)] => 13
[(1,5),(2,6),(3,7),(4,8)] => 14
[(1,4),(2,6),(3,7),(5,8)] => 13
[(1,3),(2,6),(4,7),(5,8)] => 10
[(1,2),(3,6),(4,7),(5,8)] => 5
[(1,2),(3,5),(4,7),(6,8)] => 4
[(1,3),(2,5),(4,7),(6,8)] => 8
[(1,4),(2,5),(3,7),(6,8)] => 10
[(1,5),(2,4),(3,7),(6,8)] => 8
[(1,6),(2,4),(3,7),(5,8)] => 10
[(1,7),(2,4),(3,6),(5,8)] => 8
[(1,8),(2,4),(3,6),(5,7)] => 4
[(1,8),(2,3),(4,6),(5,7)] => 2
[(1,7),(2,3),(4,6),(5,8)] => 4
[(1,6),(2,3),(4,7),(5,8)] => 5
[(1,5),(2,3),(4,7),(6,8)] => 4
[(1,4),(2,3),(5,7),(6,8)] => 2
[(1,3),(2,4),(5,7),(6,8)] => 4
[(1,2),(3,4),(5,7),(6,8)] => 2
[(1,2),(3,4),(5,8),(6,7)] => 1
[(1,3),(2,4),(5,8),(6,7)] => 2
[(1,4),(2,3),(5,8),(6,7)] => 1
[(1,5),(2,3),(4,8),(6,7)] => 2
[(1,6),(2,3),(4,8),(5,7)] => 4
[(1,7),(2,3),(4,8),(5,6)] => 2
[(1,8),(2,3),(4,7),(5,6)] => 1
[(1,8),(2,4),(3,7),(5,6)] => 2
[(1,7),(2,4),(3,8),(5,6)] => 4
[(1,6),(2,4),(3,8),(5,7)] => 8
[(1,5),(2,4),(3,8),(6,7)] => 4
[(1,4),(2,5),(3,8),(6,7)] => 5
>>> Load all 1069 entries. <<<[(1,3),(2,5),(4,8),(6,7)] => 4
[(1,2),(3,5),(4,8),(6,7)] => 2
[(1,2),(3,6),(4,8),(5,7)] => 4
[(1,3),(2,6),(4,8),(5,7)] => 8
[(1,4),(2,6),(3,8),(5,7)] => 10
[(1,5),(2,6),(3,8),(4,7)] => 13
[(1,6),(2,5),(3,8),(4,7)] => 12
[(1,7),(2,5),(3,8),(4,6)] => 8
[(1,8),(2,5),(3,7),(4,6)] => 4
[(1,8),(2,6),(3,7),(4,5)] => 2
[(1,7),(2,6),(3,8),(4,5)] => 4
[(1,6),(2,7),(3,8),(4,5)] => 5
[(1,5),(2,7),(3,8),(4,6)] => 10
[(1,4),(2,7),(3,8),(5,6)] => 5
[(1,3),(2,7),(4,8),(5,6)] => 4
[(1,2),(3,7),(4,8),(5,6)] => 2
[(1,2),(3,8),(4,7),(5,6)] => 1
[(1,3),(2,8),(4,7),(5,6)] => 2
[(1,4),(2,8),(3,7),(5,6)] => 4
[(1,5),(2,8),(3,7),(4,6)] => 8
[(1,6),(2,8),(3,7),(4,5)] => 4
[(1,7),(2,8),(3,6),(4,5)] => 2
[(1,8),(2,7),(3,6),(4,5)] => 1
[(1,2),(3,4),(5,6),(7,8),(9,10)] => 1
[(1,3),(2,4),(5,6),(7,8),(9,10)] => 2
[(1,4),(2,3),(5,6),(7,8),(9,10)] => 1
[(1,5),(2,3),(4,6),(7,8),(9,10)] => 2
[(1,6),(2,3),(4,5),(7,8),(9,10)] => 1
[(1,7),(2,3),(4,5),(6,8),(9,10)] => 2
[(1,8),(2,3),(4,5),(6,7),(9,10)] => 1
[(1,9),(2,3),(4,5),(6,7),(8,10)] => 2
[(1,10),(2,3),(4,5),(6,7),(8,9)] => 1
[(1,10),(2,4),(3,5),(6,7),(8,9)] => 2
[(1,9),(2,4),(3,5),(6,7),(8,10)] => 4
[(1,8),(2,4),(3,5),(6,7),(9,10)] => 2
[(1,7),(2,4),(3,5),(6,8),(9,10)] => 4
[(1,6),(2,4),(3,5),(7,8),(9,10)] => 2
[(1,5),(2,4),(3,6),(7,8),(9,10)] => 4
[(1,4),(2,5),(3,6),(7,8),(9,10)] => 5
[(1,3),(2,5),(4,6),(7,8),(9,10)] => 4
[(1,2),(3,5),(4,6),(7,8),(9,10)] => 2
[(1,2),(3,6),(4,5),(7,8),(9,10)] => 1
[(1,3),(2,6),(4,5),(7,8),(9,10)] => 2
[(1,4),(2,6),(3,5),(7,8),(9,10)] => 4
[(1,5),(2,6),(3,4),(7,8),(9,10)] => 2
[(1,6),(2,5),(3,4),(7,8),(9,10)] => 1
[(1,7),(2,5),(3,4),(6,8),(9,10)] => 2
[(1,8),(2,5),(3,4),(6,7),(9,10)] => 1
[(1,9),(2,5),(3,4),(6,7),(8,10)] => 2
[(1,10),(2,5),(3,4),(6,7),(8,9)] => 1
[(1,10),(2,6),(3,4),(5,7),(8,9)] => 2
[(1,9),(2,6),(3,4),(5,7),(8,10)] => 4
[(1,8),(2,6),(3,4),(5,7),(9,10)] => 2
[(1,7),(2,6),(3,4),(5,8),(9,10)] => 4
[(1,6),(2,7),(3,4),(5,8),(9,10)] => 5
[(1,5),(2,7),(3,4),(6,8),(9,10)] => 4
[(1,4),(2,7),(3,5),(6,8),(9,10)] => 8
[(1,3),(2,7),(4,5),(6,8),(9,10)] => 4
[(1,2),(3,7),(4,5),(6,8),(9,10)] => 2
[(1,2),(3,8),(4,5),(6,7),(9,10)] => 1
[(1,3),(2,8),(4,5),(6,7),(9,10)] => 2
[(1,4),(2,8),(3,5),(6,7),(9,10)] => 4
[(1,5),(2,8),(3,4),(6,7),(9,10)] => 2
[(1,6),(2,8),(3,4),(5,7),(9,10)] => 4
[(1,7),(2,8),(3,4),(5,6),(9,10)] => 2
[(1,8),(2,7),(3,4),(5,6),(9,10)] => 1
[(1,9),(2,7),(3,4),(5,6),(8,10)] => 2
[(1,10),(2,7),(3,4),(5,6),(8,9)] => 1
[(1,10),(2,8),(3,4),(5,6),(7,9)] => 2
[(1,9),(2,8),(3,4),(5,6),(7,10)] => 4
[(1,8),(2,9),(3,4),(5,6),(7,10)] => 5
[(1,7),(2,9),(3,4),(5,6),(8,10)] => 4
[(1,6),(2,9),(3,4),(5,7),(8,10)] => 8
[(1,5),(2,9),(3,4),(6,7),(8,10)] => 4
[(1,4),(2,9),(3,5),(6,7),(8,10)] => 8
[(1,3),(2,9),(4,5),(6,7),(8,10)] => 4
[(1,2),(3,9),(4,5),(6,7),(8,10)] => 2
[(1,2),(3,10),(4,5),(6,7),(8,9)] => 1
[(1,3),(2,10),(4,5),(6,7),(8,9)] => 2
[(1,4),(2,10),(3,5),(6,7),(8,9)] => 4
[(1,5),(2,10),(3,4),(6,7),(8,9)] => 2
[(1,6),(2,10),(3,4),(5,7),(8,9)] => 4
[(1,7),(2,10),(3,4),(5,6),(8,9)] => 2
[(1,8),(2,10),(3,4),(5,6),(7,9)] => 4
[(1,9),(2,10),(3,4),(5,6),(7,8)] => 2
[(1,10),(2,9),(3,4),(5,6),(7,8)] => 1
[(1,10),(2,9),(3,5),(4,6),(7,8)] => 2
[(1,9),(2,10),(3,5),(4,6),(7,8)] => 4
[(1,8),(2,10),(3,5),(4,6),(7,9)] => 8
[(1,7),(2,10),(3,5),(4,6),(8,9)] => 4
[(1,6),(2,10),(3,5),(4,7),(8,9)] => 8
[(1,5),(2,10),(3,6),(4,7),(8,9)] => 10
[(1,4),(2,10),(3,6),(5,7),(8,9)] => 8
[(1,3),(2,10),(4,6),(5,7),(8,9)] => 4
[(1,2),(3,10),(4,6),(5,7),(8,9)] => 2
[(1,2),(3,9),(4,6),(5,7),(8,10)] => 4
[(1,3),(2,9),(4,6),(5,7),(8,10)] => 8
[(1,4),(2,9),(3,6),(5,7),(8,10)] => 16
[(1,5),(2,9),(3,6),(4,7),(8,10)] => 20
[(1,6),(2,9),(3,5),(4,7),(8,10)] => 16
[(1,7),(2,9),(3,5),(4,6),(8,10)] => 8
[(1,8),(2,9),(3,5),(4,6),(7,10)] => 10
[(1,9),(2,8),(3,5),(4,6),(7,10)] => 8
[(1,10),(2,8),(3,5),(4,6),(7,9)] => 4
[(1,10),(2,7),(3,5),(4,6),(8,9)] => 2
[(1,9),(2,7),(3,5),(4,6),(8,10)] => 4
[(1,8),(2,7),(3,5),(4,6),(9,10)] => 2
[(1,7),(2,8),(3,5),(4,6),(9,10)] => 4
[(1,6),(2,8),(3,5),(4,7),(9,10)] => 8
[(1,5),(2,8),(3,6),(4,7),(9,10)] => 10
[(1,4),(2,8),(3,6),(5,7),(9,10)] => 8
[(1,3),(2,8),(4,6),(5,7),(9,10)] => 4
[(1,2),(3,8),(4,6),(5,7),(9,10)] => 2
[(1,2),(3,7),(4,6),(5,8),(9,10)] => 4
[(1,3),(2,7),(4,6),(5,8),(9,10)] => 8
[(1,4),(2,7),(3,6),(5,8),(9,10)] => 12
[(1,5),(2,7),(3,6),(4,8),(9,10)] => 13
[(1,6),(2,7),(3,5),(4,8),(9,10)] => 10
[(1,7),(2,6),(3,5),(4,8),(9,10)] => 8
[(1,8),(2,6),(3,5),(4,7),(9,10)] => 4
[(1,9),(2,6),(3,5),(4,7),(8,10)] => 8
[(1,10),(2,6),(3,5),(4,7),(8,9)] => 4
[(1,10),(2,5),(3,6),(4,7),(8,9)] => 5
[(1,9),(2,5),(3,6),(4,7),(8,10)] => 10
[(1,8),(2,5),(3,6),(4,7),(9,10)] => 5
[(1,7),(2,5),(3,6),(4,8),(9,10)] => 10
[(1,6),(2,5),(3,7),(4,8),(9,10)] => 13
[(1,5),(2,6),(3,7),(4,8),(9,10)] => 14
[(1,4),(2,6),(3,7),(5,8),(9,10)] => 13
[(1,3),(2,6),(4,7),(5,8),(9,10)] => 10
[(1,2),(3,6),(4,7),(5,8),(9,10)] => 5
[(1,2),(3,5),(4,7),(6,8),(9,10)] => 4
[(1,3),(2,5),(4,7),(6,8),(9,10)] => 8
[(1,4),(2,5),(3,7),(6,8),(9,10)] => 10
[(1,5),(2,4),(3,7),(6,8),(9,10)] => 8
[(1,6),(2,4),(3,7),(5,8),(9,10)] => 10
[(1,7),(2,4),(3,6),(5,8),(9,10)] => 8
[(1,8),(2,4),(3,6),(5,7),(9,10)] => 4
[(1,9),(2,4),(3,6),(5,7),(8,10)] => 8
[(1,10),(2,4),(3,6),(5,7),(8,9)] => 4
[(1,10),(2,3),(4,6),(5,7),(8,9)] => 2
[(1,9),(2,3),(4,6),(5,7),(8,10)] => 4
[(1,8),(2,3),(4,6),(5,7),(9,10)] => 2
[(1,7),(2,3),(4,6),(5,8),(9,10)] => 4
[(1,6),(2,3),(4,7),(5,8),(9,10)] => 5
[(1,5),(2,3),(4,7),(6,8),(9,10)] => 4
[(1,4),(2,3),(5,7),(6,8),(9,10)] => 2
[(1,3),(2,4),(5,7),(6,8),(9,10)] => 4
[(1,2),(3,4),(5,7),(6,8),(9,10)] => 2
[(1,2),(3,4),(5,8),(6,7),(9,10)] => 1
[(1,3),(2,4),(5,8),(6,7),(9,10)] => 2
[(1,4),(2,3),(5,8),(6,7),(9,10)] => 1
[(1,5),(2,3),(4,8),(6,7),(9,10)] => 2
[(1,6),(2,3),(4,8),(5,7),(9,10)] => 4
[(1,7),(2,3),(4,8),(5,6),(9,10)] => 2
[(1,8),(2,3),(4,7),(5,6),(9,10)] => 1
[(1,9),(2,3),(4,7),(5,6),(8,10)] => 2
[(1,10),(2,3),(4,7),(5,6),(8,9)] => 1
[(1,10),(2,4),(3,7),(5,6),(8,9)] => 2
[(1,9),(2,4),(3,7),(5,6),(8,10)] => 4
[(1,8),(2,4),(3,7),(5,6),(9,10)] => 2
[(1,7),(2,4),(3,8),(5,6),(9,10)] => 4
[(1,6),(2,4),(3,8),(5,7),(9,10)] => 8
[(1,5),(2,4),(3,8),(6,7),(9,10)] => 4
[(1,4),(2,5),(3,8),(6,7),(9,10)] => 5
[(1,3),(2,5),(4,8),(6,7),(9,10)] => 4
[(1,2),(3,5),(4,8),(6,7),(9,10)] => 2
[(1,2),(3,6),(4,8),(5,7),(9,10)] => 4
[(1,3),(2,6),(4,8),(5,7),(9,10)] => 8
[(1,4),(2,6),(3,8),(5,7),(9,10)] => 10
[(1,5),(2,6),(3,8),(4,7),(9,10)] => 13
[(1,6),(2,5),(3,8),(4,7),(9,10)] => 12
[(1,7),(2,5),(3,8),(4,6),(9,10)] => 8
[(1,8),(2,5),(3,7),(4,6),(9,10)] => 4
[(1,9),(2,5),(3,7),(4,6),(8,10)] => 8
[(1,10),(2,5),(3,7),(4,6),(8,9)] => 4
[(1,10),(2,6),(3,7),(4,5),(8,9)] => 2
[(1,9),(2,6),(3,7),(4,5),(8,10)] => 4
[(1,8),(2,6),(3,7),(4,5),(9,10)] => 2
[(1,7),(2,6),(3,8),(4,5),(9,10)] => 4
[(1,6),(2,7),(3,8),(4,5),(9,10)] => 5
[(1,5),(2,7),(3,8),(4,6),(9,10)] => 10
[(1,4),(2,7),(3,8),(5,6),(9,10)] => 5
[(1,3),(2,7),(4,8),(5,6),(9,10)] => 4
[(1,2),(3,7),(4,8),(5,6),(9,10)] => 2
[(1,2),(3,8),(4,7),(5,6),(9,10)] => 1
[(1,3),(2,8),(4,7),(5,6),(9,10)] => 2
[(1,4),(2,8),(3,7),(5,6),(9,10)] => 4
[(1,5),(2,8),(3,7),(4,6),(9,10)] => 8
[(1,6),(2,8),(3,7),(4,5),(9,10)] => 4
[(1,7),(2,8),(3,6),(4,5),(9,10)] => 2
[(1,8),(2,7),(3,6),(4,5),(9,10)] => 1
[(1,9),(2,7),(3,6),(4,5),(8,10)] => 2
[(1,10),(2,7),(3,6),(4,5),(8,9)] => 1
[(1,10),(2,8),(3,6),(4,5),(7,9)] => 2
[(1,9),(2,8),(3,6),(4,5),(7,10)] => 4
[(1,8),(2,9),(3,6),(4,5),(7,10)] => 5
[(1,7),(2,9),(3,6),(4,5),(8,10)] => 4
[(1,6),(2,9),(3,7),(4,5),(8,10)] => 8
[(1,5),(2,9),(3,7),(4,6),(8,10)] => 16
[(1,4),(2,9),(3,7),(5,6),(8,10)] => 8
[(1,3),(2,9),(4,7),(5,6),(8,10)] => 4
[(1,2),(3,9),(4,7),(5,6),(8,10)] => 2
[(1,2),(3,10),(4,7),(5,6),(8,9)] => 1
[(1,3),(2,10),(4,7),(5,6),(8,9)] => 2
[(1,4),(2,10),(3,7),(5,6),(8,9)] => 4
[(1,5),(2,10),(3,7),(4,6),(8,9)] => 8
[(1,6),(2,10),(3,7),(4,5),(8,9)] => 4
[(1,7),(2,10),(3,6),(4,5),(8,9)] => 2
[(1,8),(2,10),(3,6),(4,5),(7,9)] => 4
[(1,9),(2,10),(3,6),(4,5),(7,8)] => 2
[(1,10),(2,9),(3,6),(4,5),(7,8)] => 1
[(1,10),(2,9),(3,7),(4,5),(6,8)] => 2
[(1,9),(2,10),(3,7),(4,5),(6,8)] => 4
[(1,8),(2,10),(3,7),(4,5),(6,9)] => 8
[(1,7),(2,10),(3,8),(4,5),(6,9)] => 10
[(1,6),(2,10),(3,8),(4,5),(7,9)] => 8
[(1,5),(2,10),(3,8),(4,6),(7,9)] => 16
[(1,4),(2,10),(3,8),(5,6),(7,9)] => 8
[(1,3),(2,10),(4,8),(5,6),(7,9)] => 4
[(1,2),(3,10),(4,8),(5,6),(7,9)] => 2
[(1,2),(3,9),(4,8),(5,6),(7,10)] => 4
[(1,3),(2,9),(4,8),(5,6),(7,10)] => 8
[(1,4),(2,9),(3,8),(5,6),(7,10)] => 12
[(1,5),(2,9),(3,8),(4,6),(7,10)] => 24
[(1,6),(2,9),(3,8),(4,5),(7,10)] => 12
[(1,7),(2,9),(3,8),(4,5),(6,10)] => 13
[(1,8),(2,9),(3,7),(4,5),(6,10)] => 10
[(1,9),(2,8),(3,7),(4,5),(6,10)] => 8
[(1,10),(2,8),(3,7),(4,5),(6,9)] => 4
[(1,10),(2,7),(3,8),(4,5),(6,9)] => 5
[(1,9),(2,7),(3,8),(4,5),(6,10)] => 10
[(1,8),(2,7),(3,9),(4,5),(6,10)] => 13
[(1,7),(2,8),(3,9),(4,5),(6,10)] => 14
[(1,6),(2,8),(3,9),(4,5),(7,10)] => 13
[(1,5),(2,8),(3,9),(4,6),(7,10)] => 26
[(1,4),(2,8),(3,9),(5,6),(7,10)] => 13
[(1,3),(2,8),(4,9),(5,6),(7,10)] => 10
[(1,2),(3,8),(4,9),(5,6),(7,10)] => 5
[(1,2),(3,7),(4,9),(5,6),(8,10)] => 4
[(1,3),(2,7),(4,9),(5,6),(8,10)] => 8
[(1,4),(2,7),(3,9),(5,6),(8,10)] => 10
[(1,5),(2,7),(3,9),(4,6),(8,10)] => 20
[(1,6),(2,7),(3,9),(4,5),(8,10)] => 10
[(1,7),(2,6),(3,9),(4,5),(8,10)] => 8
[(1,8),(2,6),(3,9),(4,5),(7,10)] => 10
[(1,9),(2,6),(3,8),(4,5),(7,10)] => 8
[(1,10),(2,6),(3,8),(4,5),(7,9)] => 4
[(1,10),(2,5),(3,8),(4,6),(7,9)] => 8
[(1,9),(2,5),(3,8),(4,6),(7,10)] => 16
[(1,8),(2,5),(3,9),(4,6),(7,10)] => 20
[(1,7),(2,5),(3,9),(4,6),(8,10)] => 16
[(1,6),(2,5),(3,9),(4,7),(8,10)] => 24
[(1,5),(2,6),(3,9),(4,7),(8,10)] => 26
[(1,4),(2,6),(3,9),(5,7),(8,10)] => 20
[(1,3),(2,6),(4,9),(5,7),(8,10)] => 16
[(1,2),(3,6),(4,9),(5,7),(8,10)] => 8
[(1,2),(3,5),(4,9),(6,7),(8,10)] => 4
[(1,3),(2,5),(4,9),(6,7),(8,10)] => 8
[(1,4),(2,5),(3,9),(6,7),(8,10)] => 10
[(1,5),(2,4),(3,9),(6,7),(8,10)] => 8
[(1,6),(2,4),(3,9),(5,7),(8,10)] => 16
[(1,7),(2,4),(3,9),(5,6),(8,10)] => 8
[(1,8),(2,4),(3,9),(5,6),(7,10)] => 10
[(1,9),(2,4),(3,8),(5,6),(7,10)] => 8
[(1,10),(2,4),(3,8),(5,6),(7,9)] => 4
[(1,10),(2,3),(4,8),(5,6),(7,9)] => 2
[(1,9),(2,3),(4,8),(5,6),(7,10)] => 4
[(1,8),(2,3),(4,9),(5,6),(7,10)] => 5
[(1,7),(2,3),(4,9),(5,6),(8,10)] => 4
[(1,6),(2,3),(4,9),(5,7),(8,10)] => 8
[(1,5),(2,3),(4,9),(6,7),(8,10)] => 4
[(1,4),(2,3),(5,9),(6,7),(8,10)] => 2
[(1,3),(2,4),(5,9),(6,7),(8,10)] => 4
[(1,2),(3,4),(5,9),(6,7),(8,10)] => 2
[(1,2),(3,4),(5,10),(6,7),(8,9)] => 1
[(1,3),(2,4),(5,10),(6,7),(8,9)] => 2
[(1,4),(2,3),(5,10),(6,7),(8,9)] => 1
[(1,5),(2,3),(4,10),(6,7),(8,9)] => 2
[(1,6),(2,3),(4,10),(5,7),(8,9)] => 4
[(1,7),(2,3),(4,10),(5,6),(8,9)] => 2
[(1,8),(2,3),(4,10),(5,6),(7,9)] => 4
[(1,9),(2,3),(4,10),(5,6),(7,8)] => 2
[(1,10),(2,3),(4,9),(5,6),(7,8)] => 1
[(1,10),(2,4),(3,9),(5,6),(7,8)] => 2
[(1,9),(2,4),(3,10),(5,6),(7,8)] => 4
[(1,8),(2,4),(3,10),(5,6),(7,9)] => 8
[(1,7),(2,4),(3,10),(5,6),(8,9)] => 4
[(1,6),(2,4),(3,10),(5,7),(8,9)] => 8
[(1,5),(2,4),(3,10),(6,7),(8,9)] => 4
[(1,4),(2,5),(3,10),(6,7),(8,9)] => 5
[(1,3),(2,5),(4,10),(6,7),(8,9)] => 4
[(1,2),(3,5),(4,10),(6,7),(8,9)] => 2
[(1,2),(3,6),(4,10),(5,7),(8,9)] => 4
[(1,3),(2,6),(4,10),(5,7),(8,9)] => 8
[(1,4),(2,6),(3,10),(5,7),(8,9)] => 10
[(1,5),(2,6),(3,10),(4,7),(8,9)] => 13
[(1,6),(2,5),(3,10),(4,7),(8,9)] => 12
[(1,7),(2,5),(3,10),(4,6),(8,9)] => 8
[(1,8),(2,5),(3,10),(4,6),(7,9)] => 16
[(1,9),(2,5),(3,10),(4,6),(7,8)] => 8
[(1,10),(2,5),(3,9),(4,6),(7,8)] => 4
[(1,10),(2,6),(3,9),(4,5),(7,8)] => 2
[(1,9),(2,6),(3,10),(4,5),(7,8)] => 4
[(1,8),(2,6),(3,10),(4,5),(7,9)] => 8
[(1,7),(2,6),(3,10),(4,5),(8,9)] => 4
[(1,6),(2,7),(3,10),(4,5),(8,9)] => 5
[(1,5),(2,7),(3,10),(4,6),(8,9)] => 10
[(1,4),(2,7),(3,10),(5,6),(8,9)] => 5
[(1,3),(2,7),(4,10),(5,6),(8,9)] => 4
[(1,2),(3,7),(4,10),(5,6),(8,9)] => 2
[(1,2),(3,8),(4,10),(5,6),(7,9)] => 4
[(1,3),(2,8),(4,10),(5,6),(7,9)] => 8
[(1,4),(2,8),(3,10),(5,6),(7,9)] => 10
[(1,5),(2,8),(3,10),(4,6),(7,9)] => 20
[(1,6),(2,8),(3,10),(4,5),(7,9)] => 10
[(1,7),(2,8),(3,10),(4,5),(6,9)] => 13
[(1,8),(2,7),(3,10),(4,5),(6,9)] => 12
[(1,9),(2,7),(3,10),(4,5),(6,8)] => 8
[(1,10),(2,7),(3,9),(4,5),(6,8)] => 4
[(1,10),(2,8),(3,9),(4,5),(6,7)] => 2
[(1,9),(2,8),(3,10),(4,5),(6,7)] => 4
[(1,8),(2,9),(3,10),(4,5),(6,7)] => 5
[(1,7),(2,9),(3,10),(4,5),(6,8)] => 10
[(1,6),(2,9),(3,10),(4,5),(7,8)] => 5
[(1,5),(2,9),(3,10),(4,6),(7,8)] => 10
[(1,4),(2,9),(3,10),(5,6),(7,8)] => 5
[(1,3),(2,9),(4,10),(5,6),(7,8)] => 4
[(1,2),(3,9),(4,10),(5,6),(7,8)] => 2
[(1,2),(3,10),(4,9),(5,6),(7,8)] => 1
[(1,3),(2,10),(4,9),(5,6),(7,8)] => 2
[(1,4),(2,10),(3,9),(5,6),(7,8)] => 4
[(1,5),(2,10),(3,9),(4,6),(7,8)] => 8
[(1,6),(2,10),(3,9),(4,5),(7,8)] => 4
[(1,7),(2,10),(3,9),(4,5),(6,8)] => 8
[(1,8),(2,10),(3,9),(4,5),(6,7)] => 4
[(1,9),(2,10),(3,8),(4,5),(6,7)] => 2
[(1,10),(2,9),(3,8),(4,5),(6,7)] => 1
[(1,10),(2,9),(3,8),(4,6),(5,7)] => 2
[(1,9),(2,10),(3,8),(4,6),(5,7)] => 4
[(1,8),(2,10),(3,9),(4,6),(5,7)] => 8
[(1,7),(2,10),(3,9),(4,6),(5,8)] => 16
[(1,6),(2,10),(3,9),(4,7),(5,8)] => 20
[(1,5),(2,10),(3,9),(4,7),(6,8)] => 16
[(1,4),(2,10),(3,9),(5,7),(6,8)] => 8
[(1,3),(2,10),(4,9),(5,7),(6,8)] => 4
[(1,2),(3,10),(4,9),(5,7),(6,8)] => 2
[(1,2),(3,9),(4,10),(5,7),(6,8)] => 4
[(1,3),(2,9),(4,10),(5,7),(6,8)] => 8
[(1,4),(2,9),(3,10),(5,7),(6,8)] => 10
[(1,5),(2,9),(3,10),(4,7),(6,8)] => 20
[(1,6),(2,9),(3,10),(4,7),(5,8)] => 25
[(1,7),(2,9),(3,10),(4,6),(5,8)] => 20
[(1,8),(2,9),(3,10),(4,6),(5,7)] => 10
[(1,9),(2,8),(3,10),(4,6),(5,7)] => 8
[(1,10),(2,8),(3,9),(4,6),(5,7)] => 4
[(1,10),(2,7),(3,9),(4,6),(5,8)] => 8
[(1,9),(2,7),(3,10),(4,6),(5,8)] => 16
[(1,8),(2,7),(3,10),(4,6),(5,9)] => 24
[(1,7),(2,8),(3,10),(4,6),(5,9)] => 26
[(1,6),(2,8),(3,10),(4,7),(5,9)] => 34
[(1,5),(2,8),(3,10),(4,7),(6,9)] => 31
[(1,4),(2,8),(3,10),(5,7),(6,9)] => 20
[(1,3),(2,8),(4,10),(5,7),(6,9)] => 16
[(1,2),(3,8),(4,10),(5,7),(6,9)] => 8
[(1,2),(3,7),(4,10),(5,8),(6,9)] => 10
[(1,3),(2,7),(4,10),(5,8),(6,9)] => 20
[(1,4),(2,7),(3,10),(5,8),(6,9)] => 25
[(1,5),(2,7),(3,10),(4,8),(6,9)] => 34
[(1,6),(2,7),(3,10),(4,8),(5,9)] => 37
[(1,7),(2,6),(3,10),(4,8),(5,9)] => 36
[(1,8),(2,6),(3,10),(4,7),(5,9)] => 31
[(1,9),(2,6),(3,10),(4,7),(5,8)] => 20
[(1,10),(2,6),(3,9),(4,7),(5,8)] => 10
[(1,10),(2,5),(3,9),(4,7),(6,8)] => 8
[(1,9),(2,5),(3,10),(4,7),(6,8)] => 16
[(1,8),(2,5),(3,10),(4,7),(6,9)] => 27
[(1,7),(2,5),(3,10),(4,8),(6,9)] => 31
[(1,6),(2,5),(3,10),(4,8),(7,9)] => 24
[(1,5),(2,6),(3,10),(4,8),(7,9)] => 26
[(1,4),(2,6),(3,10),(5,8),(7,9)] => 20
[(1,3),(2,6),(4,10),(5,8),(7,9)] => 16
[(1,2),(3,6),(4,10),(5,8),(7,9)] => 8
[(1,2),(3,5),(4,10),(6,8),(7,9)] => 4
[(1,3),(2,5),(4,10),(6,8),(7,9)] => 8
[(1,4),(2,5),(3,10),(6,8),(7,9)] => 10
[(1,5),(2,4),(3,10),(6,8),(7,9)] => 8
[(1,6),(2,4),(3,10),(5,8),(7,9)] => 16
[(1,7),(2,4),(3,10),(5,8),(6,9)] => 20
[(1,8),(2,4),(3,10),(5,7),(6,9)] => 16
[(1,9),(2,4),(3,10),(5,7),(6,8)] => 8
[(1,10),(2,4),(3,9),(5,7),(6,8)] => 4
[(1,10),(2,3),(4,9),(5,7),(6,8)] => 2
[(1,9),(2,3),(4,10),(5,7),(6,8)] => 4
[(1,8),(2,3),(4,10),(5,7),(6,9)] => 8
[(1,7),(2,3),(4,10),(5,8),(6,9)] => 10
[(1,6),(2,3),(4,10),(5,8),(7,9)] => 8
[(1,5),(2,3),(4,10),(6,8),(7,9)] => 4
[(1,4),(2,3),(5,10),(6,8),(7,9)] => 2
[(1,3),(2,4),(5,10),(6,8),(7,9)] => 4
[(1,2),(3,4),(5,10),(6,8),(7,9)] => 2
[(1,2),(3,4),(5,9),(6,8),(7,10)] => 4
[(1,3),(2,4),(5,9),(6,8),(7,10)] => 8
[(1,4),(2,3),(5,9),(6,8),(7,10)] => 4
[(1,5),(2,3),(4,9),(6,8),(7,10)] => 8
[(1,6),(2,3),(4,9),(5,8),(7,10)] => 12
[(1,7),(2,3),(4,9),(5,8),(6,10)] => 13
[(1,8),(2,3),(4,9),(5,7),(6,10)] => 10
[(1,9),(2,3),(4,8),(5,7),(6,10)] => 8
[(1,10),(2,3),(4,8),(5,7),(6,9)] => 4
[(1,10),(2,4),(3,8),(5,7),(6,9)] => 8
[(1,9),(2,4),(3,8),(5,7),(6,10)] => 16
[(1,8),(2,4),(3,9),(5,7),(6,10)] => 20
[(1,7),(2,4),(3,9),(5,8),(6,10)] => 26
[(1,6),(2,4),(3,9),(5,8),(7,10)] => 24
[(1,5),(2,4),(3,9),(6,8),(7,10)] => 16
[(1,4),(2,5),(3,9),(6,8),(7,10)] => 20
[(1,3),(2,5),(4,9),(6,8),(7,10)] => 16
[(1,2),(3,5),(4,9),(6,8),(7,10)] => 8
[(1,2),(3,6),(4,9),(5,8),(7,10)] => 12
[(1,3),(2,6),(4,9),(5,8),(7,10)] => 24
[(1,4),(2,6),(3,9),(5,8),(7,10)] => 31
[(1,5),(2,6),(3,9),(4,8),(7,10)] => 36
[(1,6),(2,5),(3,9),(4,8),(7,10)] => 33
[(1,7),(2,5),(3,9),(4,8),(6,10)] => 36
[(1,8),(2,5),(3,9),(4,7),(6,10)] => 31
[(1,9),(2,5),(3,8),(4,7),(6,10)] => 24
[(1,10),(2,5),(3,8),(4,7),(6,9)] => 12
[(1,10),(2,6),(3,8),(4,7),(5,9)] => 13
[(1,9),(2,6),(3,8),(4,7),(5,10)] => 26
[(1,8),(2,6),(3,9),(4,7),(5,10)] => 34
[(1,7),(2,6),(3,9),(4,8),(5,10)] => 40
[(1,6),(2,7),(3,9),(4,8),(5,10)] => 41
[(1,5),(2,7),(3,9),(4,8),(6,10)] => 40
[(1,4),(2,7),(3,9),(5,8),(6,10)] => 34
[(1,3),(2,7),(4,9),(5,8),(6,10)] => 26
[(1,2),(3,7),(4,9),(5,8),(6,10)] => 13
[(1,2),(3,8),(4,9),(5,7),(6,10)] => 10
[(1,3),(2,8),(4,9),(5,7),(6,10)] => 20
[(1,4),(2,8),(3,9),(5,7),(6,10)] => 26
[(1,5),(2,8),(3,9),(4,7),(6,10)] => 36
[(1,6),(2,8),(3,9),(4,7),(5,10)] => 37
[(1,7),(2,8),(3,9),(4,6),(5,10)] => 28
[(1,8),(2,7),(3,9),(4,6),(5,10)] => 26
[(1,9),(2,7),(3,8),(4,6),(5,10)] => 20
[(1,10),(2,7),(3,8),(4,6),(5,9)] => 10
[(1,10),(2,8),(3,7),(4,6),(5,9)] => 8
[(1,9),(2,8),(3,7),(4,6),(5,10)] => 16
[(1,8),(2,9),(3,7),(4,6),(5,10)] => 20
[(1,7),(2,9),(3,8),(4,6),(5,10)] => 26
[(1,6),(2,9),(3,8),(4,7),(5,10)] => 34
[(1,5),(2,9),(3,8),(4,7),(6,10)] => 33
[(1,4),(2,9),(3,8),(5,7),(6,10)] => 24
[(1,3),(2,9),(4,8),(5,7),(6,10)] => 16
[(1,2),(3,9),(4,8),(5,7),(6,10)] => 8
[(1,2),(3,10),(4,8),(5,7),(6,9)] => 4
[(1,3),(2,10),(4,8),(5,7),(6,9)] => 8
[(1,4),(2,10),(3,8),(5,7),(6,9)] => 16
[(1,5),(2,10),(3,8),(4,7),(6,9)] => 24
[(1,6),(2,10),(3,8),(4,7),(5,9)] => 26
[(1,7),(2,10),(3,8),(4,6),(5,9)] => 20
[(1,8),(2,10),(3,7),(4,6),(5,9)] => 16
[(1,9),(2,10),(3,7),(4,6),(5,8)] => 8
[(1,10),(2,9),(3,7),(4,6),(5,8)] => 4
[(1,10),(2,9),(3,6),(4,7),(5,8)] => 5
[(1,9),(2,10),(3,6),(4,7),(5,8)] => 10
[(1,8),(2,10),(3,6),(4,7),(5,9)] => 20
[(1,7),(2,10),(3,6),(4,8),(5,9)] => 26
[(1,6),(2,10),(3,7),(4,8),(5,9)] => 28
[(1,5),(2,10),(3,7),(4,8),(6,9)] => 26
[(1,4),(2,10),(3,7),(5,8),(6,9)] => 20
[(1,3),(2,10),(4,7),(5,8),(6,9)] => 10
[(1,2),(3,10),(4,7),(5,8),(6,9)] => 5
[(1,2),(3,9),(4,7),(5,8),(6,10)] => 10
[(1,3),(2,9),(4,7),(5,8),(6,10)] => 20
[(1,4),(2,9),(3,7),(5,8),(6,10)] => 31
[(1,5),(2,9),(3,7),(4,8),(6,10)] => 36
[(1,6),(2,9),(3,7),(4,8),(5,10)] => 37
[(1,7),(2,9),(3,6),(4,8),(5,10)] => 34
[(1,8),(2,9),(3,6),(4,7),(5,10)] => 25
[(1,9),(2,8),(3,6),(4,7),(5,10)] => 20
[(1,10),(2,8),(3,6),(4,7),(5,9)] => 10
[(1,10),(2,7),(3,6),(4,8),(5,9)] => 13
[(1,9),(2,7),(3,6),(4,8),(5,10)] => 26
[(1,8),(2,7),(3,6),(4,9),(5,10)] => 34
[(1,7),(2,8),(3,6),(4,9),(5,10)] => 37
[(1,6),(2,8),(3,7),(4,9),(5,10)] => 41
[(1,5),(2,8),(3,7),(4,9),(6,10)] => 40
[(1,4),(2,8),(3,7),(5,9),(6,10)] => 36
[(1,3),(2,8),(4,7),(5,9),(6,10)] => 26
[(1,2),(3,8),(4,7),(5,9),(6,10)] => 13
[(1,2),(3,7),(4,8),(5,9),(6,10)] => 14
[(1,3),(2,7),(4,8),(5,9),(6,10)] => 28
[(1,4),(2,7),(3,8),(5,9),(6,10)] => 37
[(1,5),(2,7),(3,8),(4,9),(6,10)] => 41
[(1,6),(2,7),(3,8),(4,9),(5,10)] => 42
[(1,7),(2,6),(3,8),(4,9),(5,10)] => 41
[(1,8),(2,6),(3,7),(4,9),(5,10)] => 37
[(1,9),(2,6),(3,7),(4,8),(5,10)] => 28
[(1,10),(2,6),(3,7),(4,8),(5,9)] => 14
[(1,10),(2,5),(3,7),(4,8),(6,9)] => 13
[(1,9),(2,5),(3,7),(4,8),(6,10)] => 26
[(1,8),(2,5),(3,7),(4,9),(6,10)] => 34
[(1,7),(2,5),(3,8),(4,9),(6,10)] => 37
[(1,6),(2,5),(3,8),(4,9),(7,10)] => 34
[(1,5),(2,6),(3,8),(4,9),(7,10)] => 37
[(1,4),(2,6),(3,8),(5,9),(7,10)] => 34
[(1,3),(2,6),(4,8),(5,9),(7,10)] => 26
[(1,2),(3,6),(4,8),(5,9),(7,10)] => 13
[(1,2),(3,5),(4,8),(6,9),(7,10)] => 10
[(1,3),(2,5),(4,8),(6,9),(7,10)] => 20
[(1,4),(2,5),(3,8),(6,9),(7,10)] => 25
[(1,5),(2,4),(3,8),(6,9),(7,10)] => 20
[(1,6),(2,4),(3,8),(5,9),(7,10)] => 26
[(1,7),(2,4),(3,8),(5,9),(6,10)] => 28
[(1,8),(2,4),(3,7),(5,9),(6,10)] => 26
[(1,9),(2,4),(3,7),(5,8),(6,10)] => 20
[(1,10),(2,4),(3,7),(5,8),(6,9)] => 10
[(1,10),(2,3),(4,7),(5,8),(6,9)] => 5
[(1,9),(2,3),(4,7),(5,8),(6,10)] => 10
[(1,8),(2,3),(4,7),(5,9),(6,10)] => 13
[(1,7),(2,3),(4,8),(5,9),(6,10)] => 14
[(1,6),(2,3),(4,8),(5,9),(7,10)] => 13
[(1,5),(2,3),(4,8),(6,9),(7,10)] => 10
[(1,4),(2,3),(5,8),(6,9),(7,10)] => 5
[(1,3),(2,4),(5,8),(6,9),(7,10)] => 10
[(1,2),(3,4),(5,8),(6,9),(7,10)] => 5
[(1,2),(3,4),(5,7),(6,9),(8,10)] => 4
[(1,3),(2,4),(5,7),(6,9),(8,10)] => 8
[(1,4),(2,3),(5,7),(6,9),(8,10)] => 4
[(1,5),(2,3),(4,7),(6,9),(8,10)] => 8
[(1,6),(2,3),(4,7),(5,9),(8,10)] => 10
[(1,7),(2,3),(4,6),(5,9),(8,10)] => 8
[(1,8),(2,3),(4,6),(5,9),(7,10)] => 10
[(1,9),(2,3),(4,6),(5,8),(7,10)] => 8
[(1,10),(2,3),(4,6),(5,8),(7,9)] => 4
[(1,10),(2,4),(3,6),(5,8),(7,9)] => 8
[(1,9),(2,4),(3,6),(5,8),(7,10)] => 16
[(1,8),(2,4),(3,6),(5,9),(7,10)] => 20
[(1,7),(2,4),(3,6),(5,9),(8,10)] => 16
[(1,6),(2,4),(3,7),(5,9),(8,10)] => 20
[(1,5),(2,4),(3,7),(6,9),(8,10)] => 16
[(1,4),(2,5),(3,7),(6,9),(8,10)] => 20
[(1,3),(2,5),(4,7),(6,9),(8,10)] => 16
[(1,2),(3,5),(4,7),(6,9),(8,10)] => 8
[(1,2),(3,6),(4,7),(5,9),(8,10)] => 10
[(1,3),(2,6),(4,7),(5,9),(8,10)] => 20
[(1,4),(2,6),(3,7),(5,9),(8,10)] => 26
[(1,5),(2,6),(3,7),(4,9),(8,10)] => 28
[(1,6),(2,5),(3,7),(4,9),(8,10)] => 26
[(1,7),(2,5),(3,6),(4,9),(8,10)] => 20
[(1,8),(2,5),(3,6),(4,9),(7,10)] => 25
[(1,9),(2,5),(3,6),(4,8),(7,10)] => 20
[(1,10),(2,5),(3,6),(4,8),(7,9)] => 10
[(1,10),(2,6),(3,5),(4,8),(7,9)] => 8
[(1,9),(2,6),(3,5),(4,8),(7,10)] => 16
[(1,8),(2,6),(3,5),(4,9),(7,10)] => 20
[(1,7),(2,6),(3,5),(4,9),(8,10)] => 16
[(1,6),(2,7),(3,5),(4,9),(8,10)] => 20
[(1,5),(2,7),(3,6),(4,9),(8,10)] => 26
[(1,4),(2,7),(3,6),(5,9),(8,10)] => 24
[(1,3),(2,7),(4,6),(5,9),(8,10)] => 16
[(1,2),(3,7),(4,6),(5,9),(8,10)] => 8
[(1,2),(3,8),(4,6),(5,9),(7,10)] => 10
[(1,3),(2,8),(4,6),(5,9),(7,10)] => 20
[(1,4),(2,8),(3,6),(5,9),(7,10)] => 31
[(1,5),(2,8),(3,6),(4,9),(7,10)] => 34
[(1,6),(2,8),(3,5),(4,9),(7,10)] => 26
[(1,7),(2,8),(3,5),(4,9),(6,10)] => 28
[(1,8),(2,7),(3,5),(4,9),(6,10)] => 26
[(1,9),(2,7),(3,5),(4,8),(6,10)] => 20
[(1,10),(2,7),(3,5),(4,8),(6,9)] => 10
[(1,10),(2,8),(3,5),(4,7),(6,9)] => 8
[(1,9),(2,8),(3,5),(4,7),(6,10)] => 16
[(1,8),(2,9),(3,5),(4,7),(6,10)] => 20
[(1,7),(2,9),(3,5),(4,8),(6,10)] => 26
[(1,6),(2,9),(3,5),(4,8),(7,10)] => 24
[(1,5),(2,9),(3,6),(4,8),(7,10)] => 31
[(1,4),(2,9),(3,6),(5,8),(7,10)] => 27
[(1,3),(2,9),(4,6),(5,8),(7,10)] => 16
[(1,2),(3,9),(4,6),(5,8),(7,10)] => 8
[(1,2),(3,10),(4,6),(5,8),(7,9)] => 4
[(1,3),(2,10),(4,6),(5,8),(7,9)] => 8
[(1,4),(2,10),(3,6),(5,8),(7,9)] => 16
[(1,5),(2,10),(3,6),(4,8),(7,9)] => 20
[(1,6),(2,10),(3,5),(4,8),(7,9)] => 16
[(1,7),(2,10),(3,5),(4,8),(6,9)] => 20
[(1,8),(2,10),(3,5),(4,7),(6,9)] => 16
[(1,9),(2,10),(3,5),(4,7),(6,8)] => 8
[(1,10),(2,9),(3,5),(4,7),(6,8)] => 4
[(1,10),(2,9),(3,4),(5,7),(6,8)] => 2
[(1,9),(2,10),(3,4),(5,7),(6,8)] => 4
[(1,8),(2,10),(3,4),(5,7),(6,9)] => 8
[(1,7),(2,10),(3,4),(5,8),(6,9)] => 10
[(1,6),(2,10),(3,4),(5,8),(7,9)] => 8
[(1,5),(2,10),(3,4),(6,8),(7,9)] => 4
[(1,4),(2,10),(3,5),(6,8),(7,9)] => 8
[(1,3),(2,10),(4,5),(6,8),(7,9)] => 4
[(1,2),(3,10),(4,5),(6,8),(7,9)] => 2
[(1,2),(3,9),(4,5),(6,8),(7,10)] => 4
[(1,3),(2,9),(4,5),(6,8),(7,10)] => 8
[(1,4),(2,9),(3,5),(6,8),(7,10)] => 16
[(1,5),(2,9),(3,4),(6,8),(7,10)] => 8
[(1,6),(2,9),(3,4),(5,8),(7,10)] => 12
[(1,7),(2,9),(3,4),(5,8),(6,10)] => 13
[(1,8),(2,9),(3,4),(5,7),(6,10)] => 10
[(1,9),(2,8),(3,4),(5,7),(6,10)] => 8
[(1,10),(2,8),(3,4),(5,7),(6,9)] => 4
[(1,10),(2,7),(3,4),(5,8),(6,9)] => 5
[(1,9),(2,7),(3,4),(5,8),(6,10)] => 10
[(1,8),(2,7),(3,4),(5,9),(6,10)] => 13
[(1,7),(2,8),(3,4),(5,9),(6,10)] => 14
[(1,6),(2,8),(3,4),(5,9),(7,10)] => 13
[(1,5),(2,8),(3,4),(6,9),(7,10)] => 10
[(1,4),(2,8),(3,5),(6,9),(7,10)] => 20
[(1,3),(2,8),(4,5),(6,9),(7,10)] => 10
[(1,2),(3,8),(4,5),(6,9),(7,10)] => 5
[(1,2),(3,7),(4,5),(6,9),(8,10)] => 4
[(1,3),(2,7),(4,5),(6,9),(8,10)] => 8
[(1,4),(2,7),(3,5),(6,9),(8,10)] => 16
[(1,5),(2,7),(3,4),(6,9),(8,10)] => 8
[(1,6),(2,7),(3,4),(5,9),(8,10)] => 10
[(1,7),(2,6),(3,4),(5,9),(8,10)] => 8
[(1,8),(2,6),(3,4),(5,9),(7,10)] => 10
[(1,9),(2,6),(3,4),(5,8),(7,10)] => 8
[(1,10),(2,6),(3,4),(5,8),(7,9)] => 4
[(1,10),(2,5),(3,4),(6,8),(7,9)] => 2
[(1,9),(2,5),(3,4),(6,8),(7,10)] => 4
[(1,8),(2,5),(3,4),(6,9),(7,10)] => 5
[(1,7),(2,5),(3,4),(6,9),(8,10)] => 4
[(1,6),(2,5),(3,4),(7,9),(8,10)] => 2
[(1,5),(2,6),(3,4),(7,9),(8,10)] => 4
[(1,4),(2,6),(3,5),(7,9),(8,10)] => 8
[(1,3),(2,6),(4,5),(7,9),(8,10)] => 4
[(1,2),(3,6),(4,5),(7,9),(8,10)] => 2
[(1,2),(3,5),(4,6),(7,9),(8,10)] => 4
[(1,3),(2,5),(4,6),(7,9),(8,10)] => 8
[(1,4),(2,5),(3,6),(7,9),(8,10)] => 10
[(1,5),(2,4),(3,6),(7,9),(8,10)] => 8
[(1,6),(2,4),(3,5),(7,9),(8,10)] => 4
[(1,7),(2,4),(3,5),(6,9),(8,10)] => 8
[(1,8),(2,4),(3,5),(6,9),(7,10)] => 10
[(1,9),(2,4),(3,5),(6,8),(7,10)] => 8
[(1,10),(2,4),(3,5),(6,8),(7,9)] => 4
[(1,10),(2,3),(4,5),(6,8),(7,9)] => 2
[(1,9),(2,3),(4,5),(6,8),(7,10)] => 4
[(1,8),(2,3),(4,5),(6,9),(7,10)] => 5
[(1,7),(2,3),(4,5),(6,9),(8,10)] => 4
[(1,6),(2,3),(4,5),(7,9),(8,10)] => 2
[(1,5),(2,3),(4,6),(7,9),(8,10)] => 4
[(1,4),(2,3),(5,6),(7,9),(8,10)] => 2
[(1,3),(2,4),(5,6),(7,9),(8,10)] => 4
[(1,2),(3,4),(5,6),(7,9),(8,10)] => 2
[(1,2),(3,4),(5,6),(7,10),(8,9)] => 1
[(1,3),(2,4),(5,6),(7,10),(8,9)] => 2
[(1,4),(2,3),(5,6),(7,10),(8,9)] => 1
[(1,5),(2,3),(4,6),(7,10),(8,9)] => 2
[(1,6),(2,3),(4,5),(7,10),(8,9)] => 1
[(1,7),(2,3),(4,5),(6,10),(8,9)] => 2
[(1,8),(2,3),(4,5),(6,10),(7,9)] => 4
[(1,9),(2,3),(4,5),(6,10),(7,8)] => 2
[(1,10),(2,3),(4,5),(6,9),(7,8)] => 1
[(1,10),(2,4),(3,5),(6,9),(7,8)] => 2
[(1,9),(2,4),(3,5),(6,10),(7,8)] => 4
[(1,8),(2,4),(3,5),(6,10),(7,9)] => 8
[(1,7),(2,4),(3,5),(6,10),(8,9)] => 4
[(1,6),(2,4),(3,5),(7,10),(8,9)] => 2
[(1,5),(2,4),(3,6),(7,10),(8,9)] => 4
[(1,4),(2,5),(3,6),(7,10),(8,9)] => 5
[(1,3),(2,5),(4,6),(7,10),(8,9)] => 4
[(1,2),(3,5),(4,6),(7,10),(8,9)] => 2
[(1,2),(3,6),(4,5),(7,10),(8,9)] => 1
[(1,3),(2,6),(4,5),(7,10),(8,9)] => 2
[(1,4),(2,6),(3,5),(7,10),(8,9)] => 4
[(1,5),(2,6),(3,4),(7,10),(8,9)] => 2
[(1,6),(2,5),(3,4),(7,10),(8,9)] => 1
[(1,7),(2,5),(3,4),(6,10),(8,9)] => 2
[(1,8),(2,5),(3,4),(6,10),(7,9)] => 4
[(1,9),(2,5),(3,4),(6,10),(7,8)] => 2
[(1,10),(2,5),(3,4),(6,9),(7,8)] => 1
[(1,10),(2,6),(3,4),(5,9),(7,8)] => 2
[(1,9),(2,6),(3,4),(5,10),(7,8)] => 4
[(1,8),(2,6),(3,4),(5,10),(7,9)] => 8
[(1,7),(2,6),(3,4),(5,10),(8,9)] => 4
[(1,6),(2,7),(3,4),(5,10),(8,9)] => 5
[(1,5),(2,7),(3,4),(6,10),(8,9)] => 4
[(1,4),(2,7),(3,5),(6,10),(8,9)] => 8
[(1,3),(2,7),(4,5),(6,10),(8,9)] => 4
[(1,2),(3,7),(4,5),(6,10),(8,9)] => 2
[(1,2),(3,8),(4,5),(6,10),(7,9)] => 4
[(1,3),(2,8),(4,5),(6,10),(7,9)] => 8
[(1,4),(2,8),(3,5),(6,10),(7,9)] => 16
[(1,5),(2,8),(3,4),(6,10),(7,9)] => 8
[(1,6),(2,8),(3,4),(5,10),(7,9)] => 10
[(1,7),(2,8),(3,4),(5,10),(6,9)] => 13
[(1,8),(2,7),(3,4),(5,10),(6,9)] => 12
[(1,9),(2,7),(3,4),(5,10),(6,8)] => 8
[(1,10),(2,7),(3,4),(5,9),(6,8)] => 4
[(1,10),(2,8),(3,4),(5,9),(6,7)] => 2
[(1,9),(2,8),(3,4),(5,10),(6,7)] => 4
[(1,8),(2,9),(3,4),(5,10),(6,7)] => 5
[(1,7),(2,9),(3,4),(5,10),(6,8)] => 10
[(1,6),(2,9),(3,4),(5,10),(7,8)] => 5
[(1,5),(2,9),(3,4),(6,10),(7,8)] => 4
[(1,4),(2,9),(3,5),(6,10),(7,8)] => 8
[(1,3),(2,9),(4,5),(6,10),(7,8)] => 4
[(1,2),(3,9),(4,5),(6,10),(7,8)] => 2
[(1,2),(3,10),(4,5),(6,9),(7,8)] => 1
[(1,3),(2,10),(4,5),(6,9),(7,8)] => 2
[(1,4),(2,10),(3,5),(6,9),(7,8)] => 4
[(1,5),(2,10),(3,4),(6,9),(7,8)] => 2
[(1,6),(2,10),(3,4),(5,9),(7,8)] => 4
[(1,7),(2,10),(3,4),(5,9),(6,8)] => 8
[(1,8),(2,10),(3,4),(5,9),(6,7)] => 4
[(1,9),(2,10),(3,4),(5,8),(6,7)] => 2
[(1,10),(2,9),(3,4),(5,8),(6,7)] => 1
[(1,10),(2,9),(3,5),(4,8),(6,7)] => 2
[(1,9),(2,10),(3,5),(4,8),(6,7)] => 4
[(1,8),(2,10),(3,5),(4,9),(6,7)] => 8
[(1,7),(2,10),(3,5),(4,9),(6,8)] => 16
[(1,6),(2,10),(3,5),(4,9),(7,8)] => 8
[(1,5),(2,10),(3,6),(4,9),(7,8)] => 10
[(1,4),(2,10),(3,6),(5,9),(7,8)] => 8
[(1,3),(2,10),(4,6),(5,9),(7,8)] => 4
[(1,2),(3,10),(4,6),(5,9),(7,8)] => 2
[(1,2),(3,9),(4,6),(5,10),(7,8)] => 4
[(1,3),(2,9),(4,6),(5,10),(7,8)] => 8
[(1,4),(2,9),(3,6),(5,10),(7,8)] => 12
[(1,5),(2,9),(3,6),(4,10),(7,8)] => 13
[(1,6),(2,9),(3,5),(4,10),(7,8)] => 10
[(1,7),(2,9),(3,5),(4,10),(6,8)] => 20
[(1,8),(2,9),(3,5),(4,10),(6,7)] => 10
[(1,9),(2,8),(3,5),(4,10),(6,7)] => 8
[(1,10),(2,8),(3,5),(4,9),(6,7)] => 4
[(1,10),(2,7),(3,5),(4,9),(6,8)] => 8
[(1,9),(2,7),(3,5),(4,10),(6,8)] => 16
[(1,8),(2,7),(3,5),(4,10),(6,9)] => 24
[(1,7),(2,8),(3,5),(4,10),(6,9)] => 26
[(1,6),(2,8),(3,5),(4,10),(7,9)] => 20
[(1,5),(2,8),(3,6),(4,10),(7,9)] => 26
[(1,4),(2,8),(3,6),(5,10),(7,9)] => 24
[(1,3),(2,8),(4,6),(5,10),(7,9)] => 16
[(1,2),(3,8),(4,6),(5,10),(7,9)] => 8
[(1,2),(3,7),(4,6),(5,10),(8,9)] => 4
[(1,3),(2,7),(4,6),(5,10),(8,9)] => 8
[(1,4),(2,7),(3,6),(5,10),(8,9)] => 12
[(1,5),(2,7),(3,6),(4,10),(8,9)] => 13
[(1,6),(2,7),(3,5),(4,10),(8,9)] => 10
[(1,7),(2,6),(3,5),(4,10),(8,9)] => 8
[(1,8),(2,6),(3,5),(4,10),(7,9)] => 16
[(1,9),(2,6),(3,5),(4,10),(7,8)] => 8
[(1,10),(2,6),(3,5),(4,9),(7,8)] => 4
[(1,10),(2,5),(3,6),(4,9),(7,8)] => 5
[(1,9),(2,5),(3,6),(4,10),(7,8)] => 10
[(1,8),(2,5),(3,6),(4,10),(7,9)] => 20
[(1,7),(2,5),(3,6),(4,10),(8,9)] => 10
[(1,6),(2,5),(3,7),(4,10),(8,9)] => 13
[(1,5),(2,6),(3,7),(4,10),(8,9)] => 14
[(1,4),(2,6),(3,7),(5,10),(8,9)] => 13
[(1,3),(2,6),(4,7),(5,10),(8,9)] => 10
[(1,2),(3,6),(4,7),(5,10),(8,9)] => 5
[(1,2),(3,5),(4,7),(6,10),(8,9)] => 4
[(1,3),(2,5),(4,7),(6,10),(8,9)] => 8
[(1,4),(2,5),(3,7),(6,10),(8,9)] => 10
[(1,5),(2,4),(3,7),(6,10),(8,9)] => 8
[(1,6),(2,4),(3,7),(5,10),(8,9)] => 10
[(1,7),(2,4),(3,6),(5,10),(8,9)] => 8
[(1,8),(2,4),(3,6),(5,10),(7,9)] => 16
[(1,9),(2,4),(3,6),(5,10),(7,8)] => 8
[(1,10),(2,4),(3,6),(5,9),(7,8)] => 4
[(1,10),(2,3),(4,6),(5,9),(7,8)] => 2
[(1,9),(2,3),(4,6),(5,10),(7,8)] => 4
[(1,8),(2,3),(4,6),(5,10),(7,9)] => 8
[(1,7),(2,3),(4,6),(5,10),(8,9)] => 4
[(1,6),(2,3),(4,7),(5,10),(8,9)] => 5
[(1,5),(2,3),(4,7),(6,10),(8,9)] => 4
[(1,4),(2,3),(5,7),(6,10),(8,9)] => 2
[(1,3),(2,4),(5,7),(6,10),(8,9)] => 4
[(1,2),(3,4),(5,7),(6,10),(8,9)] => 2
[(1,2),(3,4),(5,8),(6,10),(7,9)] => 4
[(1,3),(2,4),(5,8),(6,10),(7,9)] => 8
[(1,4),(2,3),(5,8),(6,10),(7,9)] => 4
[(1,5),(2,3),(4,8),(6,10),(7,9)] => 8
[(1,6),(2,3),(4,8),(5,10),(7,9)] => 10
[(1,7),(2,3),(4,8),(5,10),(6,9)] => 13
[(1,8),(2,3),(4,7),(5,10),(6,9)] => 12
[(1,9),(2,3),(4,7),(5,10),(6,8)] => 8
[(1,10),(2,3),(4,7),(5,9),(6,8)] => 4
[(1,10),(2,4),(3,7),(5,9),(6,8)] => 8
[(1,9),(2,4),(3,7),(5,10),(6,8)] => 16
[(1,8),(2,4),(3,7),(5,10),(6,9)] => 24
[(1,7),(2,4),(3,8),(5,10),(6,9)] => 26
[(1,6),(2,4),(3,8),(5,10),(7,9)] => 20
[(1,5),(2,4),(3,8),(6,10),(7,9)] => 16
[(1,4),(2,5),(3,8),(6,10),(7,9)] => 20
[(1,3),(2,5),(4,8),(6,10),(7,9)] => 16
[(1,2),(3,5),(4,8),(6,10),(7,9)] => 8
[(1,2),(3,6),(4,8),(5,10),(7,9)] => 10
[(1,3),(2,6),(4,8),(5,10),(7,9)] => 20
[(1,4),(2,6),(3,8),(5,10),(7,9)] => 26
[(1,5),(2,6),(3,8),(4,10),(7,9)] => 28
[(1,6),(2,5),(3,8),(4,10),(7,9)] => 26
[(1,7),(2,5),(3,8),(4,10),(6,9)] => 34
[(1,8),(2,5),(3,7),(4,10),(6,9)] => 31
[(1,9),(2,5),(3,7),(4,10),(6,8)] => 20
[(1,10),(2,5),(3,7),(4,9),(6,8)] => 10
[(1,10),(2,6),(3,7),(4,9),(5,8)] => 13
[(1,9),(2,6),(3,7),(4,10),(5,8)] => 26
[(1,8),(2,6),(3,7),(4,10),(5,9)] => 36
[(1,7),(2,6),(3,8),(4,10),(5,9)] => 40
[(1,6),(2,7),(3,8),(4,10),(5,9)] => 41
[(1,5),(2,7),(3,8),(4,10),(6,9)] => 37
[(1,4),(2,7),(3,8),(5,10),(6,9)] => 34
[(1,3),(2,7),(4,8),(5,10),(6,9)] => 26
[(1,2),(3,7),(4,8),(5,10),(6,9)] => 13
[(1,2),(3,8),(4,7),(5,10),(6,9)] => 12
[(1,3),(2,8),(4,7),(5,10),(6,9)] => 24
[(1,4),(2,8),(3,7),(5,10),(6,9)] => 33
[(1,5),(2,8),(3,7),(4,10),(6,9)] => 36
[(1,6),(2,8),(3,7),(4,10),(5,9)] => 40
[(1,7),(2,8),(3,6),(4,10),(5,9)] => 36
[(1,8),(2,7),(3,6),(4,10),(5,9)] => 33
[(1,9),(2,7),(3,6),(4,10),(5,8)] => 24
[(1,10),(2,7),(3,6),(4,9),(5,8)] => 12
[(1,10),(2,8),(3,6),(4,9),(5,7)] => 8
[(1,9),(2,8),(3,6),(4,10),(5,7)] => 16
[(1,8),(2,9),(3,6),(4,10),(5,7)] => 20
[(1,7),(2,9),(3,6),(4,10),(5,8)] => 31
[(1,6),(2,9),(3,7),(4,10),(5,8)] => 34
[(1,5),(2,9),(3,7),(4,10),(6,8)] => 26
[(1,4),(2,9),(3,7),(5,10),(6,8)] => 24
[(1,3),(2,9),(4,7),(5,10),(6,8)] => 16
[(1,2),(3,9),(4,7),(5,10),(6,8)] => 8
[(1,2),(3,10),(4,7),(5,9),(6,8)] => 4
[(1,3),(2,10),(4,7),(5,9),(6,8)] => 8
[(1,4),(2,10),(3,7),(5,9),(6,8)] => 16
[(1,5),(2,10),(3,7),(4,9),(6,8)] => 20
[(1,6),(2,10),(3,7),(4,9),(5,8)] => 26
[(1,7),(2,10),(3,6),(4,9),(5,8)] => 24
[(1,8),(2,10),(3,6),(4,9),(5,7)] => 16
[(1,9),(2,10),(3,6),(4,8),(5,7)] => 8
[(1,10),(2,9),(3,6),(4,8),(5,7)] => 4
[(1,10),(2,9),(3,7),(4,8),(5,6)] => 2
[(1,9),(2,10),(3,7),(4,8),(5,6)] => 4
[(1,8),(2,10),(3,7),(4,9),(5,6)] => 8
[(1,7),(2,10),(3,8),(4,9),(5,6)] => 10
[(1,6),(2,10),(3,8),(4,9),(5,7)] => 20
[(1,5),(2,10),(3,8),(4,9),(6,7)] => 10
[(1,4),(2,10),(3,8),(5,9),(6,7)] => 8
[(1,3),(2,10),(4,8),(5,9),(6,7)] => 4
[(1,2),(3,10),(4,8),(5,9),(6,7)] => 2
[(1,2),(3,9),(4,8),(5,10),(6,7)] => 4
[(1,3),(2,9),(4,8),(5,10),(6,7)] => 8
[(1,4),(2,9),(3,8),(5,10),(6,7)] => 12
[(1,5),(2,9),(3,8),(4,10),(6,7)] => 13
[(1,6),(2,9),(3,8),(4,10),(5,7)] => 26
[(1,7),(2,9),(3,8),(4,10),(5,6)] => 13
[(1,8),(2,9),(3,7),(4,10),(5,6)] => 10
[(1,9),(2,8),(3,7),(4,10),(5,6)] => 8
[(1,10),(2,8),(3,7),(4,9),(5,6)] => 4
[(1,10),(2,7),(3,8),(4,9),(5,6)] => 5
[(1,9),(2,7),(3,8),(4,10),(5,6)] => 10
[(1,8),(2,7),(3,9),(4,10),(5,6)] => 13
[(1,7),(2,8),(3,9),(4,10),(5,6)] => 14
[(1,6),(2,8),(3,9),(4,10),(5,7)] => 28
[(1,5),(2,8),(3,9),(4,10),(6,7)] => 14
[(1,4),(2,8),(3,9),(5,10),(6,7)] => 13
[(1,3),(2,8),(4,9),(5,10),(6,7)] => 10
[(1,2),(3,8),(4,9),(5,10),(6,7)] => 5
[(1,2),(3,7),(4,9),(5,10),(6,8)] => 10
[(1,3),(2,7),(4,9),(5,10),(6,8)] => 20
[(1,4),(2,7),(3,9),(5,10),(6,8)] => 26
[(1,5),(2,7),(3,9),(4,10),(6,8)] => 28
[(1,6),(2,7),(3,9),(4,10),(5,8)] => 37
[(1,7),(2,6),(3,9),(4,10),(5,8)] => 36
[(1,8),(2,6),(3,9),(4,10),(5,7)] => 26
[(1,9),(2,6),(3,8),(4,10),(5,7)] => 20
[(1,10),(2,6),(3,8),(4,9),(5,7)] => 10
[(1,10),(2,5),(3,8),(4,9),(6,7)] => 5
[(1,9),(2,5),(3,8),(4,10),(6,7)] => 10
[(1,8),(2,5),(3,9),(4,10),(6,7)] => 13
[(1,7),(2,5),(3,9),(4,10),(6,8)] => 26
[(1,6),(2,5),(3,9),(4,10),(7,8)] => 13
[(1,5),(2,6),(3,9),(4,10),(7,8)] => 14
[(1,4),(2,6),(3,9),(5,10),(7,8)] => 13
[(1,3),(2,6),(4,9),(5,10),(7,8)] => 10
[(1,2),(3,6),(4,9),(5,10),(7,8)] => 5
[(1,2),(3,5),(4,9),(6,10),(7,8)] => 4
[(1,3),(2,5),(4,9),(6,10),(7,8)] => 8
[(1,4),(2,5),(3,9),(6,10),(7,8)] => 10
[(1,5),(2,4),(3,9),(6,10),(7,8)] => 8
[(1,6),(2,4),(3,9),(5,10),(7,8)] => 10
[(1,7),(2,4),(3,9),(5,10),(6,8)] => 20
[(1,8),(2,4),(3,9),(5,10),(6,7)] => 10
[(1,9),(2,4),(3,8),(5,10),(6,7)] => 8
[(1,10),(2,4),(3,8),(5,9),(6,7)] => 4
[(1,10),(2,3),(4,8),(5,9),(6,7)] => 2
[(1,9),(2,3),(4,8),(5,10),(6,7)] => 4
[(1,8),(2,3),(4,9),(5,10),(6,7)] => 5
[(1,7),(2,3),(4,9),(5,10),(6,8)] => 10
[(1,6),(2,3),(4,9),(5,10),(7,8)] => 5
[(1,5),(2,3),(4,9),(6,10),(7,8)] => 4
[(1,4),(2,3),(5,9),(6,10),(7,8)] => 2
[(1,3),(2,4),(5,9),(6,10),(7,8)] => 4
[(1,2),(3,4),(5,9),(6,10),(7,8)] => 2
[(1,2),(3,4),(5,10),(6,9),(7,8)] => 1
[(1,3),(2,4),(5,10),(6,9),(7,8)] => 2
[(1,4),(2,3),(5,10),(6,9),(7,8)] => 1
[(1,5),(2,3),(4,10),(6,9),(7,8)] => 2
[(1,6),(2,3),(4,10),(5,9),(7,8)] => 4
[(1,7),(2,3),(4,10),(5,9),(6,8)] => 8
[(1,8),(2,3),(4,10),(5,9),(6,7)] => 4
[(1,9),(2,3),(4,10),(5,8),(6,7)] => 2
[(1,10),(2,3),(4,9),(5,8),(6,7)] => 1
[(1,10),(2,4),(3,9),(5,8),(6,7)] => 2
[(1,9),(2,4),(3,10),(5,8),(6,7)] => 4
[(1,8),(2,4),(3,10),(5,9),(6,7)] => 8
[(1,7),(2,4),(3,10),(5,9),(6,8)] => 16
[(1,6),(2,4),(3,10),(5,9),(7,8)] => 8
[(1,5),(2,4),(3,10),(6,9),(7,8)] => 4
[(1,4),(2,5),(3,10),(6,9),(7,8)] => 5
[(1,3),(2,5),(4,10),(6,9),(7,8)] => 4
[(1,2),(3,5),(4,10),(6,9),(7,8)] => 2
[(1,2),(3,6),(4,10),(5,9),(7,8)] => 4
[(1,3),(2,6),(4,10),(5,9),(7,8)] => 8
[(1,4),(2,6),(3,10),(5,9),(7,8)] => 10
[(1,5),(2,6),(3,10),(4,9),(7,8)] => 13
[(1,6),(2,5),(3,10),(4,9),(7,8)] => 12
[(1,7),(2,5),(3,10),(4,9),(6,8)] => 24
[(1,8),(2,5),(3,10),(4,9),(6,7)] => 12
[(1,9),(2,5),(3,10),(4,8),(6,7)] => 8
[(1,10),(2,5),(3,9),(4,8),(6,7)] => 4
[(1,10),(2,6),(3,9),(4,8),(5,7)] => 8
[(1,9),(2,6),(3,10),(4,8),(5,7)] => 16
[(1,8),(2,6),(3,10),(4,9),(5,7)] => 24
[(1,7),(2,6),(3,10),(4,9),(5,8)] => 33
[(1,6),(2,7),(3,10),(4,9),(5,8)] => 34
[(1,5),(2,7),(3,10),(4,9),(6,8)] => 26
[(1,4),(2,7),(3,10),(5,9),(6,8)] => 20
[(1,3),(2,7),(4,10),(5,9),(6,8)] => 16
[(1,2),(3,7),(4,10),(5,9),(6,8)] => 8
[(1,2),(3,8),(4,10),(5,9),(6,7)] => 4
[(1,3),(2,8),(4,10),(5,9),(6,7)] => 8
[(1,4),(2,8),(3,10),(5,9),(6,7)] => 10
[(1,5),(2,8),(3,10),(4,9),(6,7)] => 13
[(1,6),(2,8),(3,10),(4,9),(5,7)] => 26
[(1,7),(2,8),(3,10),(4,9),(5,6)] => 13
[(1,8),(2,7),(3,10),(4,9),(5,6)] => 12
[(1,9),(2,7),(3,10),(4,8),(5,6)] => 8
[(1,10),(2,7),(3,9),(4,8),(5,6)] => 4
[(1,10),(2,8),(3,9),(4,7),(5,6)] => 2
[(1,9),(2,8),(3,10),(4,7),(5,6)] => 4
[(1,8),(2,9),(3,10),(4,7),(5,6)] => 5
[(1,7),(2,9),(3,10),(4,8),(5,6)] => 10
[(1,6),(2,9),(3,10),(4,8),(5,7)] => 20
[(1,5),(2,9),(3,10),(4,8),(6,7)] => 10
[(1,4),(2,9),(3,10),(5,8),(6,7)] => 5
[(1,3),(2,9),(4,10),(5,8),(6,7)] => 4
[(1,2),(3,9),(4,10),(5,8),(6,7)] => 2
[(1,2),(3,10),(4,9),(5,8),(6,7)] => 1
[(1,3),(2,10),(4,9),(5,8),(6,7)] => 2
[(1,4),(2,10),(3,9),(5,8),(6,7)] => 4
[(1,5),(2,10),(3,9),(4,8),(6,7)] => 8
[(1,6),(2,10),(3,9),(4,8),(5,7)] => 16
[(1,7),(2,10),(3,9),(4,8),(5,6)] => 8
[(1,8),(2,10),(3,9),(4,7),(5,6)] => 4
[(1,9),(2,10),(3,8),(4,7),(5,6)] => 2
[(1,10),(2,9),(3,8),(4,7),(5,6)] => 1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Generating function
click to show known generating functions
Search the OEIS for these generating functions
Search the Online Encyclopedia of Integer
Sequences for the coefficients of a few of the
first generating functions, in the case at hand:
2,1 5,6,0,3,1 14,28,0,28,8,0,0,12,0,8,0,2,4,1 42,120,0,180,45,0,0,150,0,90,0,20,40,10,0,55,0,0,0,55,0,0,0,20,5,40,2,10,0,0,10,0,5,15,0,10,10,0,0,5,5,1
$F_{2} = q$
$F_{4} = 2\ q + q^{2}$
$F_{6} = 5\ q + 6\ q^{2} + 3\ q^{4} + q^{5}$
$F_{8} = 14\ q + 28\ q^{2} + 28\ q^{4} + 8\ q^{5} + 12\ q^{8} + 8\ q^{10} + 2\ q^{12} + 4\ q^{13} + q^{14}$
$F_{10} = 42\ q + 120\ q^{2} + 180\ q^{4} + 45\ q^{5} + 150\ q^{8} + 90\ q^{10} + 20\ q^{12} + 40\ q^{13} + 10\ q^{14} + 55\ q^{16} + 55\ q^{20} + 20\ q^{24} + 5\ q^{25} + 40\ q^{26} + 2\ q^{27} + 10\ q^{28} + 10\ q^{31} + 5\ q^{33} + 15\ q^{34} + 10\ q^{36} + 10\ q^{37} + 5\ q^{40} + 5\ q^{41} + q^{42}$
Description
The number of non-crossing perfect matchings in the chord expansion of a perfect matching.
Given a perfect matching, we obtain a formal sum of non-crossing perfect matchings by replacing recursively every matching $M$ that has a crossing $(a, c), (b, d)$ with $a < b < c < d$ with the sum of the two matchings $(M\setminus \{(a,c), (b,d)\})\cup \{(a,b), (c,d)\}$ and $(M\setminus \{(a,c), (b,d)\})\cup \{(a,d), (b,c)\}$.
This statistic is the number of distinct non-crossing perfect matchings in the formal sum.
Given a perfect matching, we obtain a formal sum of non-crossing perfect matchings by replacing recursively every matching $M$ that has a crossing $(a, c), (b, d)$ with $a < b < c < d$ with the sum of the two matchings $(M\setminus \{(a,c), (b,d)\})\cup \{(a,b), (c,d)\}$ and $(M\setminus \{(a,c), (b,d)\})\cup \{(a,d), (b,c)\}$.
This statistic is the number of distinct non-crossing perfect matchings in the formal sum.
Code
def expand(M, ac, bd):
a, c = ac
b, d = bd
m = list(M)
m.remove(frozenset(ac))
m.remove(frozenset(bd))
m1 = m + [frozenset([a, b]), frozenset([c, d])]
m2 = m + [frozenset([a, d]), frozenset([b, c])]
return PerfectMatching(m1), PerfectMatching(m2)
def expansion(M):
input = {M: 1}
output = {}
while input:
m, e = input.popitem()
try:
ac, bd = next(m.crossings_iterator())
except StopIteration:
output[m] = output.get(m, 0) + e
else:
m1, m2 = expand(m, ac, bd)
input[m1] = input.get(m1, 0) + e
input[m2] = input.get(m2, 0) + e
return output
def statistic(M):
return len(expansion(M))
Created
Sep 01, 2022 at 00:00 by Martin Rubey
Updated
Sep 01, 2022 at 00:00 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!