Processing math: 100%

Identifier
Values
[1,2,2] => [[3,2,1],[1]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[2,2,1] => [[3,3,2],[2,1]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[1,1,2,1,1] => [[2,2,2,1,1],[1,1]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[1,1,2,2] => [[3,2,1,1],[1]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[1,2,1,2] => [[3,2,2,1],[1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,2,2,1] => [[3,3,2,1],[2,1]] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[1,2,3] => [[4,2,1],[1]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[1,3,2] => [[4,3,1],[2]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[2,1,2,1] => [[3,3,2,2],[2,1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[2,2,1,1] => [[3,3,3,2],[2,2,1]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[2,2,2] => [[4,3,2],[2,1]] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
[2,3,1] => [[4,4,2],[3,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[3,2,1] => [[4,4,3],[3,2]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[3,3] => [[5,3],[2]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[1,1,1,2,1,1] => [[2,2,2,1,1,1],[1,1]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[1,1,1,2,2] => [[3,2,1,1,1],[1]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[1,1,2,1,1,1] => [[2,2,2,2,1,1],[1,1,1]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[1,1,2,1,2] => [[3,2,2,1,1],[1,1]] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[1,1,2,2,1] => [[3,3,2,1,1],[2,1]] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 1
[1,1,2,3] => [[4,2,1,1],[1]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[1,1,3,1,1] => [[3,3,3,1,1],[2,2]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[1,1,3,2] => [[4,3,1,1],[2]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,2,1,1,2] => [[3,2,2,2,1],[1,1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,2,1,2,1] => [[3,3,2,2,1],[2,1,1]] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 1
[1,2,1,3] => [[4,2,2,1],[1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,2,2,1,1] => [[3,3,3,2,1],[2,2,1]] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 1
[1,2,2,2] => [[4,3,2,1],[2,1]] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 1
[1,2,3,1] => [[4,4,2,1],[3,1]] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[1,2,4] => [[5,2,1],[1]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[1,3,1,2] => [[4,3,3,1],[2,2]] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,3,2,1] => [[4,4,3,1],[3,2]] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[1,3,3] => [[5,3,1],[2]] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
[1,4,2] => [[5,4,1],[3]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[2,1,1,2,1] => [[3,3,2,2,2],[2,1,1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[2,1,2,1,1] => [[3,3,3,2,2],[2,2,1,1]] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[2,1,2,2] => [[4,3,2,2],[2,1,1]] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
[2,1,3,1] => [[4,4,2,2],[3,1,1]] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[2,2,1,1,1] => [[3,3,3,3,2],[2,2,2,1]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[2,2,1,2] => [[4,3,3,2],[2,2,1]] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
[2,2,2,1] => [[4,4,3,2],[3,2,1]] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 1
[2,2,3] => [[5,3,2],[2,1]] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 2
[2,3,1,1] => [[4,4,4,2],[3,3,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[2,3,2] => [[5,4,2],[3,1]] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 2
[2,4,1] => [[5,5,2],[4,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[3,1,2,1] => [[4,4,3,3],[3,2,2]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[3,1,3] => [[5,3,3],[2,2]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[3,2,1,1] => [[4,4,4,3],[3,3,2]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[3,2,2] => [[5,4,3],[3,2]] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 2
[3,3,1] => [[5,5,3],[4,2]] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
[3,4] => [[6,3],[2]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[4,2,1] => [[5,5,4],[4,3]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[4,3] => [[6,4],[3]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[1,1,1,1,2,1,1] => [[2,2,2,1,1,1,1],[1,1]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[1,1,1,1,2,2] => [[3,2,1,1,1,1],[1]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[1,1,1,2,1,1,1] => [[2,2,2,2,1,1,1],[1,1,1]] => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(2,1),(3,2)],4) => 1
[1,1,1,2,1,2] => [[3,2,2,1,1,1],[1,1]] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[1,1,1,2,2,1] => [[3,3,2,1,1,1],[2,1]] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 1
[1,1,1,3,2] => [[4,3,1,1,1],[2]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,2,1,1,1,1] => [[2,2,2,2,2,1,1],[1,1,1,1]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[1,1,2,1,1,2] => [[3,2,2,2,1,1],[1,1,1]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[1,1,2,3,1] => [[4,4,2,1,1],[3,1]] => ([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 1
[1,1,3,1,2] => [[4,3,3,1,1],[2,2]] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[1,1,3,2,1] => [[4,4,3,1,1],[3,2]] => ([(0,5),(1,7),(2,6),(3,6),(4,3),(4,7),(5,1),(5,4),(7,2)],8) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 1
[1,1,3,3] => [[5,3,1,1],[2]] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
[1,2,1,1,1,2] => [[3,2,2,2,2,1],[1,1,1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,2,1,1,2,1] => [[3,3,2,2,2,1],[2,1,1,1]] => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 1
[1,2,1,3,1] => [[4,4,2,2,1],[3,1,1]] => ([(0,5),(1,7),(2,6),(3,6),(4,3),(4,7),(5,1),(5,4),(7,2)],8) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 1
[1,2,2,1,1,1] => [[3,3,3,3,2,1],[2,2,2,1]] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 1
[1,2,3,1,1] => [[4,4,4,2,1],[3,3,1]] => ([(0,5),(1,7),(2,6),(3,6),(4,3),(4,7),(5,1),(5,4),(7,2)],8) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 1
[1,3,1,1,2] => [[4,3,3,3,1],[2,2,2]] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,3,1,2,1] => [[4,4,3,3,1],[3,2,2]] => ([(0,5),(1,7),(2,6),(3,6),(4,3),(4,7),(5,1),(5,4),(7,2)],8) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 1
[1,3,1,3] => [[5,3,3,1],[2,2]] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[1,3,2,1,1] => [[4,4,4,3,1],[3,3,2]] => ([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 1
[1,4,1,2] => [[5,4,4,1],[3,3]] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,4,2,1] => [[5,5,4,1],[4,3]] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[1,4,3] => [[6,4,1],[3]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[2,1,1,1,2,1] => [[3,3,2,2,2,2],[2,1,1,1,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[2,1,1,2,1,1] => [[3,3,3,2,2,2],[2,2,1,1,1]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[2,1,1,2,2] => [[4,3,2,2,2],[2,1,1,1]] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
[2,1,1,3,1] => [[4,4,2,2,2],[3,1,1,1]] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[2,1,2,1,1,1] => [[3,3,3,3,2,2],[2,2,2,1,1]] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[2,1,2,3] => [[5,3,2,2],[2,1,1]] => ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 2
[2,1,3,1,1] => [[4,4,4,2,2],[3,3,1,1]] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[2,1,3,2] => [[5,4,2,2],[3,1,1]] => ([(0,3),(0,5),(2,7),(3,6),(4,2),(4,6),(5,4),(6,7),(7,1)],8) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 2
[2,2,1,1,1,1] => [[3,3,3,3,3,2],[2,2,2,2,1]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[2,2,1,1,2] => [[4,3,3,3,2],[2,2,2,1]] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
[2,2,1,3] => [[5,3,3,2],[2,2,1]] => ([(0,3),(0,5),(2,7),(3,6),(4,2),(4,6),(5,4),(6,7),(7,1)],8) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 2
[2,3,1,1,1] => [[4,4,4,4,2],[3,3,3,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[2,3,1,2] => [[5,4,4,2],[3,3,1]] => ([(0,3),(0,5),(2,7),(3,6),(4,2),(4,6),(5,4),(6,7),(7,1)],8) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 2
[2,4,1,1] => [[5,5,5,2],[4,4,1]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[2,4,2] => [[6,5,2],[4,1]] => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 2
[3,1,1,2,1] => [[4,4,3,3,3],[3,2,2,2]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[3,1,1,3] => [[5,3,3,3],[2,2,2]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[3,1,2,1,1] => [[4,4,4,3,3],[3,3,2,2]] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[3,1,2,2] => [[5,4,3,3],[3,2,2]] => ([(0,3),(0,5),(2,7),(3,6),(4,2),(4,6),(5,4),(6,7),(7,1)],8) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 2
[3,1,3,1] => [[5,5,3,3],[4,2,2]] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[3,2,1,1,1] => [[4,4,4,4,3],[3,3,3,2]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[3,2,1,2] => [[5,4,4,3],[3,3,2]] => ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 2
[3,3,1,1] => [[5,5,5,3],[4,4,2]] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
[3,4,1] => [[6,6,3],[5,2]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[4,1,2,1] => [[5,5,4,4],[4,3,3]] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
>>> Load all 106 entries. <<<
[4,1,3] => [[6,4,4],[3,3]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[4,2,1,1] => [[5,5,5,4],[4,4,3]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[4,2,2] => [[6,5,4],[4,3]] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 2
[4,3,1] => [[6,6,4],[5,3]] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
[4,4] => [[7,4],[3]] => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(2,1),(3,2)],4) => 1
search for individual values
searching the database for the individual values of this statistic
Description
The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.
Map
to ribbon
Description
The ribbon shape corresponding to an integer composition.
For an integer composition (a1,,an), this is the ribbon shape whose ith row from the bottom has ai cells.
Map
dominating sublattice
Description
Return the sublattice of the dominance order induced by the support of the expansion of the skew Schur function into Schur functions.
Consider the expansion of the skew Schur function sλ/μ=νcλμ,νsν as a linear combination of straight Schur functions.
It is shown in [1] that the subposet of the dominance order whose elements are the partitions ν with cλμ,ν>0 form a lattice.
The example λ=(52,42,1) and μ=(3,2) shows that this lattice is not a sublattice of the dominance order.
Map
The modular quotient of a lattice.
Description
The modular quotient of a lattice.
This is the largest quotient of a lattice which is modular.