Identifier
Values
[1,1,1] => [[1,1,1],[]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[3] => [[3],[]] => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 1
[1,1,1,1] => [[1,1,1,1],[]] => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(2,1),(3,2)],4) => 1
[1,2,1] => [[2,2,1],[1]] => ([(0,3),(1,2),(1,3)],4) => ([(0,2),(2,1)],3) => 1
[2,2] => [[3,2],[1]] => ([(0,3),(1,2),(1,3)],4) => ([(0,2),(2,1)],3) => 1
[4] => [[4],[]] => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(2,1),(3,2)],4) => 1
[1,1,1,1,1] => [[1,1,1,1,1],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,1,1,2] => [[2,1,1,1],[]] => ([(0,2),(0,4),(3,1),(4,3)],5) => ([(0,2),(2,1)],3) => 1
[1,1,2,1] => [[2,2,1,1],[1]] => ([(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[1,1,3] => [[3,1,1],[]] => ([(0,3),(0,4),(3,2),(4,1)],5) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,2,1,1] => [[2,2,2,1],[1,1]] => ([(0,3),(1,2),(1,4),(3,4)],5) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
[1,4] => [[4,1],[]] => ([(0,2),(0,4),(3,1),(4,3)],5) => ([(0,2),(2,1)],3) => 1
[2,1,1,1] => [[2,2,2,2],[1,1,1]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(0,2),(2,1)],3) => 1
[2,3] => [[4,2],[1]] => ([(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[3,1,1] => [[3,3,3],[2,2]] => ([(0,3),(1,2),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[3,2] => [[4,3],[2]] => ([(0,3),(1,2),(1,4),(3,4)],5) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
[4,1] => [[4,4],[3]] => ([(0,4),(1,2),(2,3),(3,4)],5) => ([(0,2),(2,1)],3) => 1
[5] => [[5],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,1,1,1,2] => [[2,1,1,1,1],[]] => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => ([(0,3),(2,1),(3,2)],4) => 1
[1,1,1,2,1] => [[2,2,1,1,1],[1]] => ([(0,5),(1,4),(1,5),(3,2),(4,3)],6) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 1
[1,1,1,3] => [[3,1,1,1],[]] => ([(0,4),(0,5),(3,2),(4,3),(5,1)],6) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[1,1,4] => [[4,1,1],[]] => ([(0,4),(0,5),(3,2),(4,3),(5,1)],6) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]] => ([(0,4),(1,3),(1,5),(2,5),(4,2)],6) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 2
[1,2,1,2] => [[3,2,2,1],[1,1]] => ([(0,4),(0,5),(1,2),(1,3),(3,5)],6) => ([(0,2),(2,1)],3) => 1
[1,2,2,1] => [[3,3,2,1],[2,1]] => ([(0,4),(1,4),(1,5),(2,3),(2,5)],6) => ([(0,3),(2,1),(3,2)],4) => 1
[1,3,2] => [[4,3,1],[2]] => ([(0,4),(0,5),(1,2),(1,3),(3,5)],6) => ([(0,2),(2,1)],3) => 1
[1,5] => [[5,1],[]] => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => ([(0,3),(2,1),(3,2)],4) => 1
[2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => ([(0,3),(2,1),(3,2)],4) => 1
[2,1,2,1] => [[3,3,2,2],[2,1,1]] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => ([(0,2),(2,1)],3) => 1
[2,2,2] => [[4,3,2],[2,1]] => ([(0,4),(1,4),(1,5),(2,3),(2,5)],6) => ([(0,3),(2,1),(3,2)],4) => 1
[2,3,1] => [[4,4,2],[3,1]] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => ([(0,2),(2,1)],3) => 1
[2,4] => [[5,2],[1]] => ([(0,5),(1,4),(1,5),(3,2),(4,3)],6) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 1
[3,1,1,1] => [[3,3,3,3],[2,2,2]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[4,1,1] => [[4,4,4],[3,3]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[4,2] => [[5,4],[3]] => ([(0,4),(1,3),(1,5),(2,5),(4,2)],6) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 2
[5,1] => [[5,5],[4]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => ([(0,3),(2,1),(3,2)],4) => 1
[6] => [[6],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,1,1,1,1,1,1] => [[1,1,1,1,1,1,1],[]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
[1,1,1,1,1,2] => [[2,1,1,1,1,1],[]] => ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7) => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[1,1,1,2,2] => [[3,2,1,1,1],[1]] => ([(0,5),(0,6),(1,3),(1,6),(4,2),(5,4)],7) => ([(0,2),(2,1)],3) => 1
[1,1,1,3,1] => [[3,3,1,1,1],[2]] => ([(0,6),(1,3),(1,5),(3,6),(4,2),(5,4)],7) => ([(0,2),(2,1)],3) => 1
[1,1,2,1,2] => [[3,2,2,1,1],[1,1]] => ([(0,5),(0,6),(1,3),(1,4),(4,6),(5,2)],7) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[1,1,2,2,1] => [[3,3,2,1,1],[2,1]] => ([(0,5),(1,5),(1,6),(2,3),(2,6),(3,4)],7) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 1
[1,1,2,3] => [[4,2,1,1],[1]] => ([(0,5),(0,6),(1,4),(1,6),(4,2),(5,3)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,3,1,1] => [[3,3,3,1,1],[2,2]] => ([(0,4),(1,3),(1,5),(3,6),(4,6),(5,2)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,3,2] => [[4,3,1,1],[2]] => ([(0,4),(0,6),(1,3),(1,5),(3,6),(5,2)],7) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[1,1,4,1] => [[4,4,1,1],[3]] => ([(0,6),(1,4),(1,5),(3,6),(4,2),(5,3)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,2,1,1,2] => [[3,2,2,2,1],[1,1,1]] => ([(0,4),(0,6),(1,2),(1,5),(3,6),(5,3)],7) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
[1,2,1,3] => [[4,2,2,1],[1,1]] => ([(0,4),(0,6),(1,3),(1,5),(3,6),(5,2)],7) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[1,2,2,1,1] => [[3,3,3,2,1],[2,2,1]] => ([(0,5),(0,6),(1,4),(2,3),(2,5),(4,6)],7) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 2
[1,2,4] => [[5,2,1],[1]] => ([(0,5),(0,6),(1,3),(1,6),(4,2),(5,4)],7) => ([(0,2),(2,1)],3) => 1
[1,3,1,1,1] => [[3,3,3,3,1],[2,2,2]] => ([(0,5),(1,2),(1,4),(3,6),(4,6),(5,3)],7) => ([(0,2),(2,1)],3) => 1
[1,3,3] => [[5,3,1],[2]] => ([(0,5),(0,6),(1,3),(1,4),(4,6),(5,2)],7) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[1,4,1,1] => [[4,4,4,1],[3,3]] => ([(0,4),(1,2),(1,5),(3,6),(4,6),(5,3)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,4,2] => [[5,4,1],[3]] => ([(0,4),(0,6),(1,2),(1,5),(3,6),(5,3)],7) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
[1,5,1] => [[5,5,1],[4]] => ([(0,6),(1,2),(1,5),(3,6),(4,3),(5,4)],7) => ([(0,2),(2,1)],3) => 1
[1,6] => [[6,1],[]] => ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7) => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[2,1,1,1,1,1] => [[2,2,2,2,2,2],[1,1,1,1,1]] => ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7) => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[2,1,1,1,2] => [[3,2,2,2,2],[1,1,1,1]] => ([(0,6),(1,2),(1,5),(3,6),(4,3),(5,4)],7) => ([(0,2),(2,1)],3) => 1
[2,1,1,2,1] => [[3,3,2,2,2],[2,1,1,1]] => ([(0,5),(1,6),(2,3),(2,5),(3,4),(4,6)],7) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[2,1,1,3] => [[4,2,2,2],[1,1,1]] => ([(0,6),(1,4),(1,5),(3,6),(4,2),(5,3)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[2,1,2,1,1] => [[3,3,3,2,2],[2,2,1,1]] => ([(0,6),(1,3),(2,4),(2,5),(3,5),(4,6)],7) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
[2,1,4] => [[5,2,2],[1,1]] => ([(0,6),(1,3),(1,5),(3,6),(4,2),(5,4)],7) => ([(0,2),(2,1)],3) => 1
[2,2,1,1,1] => [[3,3,3,3,2],[2,2,2,1]] => ([(0,5),(1,5),(1,6),(2,3),(3,4),(4,6)],7) => ([(0,2),(2,1)],3) => 1
[2,2,3] => [[5,3,2],[2,1]] => ([(0,5),(1,5),(1,6),(2,3),(2,6),(3,4)],7) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => 1
[2,3,1,1] => [[4,4,4,2],[3,3,1]] => ([(0,5),(1,3),(2,4),(2,5),(3,6),(4,6)],7) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[2,4,1] => [[5,5,2],[4,1]] => ([(0,5),(1,6),(2,3),(2,5),(3,4),(4,6)],7) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[3,1,1,2] => [[4,3,3,3],[2,2,2]] => ([(0,4),(1,2),(1,5),(3,6),(4,6),(5,3)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[3,1,2,1] => [[4,4,3,3],[3,2,2]] => ([(0,5),(1,3),(2,4),(2,5),(3,6),(4,6)],7) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[3,1,3] => [[5,3,3],[2,2]] => ([(0,4),(1,3),(1,5),(3,6),(4,6),(5,2)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[3,2,1,1] => [[4,4,4,3],[3,3,2]] => ([(0,5),(0,6),(1,4),(2,3),(3,5),(4,6)],7) => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[3,2,2] => [[5,4,3],[3,2]] => ([(0,5),(0,6),(1,4),(2,3),(2,5),(4,6)],7) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => 2
[3,3,1] => [[5,5,3],[4,2]] => ([(0,6),(1,3),(2,4),(2,5),(3,5),(4,6)],7) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 2
[4,1,2] => [[5,4,4],[3,3]] => ([(0,5),(1,2),(1,4),(3,6),(4,6),(5,3)],7) => ([(0,2),(2,1)],3) => 1
[4,2,1] => [[5,5,4],[4,3]] => ([(0,5),(1,5),(1,6),(2,3),(3,4),(4,6)],7) => ([(0,2),(2,1)],3) => 1
[6,1] => [[6,6],[5]] => ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7) => ([(0,4),(2,3),(3,1),(4,2)],5) => 1
[7] => [[7],[]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
[1,1,1,1,1,1,2] => [[2,1,1,1,1,1,1],[]] => ([(0,2),(0,7),(3,4),(4,6),(5,3),(6,1),(7,5)],8) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,1,1,1,2,2] => [[3,2,1,1,1,1],[1]] => ([(0,6),(0,7),(1,3),(1,7),(4,5),(5,2),(6,4)],8) => ([(0,3),(2,1),(3,2)],4) => 1
[1,7] => [[7,1],[]] => ([(0,2),(0,7),(3,4),(4,6),(5,3),(6,1),(7,5)],8) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,1,1,1,1,1,1] => [[2,2,2,2,2,2,2],[1,1,1,1,1,1]] => ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[2,2,1,1,1,1] => [[3,3,3,3,3,2],[2,2,2,2,1]] => ([(0,3),(1,6),(2,6),(2,7),(3,5),(4,7),(5,4)],8) => ([(0,3),(2,1),(3,2)],4) => 1
[2,2,1,2,1] => [[4,4,3,3,2],[3,2,2,1]] => ([(0,5),(1,6),(2,5),(2,7),(3,4),(3,6),(4,7)],8) => ([(0,2),(2,1)],3) => 1
[2,3,2,1] => [[5,5,4,2],[4,3,1]] => ([(0,5),(1,6),(2,5),(2,7),(3,4),(3,6),(4,7)],8) => ([(0,2),(2,1)],3) => 1
[7,1] => [[7,7],[6]] => ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 1
[1,1,1,1,1,1,1,2] => [[2,1,1,1,1,1,1,1],[]] => ([(0,2),(0,8),(3,5),(4,3),(5,7),(6,4),(7,1),(8,6)],9) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
[1,8] => [[8,1],[]] => ([(0,2),(0,8),(3,5),(4,3),(5,7),(6,4),(7,1),(8,6)],9) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
[2,1,1,1,1,1,1,1] => [[2,2,2,2,2,2,2,2],[1,1,1,1,1,1,1]] => ([(0,8),(1,7),(2,8),(3,4),(4,6),(5,3),(6,2),(7,5)],9) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
[8,1] => [[8,8],[7]] => ([(0,8),(1,7),(2,8),(3,4),(4,6),(5,3),(6,2),(7,5)],9) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 1
search for individual values
searching the database for the individual values of this statistic
Description
The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L.
Map
to ribbon
Description
The ribbon shape corresponding to an integer composition.
For an integer composition $(a_1, \dots, a_n)$, this is the ribbon shape whose $i$th row from the bottom has $a_i$ cells.
Map
antichains of maximal size
Description
The lattice of antichains of maximal size in a poset.
The set of antichains of maximal size can be ordered by setting $A \leq B \leftrightarrow \mathop{\downarrow} A \subseteq \mathop{\downarrow} B$, where $\mathop{\downarrow} A$ is the order ideal generated by $A$.
This is a sublattice of the lattice of all antichains with respect to the same order relation. In particular, it is distributive.
Map
cell poset
Description
The Young diagram of a skew partition regarded as a poset.
This is the poset on the cells of the Young diagram, such that a cell $d$ is greater than a cell $c$ if the entry in $d$ must be larger than the entry of $c$ in any standard Young tableau on the skew partition.