Identifier
- St001884: Binary words ⟶ ℤ
Values
0 => 1
1 => 1
00 => 2
01 => 1
10 => 1
11 => 2
000 => 3
001 => 1
010 => 2
011 => 1
100 => 1
101 => 2
110 => 1
111 => 3
0000 => 4
0001 => 1
0010 => 2
0011 => 1
0100 => 2
0101 => 2
0110 => 2
0111 => 1
1000 => 1
1001 => 2
1010 => 2
1011 => 2
1100 => 1
1101 => 2
1110 => 1
1111 => 4
00000 => 5
00001 => 1
00010 => 2
00011 => 1
00100 => 3
00101 => 1
00110 => 2
00111 => 1
01000 => 2
01001 => 2
01010 => 3
01011 => 1
01100 => 2
01101 => 2
01110 => 2
01111 => 1
10000 => 1
10001 => 2
10010 => 2
10011 => 2
10100 => 1
10101 => 3
10110 => 2
10111 => 2
11000 => 1
11001 => 2
11010 => 1
11011 => 3
11100 => 1
11101 => 2
11110 => 1
11111 => 5
000000 => 6
000001 => 1
000010 => 2
000011 => 1
000100 => 3
000101 => 1
000110 => 2
000111 => 1
001000 => 3
001001 => 2
001010 => 2
001011 => 1
001100 => 3
001101 => 1
001110 => 2
001111 => 1
010000 => 2
010001 => 2
010010 => 3
010011 => 1
010100 => 2
010101 => 3
010110 => 2
010111 => 1
011000 => 2
011001 => 2
011010 => 2
011011 => 2
011100 => 2
011101 => 2
011110 => 2
011111 => 1
100000 => 1
100001 => 2
100010 => 2
100011 => 2
100100 => 2
100101 => 2
100110 => 2
>>> Load all 1022 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of borders of a binary word.
A border of a binary word $w$ is a word which is both a prefix and a suffix of $w$.
A border of a binary word $w$ is a word which is both a prefix and a suffix of $w$.
Code
def statistic(w):
return sum(1 for i in range(1, len(w)+1) if w[:i] == w[-i:])
Created
Dec 21, 2022 at 10:52 by Martin Rubey
Updated
Dec 21, 2022 at 10:52 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!