Identifier
Values
[1,1] => ([(0,1)],2) => ([],1) => ([],1) => 0
[1,1,1] => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 0
[1,2] => ([(1,2)],3) => ([],1) => ([],1) => 0
[2,1] => ([(0,2),(1,2)],3) => ([(0,1)],2) => ([],2) => 0
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,5),(1,4),(2,3)],6) => 1
[1,1,2] => ([(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 0
[1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(2,3)],4) => 1
[1,3] => ([(2,3)],4) => ([],1) => ([],1) => 0
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => ([(1,4),(2,3)],5) => 1
[2,2] => ([(1,3),(2,3)],4) => ([(0,1)],2) => ([],2) => 0
[3,1] => ([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 0
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,5),(1,4),(2,3)],6) => 1
[1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
[1,1,3] => ([(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 0
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(2,3)],4) => 1
[1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(2,4),(3,4)],5) => 1
[1,4] => ([(3,4)],5) => ([],1) => ([],1) => 0
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => ([(1,4),(2,3)],5) => 1
[2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,5),(2,4),(3,4),(3,5)],6) => 1
[2,3] => ([(2,4),(3,4)],5) => ([(0,1)],2) => ([],2) => 0
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7) => 2
[3,2] => ([(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 0
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([],4) => 0
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,5),(1,4),(2,3)],6) => 1
[1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
[1,1,4] => ([(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 0
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(2,3)],4) => 1
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(2,4),(3,4)],5) => 1
[1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,5),(3,5),(4,5)],6) => 2
[1,5] => ([(4,5)],6) => ([],1) => ([],1) => 0
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => ([(1,4),(2,3)],5) => 1
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,5),(2,4),(3,4),(3,5)],6) => 1
[2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => 2
[2,4] => ([(3,5),(4,5)],6) => ([(0,1)],2) => ([],2) => 0
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7) => 2
[3,3] => ([(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 0
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([],4) => 0
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([],5) => 0
[1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,5),(1,4),(2,3)],6) => 1
[1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
[1,1,5] => ([(4,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 0
[1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(2,3)],4) => 1
[1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(2,4),(3,4)],5) => 1
[1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(2,5),(3,5),(4,5)],6) => 2
[1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(2,6),(3,6),(4,6),(5,6)],7) => 2
[1,6] => ([(5,6)],7) => ([],1) => ([],1) => 0
[2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => ([(1,4),(2,3)],5) => 1
[2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,5),(2,4),(3,4),(3,5)],6) => 1
[2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => 2
[2,5] => ([(4,6),(5,6)],7) => ([(0,1)],2) => ([],2) => 0
[3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7) => 2
[3,4] => ([(3,6),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,2)],3) => ([],3) => 0
[4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([],4) => 0
[5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([],5) => 0
[6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([],6) => 0
search for individual values
searching the database for the individual values of this statistic
Description
The proper pathwidth of a graph.
The proper pathwidth $\operatorname{ppw}(G)$ was introduced in [1] as the minimum width of a proper-path-decomposition. Barioli et al. [2] showed that if $G$ has at least one edge, then $\operatorname{ppw}(G)$ is the minimum $k$ for which $G$ is a minor of the Cartesian product $K_k \square P$ of a complete graph on $k$ vertices with a path; and further that $\operatorname{ppw}(G)$ is the minor monotone floor $\lfloor \operatorname{Z} \rfloor(G) := \min\{\operatorname{Z}(H) \mid G \preceq H\}$ of the zero forcing number $\operatorname{Z}(G)$. It can be shown [3, Corollary 9.130] that only the spanning supergraphs need to be considered for $H$ in this definition, i.e. $\lfloor \operatorname{Z} \rfloor(G) = \min\{\operatorname{Z}(H) \mid G \le H,\; V(H) = V(G)\}$.
The minimum degree $\delta$, treewidth $\operatorname{tw}$, and pathwidth $\operatorname{pw}$ satisfy
$$\delta \le \operatorname{tw} \le \operatorname{pw} \le \operatorname{ppw} = \lfloor \operatorname{Z} \rfloor \le \operatorname{pw} + 1.$$
Note that [4] uses a different notion of proper pathwidth, which is equal to bandwidth.
The proper pathwidth $\operatorname{ppw}(G)$ was introduced in [1] as the minimum width of a proper-path-decomposition. Barioli et al. [2] showed that if $G$ has at least one edge, then $\operatorname{ppw}(G)$ is the minimum $k$ for which $G$ is a minor of the Cartesian product $K_k \square P$ of a complete graph on $k$ vertices with a path; and further that $\operatorname{ppw}(G)$ is the minor monotone floor $\lfloor \operatorname{Z} \rfloor(G) := \min\{\operatorname{Z}(H) \mid G \preceq H\}$ of the zero forcing number $\operatorname{Z}(G)$. It can be shown [3, Corollary 9.130] that only the spanning supergraphs need to be considered for $H$ in this definition, i.e. $\lfloor \operatorname{Z} \rfloor(G) = \min\{\operatorname{Z}(H) \mid G \le H,\; V(H) = V(G)\}$.
The minimum degree $\delta$, treewidth $\operatorname{tw}$, and pathwidth $\operatorname{pw}$ satisfy
$$\delta \le \operatorname{tw} \le \operatorname{pw} \le \operatorname{ppw} = \lfloor \operatorname{Z} \rfloor \le \operatorname{pw} + 1.$$
Note that [4] uses a different notion of proper pathwidth, which is equal to bandwidth.
Map
to threshold graph
Description
The threshold graph corresponding to the composition.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.
Map
line graph
Description
The line graph of a graph.
Let $G$ be a graph with edge set $E$. Then its line graph is the graph with vertex set $E$, such that two vertices $e$ and $f$ are adjacent if and only if they are incident to a common vertex in $G$.
Let $G$ be a graph with edge set $E$. Then its line graph is the graph with vertex set $E$, such that two vertices $e$ and $f$ are adjacent if and only if they are incident to a common vertex in $G$.
Map
complement
Description
The complement of a graph.
The complement of a graph has the same vertices, but exactly those edges that are not in the original graph.
The complement of a graph has the same vertices, but exactly those edges that are not in the original graph.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!