Identifier
Values
[1] => ([],1) => ([],1) => ([],1) => 0
[1,1] => ([(0,1)],2) => ([],2) => ([],2) => 0
[2] => ([],2) => ([],1) => ([],1) => 0
[1,1,1] => ([(0,1),(0,2),(1,2)],3) => ([],3) => ([],3) => 0
[1,2] => ([(1,2)],3) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => 0
[2,1] => ([(0,2),(1,2)],3) => ([],2) => ([],2) => 0
[3] => ([],3) => ([],1) => ([],1) => 0
[1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([],4) => ([],4) => 0
[1,1,2] => ([(1,2),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3)],4) => 1
[1,3] => ([(2,3)],4) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => 0
[2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([],3) => ([],3) => 0
[2,2] => ([(1,3),(2,3)],4) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => 0
[3,1] => ([(0,3),(1,3),(2,3)],4) => ([],2) => ([],2) => 0
[4] => ([],4) => ([],1) => ([],1) => 0
[1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([],5) => ([],5) => 0
[1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4)],5) => 2
[1,1,3] => ([(2,3),(2,4),(3,4)],5) => ([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3)],4) => 1
[1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,3),(0,4),(4,1),(4,2)],5) => 1
[1,4] => ([(3,4)],5) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => 0
[2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([],4) => ([],4) => 0
[2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3)],4) => 1
[2,3] => ([(2,4),(3,4)],5) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => 0
[3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([],3) => ([],3) => 0
[3,2] => ([(1,4),(2,4),(3,4)],5) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => 0
[4,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => ([],2) => ([],2) => 0
[5] => ([],5) => ([],1) => ([],1) => 0
[1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([],6) => ([],6) => 0
[1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4)],5) => 2
[1,1,4] => ([(3,4),(3,5),(4,5)],6) => ([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3)],4) => 1
[1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,3),(0,4),(4,1),(4,2)],5) => 1
[1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,3),(0,4),(4,1),(4,2)],5) => 1
[1,5] => ([(4,5)],6) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => 0
[2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([],5) => ([],5) => 0
[2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4)],5) => 2
[2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3)],4) => 1
[2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,3),(0,4),(4,1),(4,2)],5) => 1
[2,4] => ([(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => 0
[3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([],4) => ([],4) => 0
[3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3)],4) => 1
[3,3] => ([(2,5),(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => 0
[4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([],3) => ([],3) => 0
[4,2] => ([(1,5),(2,5),(3,5),(4,5)],6) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => 0
[5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([],2) => ([],2) => 0
[6] => ([],6) => ([],1) => ([],1) => 0
[1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4)],5) => 2
[1,1,5] => ([(4,5),(4,6),(5,6)],7) => ([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3)],4) => 1
[1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,3),(0,4),(4,1),(4,2)],5) => 1
[1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,3),(0,4),(4,1),(4,2)],5) => 1
[1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,3),(0,4),(4,1),(4,2)],5) => 1
[1,6] => ([(5,6)],7) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => 0
[2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([],6) => ([],6) => 0
[2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4)],5) => 2
[2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3)],4) => 1
[2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,3),(0,4),(4,1),(4,2)],5) => 1
[2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,3),(0,4),(4,1),(4,2)],5) => 1
[2,5] => ([(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => 0
[3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([],5) => ([],5) => 0
[3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4)],5) => 2
[3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3)],4) => 1
[3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(3,4)],5) => ([(0,3),(0,4),(4,1),(4,2)],5) => 1
[3,4] => ([(3,6),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => 0
[4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([],4) => ([],4) => 0
[4,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,3),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3)],4) => 1
[4,3] => ([(2,6),(3,6),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => 0
[5,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([],3) => ([],3) => 0
[5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,2),(1,2)],3) => ([(0,1),(0,2)],3) => 0
[6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([],2) => ([],2) => 0
[7] => ([],7) => ([],1) => ([],1) => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The interval resolution global dimension of a poset.
This is the cardinality of the longest chain of right minimal approximations by interval modules of an indecomposable module over the incidence algebra.
Map
dual poset
Description
The dual of a poset.
The dual (or opposite) of a poset $(\mathcal P,\leq)$ is the poset $(\mathcal P^d,\leq_d)$ with $x \leq_d y$ if $y \leq x$.
Map
weak duplicate order
Description
The weak duplicate order of the de-duplicate of a graph.
Let $G=(V, E)$ be a graph and let $N=\{ N_v | v\in V\}$ be the set of (distinct) neighbourhoods of $G$.
This map yields the poset obtained by ordering $N$ by reverse inclusion.
Map
to threshold graph
Description
The threshold graph corresponding to the composition.
A threshold graph is a graph that can be obtained from the empty graph by adding successively isolated and dominating vertices.
A threshold graph is uniquely determined by its degree sequence.
The Laplacian spectrum of a threshold graph is integral. Interpreting it as an integer partition, it is the conjugate of the partition given by its degree sequence.