Identifier
-
Mp00152:
Graphs
—Laplacian multiplicities⟶
Integer compositions
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00185: Skew partitions —cell poset⟶ Posets
St001964: Posets ⟶ ℤ
Values
([],1) => [1] => [[1],[]] => ([],1) => 0
([],2) => [2] => [[2],[]] => ([(0,1)],2) => 0
([(0,1)],2) => [1,1] => [[1,1],[]] => ([(0,1)],2) => 0
([],3) => [3] => [[3],[]] => ([(0,2),(2,1)],3) => 0
([(1,2)],3) => [1,2] => [[2,1],[]] => ([(0,1),(0,2)],3) => 0
([(0,2),(1,2)],3) => [1,1,1] => [[1,1,1],[]] => ([(0,2),(2,1)],3) => 0
([(0,1),(0,2),(1,2)],3) => [2,1] => [[2,2],[1]] => ([(0,2),(1,2)],3) => 0
([],4) => [4] => [[4],[]] => ([(0,3),(2,1),(3,2)],4) => 0
([(2,3)],4) => [1,3] => [[3,1],[]] => ([(0,2),(0,3),(3,1)],4) => 0
([(1,3),(2,3)],4) => [1,1,2] => [[2,1,1],[]] => ([(0,2),(0,3),(3,1)],4) => 0
([(0,3),(1,3),(2,3)],4) => [1,2,1] => [[2,2,1],[1]] => ([(0,3),(1,2),(1,3)],4) => 0
([(0,3),(1,2)],4) => [2,2] => [[3,2],[1]] => ([(0,3),(1,2),(1,3)],4) => 0
([(0,3),(1,2),(2,3)],4) => [1,1,1,1] => [[1,1,1,1],[]] => ([(0,3),(2,1),(3,2)],4) => 0
([(1,2),(1,3),(2,3)],4) => [2,2] => [[3,2],[1]] => ([(0,3),(1,2),(1,3)],4) => 0
([(0,3),(1,2),(1,3),(2,3)],4) => [1,1,1,1] => [[1,1,1,1],[]] => ([(0,3),(2,1),(3,2)],4) => 0
([(0,2),(0,3),(1,2),(1,3)],4) => [1,2,1] => [[2,2,1],[1]] => ([(0,3),(1,2),(1,3)],4) => 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [2,1,1] => [[2,2,2],[1,1]] => ([(0,3),(1,2),(2,3)],4) => 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [3,1] => [[3,3],[2]] => ([(0,3),(1,2),(2,3)],4) => 0
([],5) => [5] => [[5],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
([(3,4)],5) => [1,4] => [[4,1],[]] => ([(0,2),(0,4),(3,1),(4,3)],5) => 0
([(2,4),(3,4)],5) => [1,1,3] => [[3,1,1],[]] => ([(0,3),(0,4),(3,2),(4,1)],5) => 0
([(1,4),(2,4),(3,4)],5) => [1,2,2] => [[3,2,1],[1]] => ([(0,3),(0,4),(1,2),(1,4)],5) => 0
([(0,4),(1,4),(2,4),(3,4)],5) => [1,3,1] => [[3,3,1],[2]] => ([(0,4),(1,2),(1,3),(3,4)],5) => 0
([(1,4),(2,3)],5) => [2,3] => [[4,2],[1]] => ([(0,4),(1,2),(1,4),(2,3)],5) => 0
([(1,4),(2,3),(3,4)],5) => [1,1,1,2] => [[2,1,1,1],[]] => ([(0,2),(0,4),(3,1),(4,3)],5) => 0
([(0,1),(2,4),(3,4)],5) => [1,1,1,2] => [[2,1,1,1],[]] => ([(0,2),(0,4),(3,1),(4,3)],5) => 0
([(2,3),(2,4),(3,4)],5) => [2,3] => [[4,2],[1]] => ([(0,4),(1,2),(1,4),(2,3)],5) => 0
([(0,4),(1,4),(2,3),(3,4)],5) => [1,1,1,1,1] => [[1,1,1,1,1],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
([(1,4),(2,3),(2,4),(3,4)],5) => [1,1,1,2] => [[2,1,1,1],[]] => ([(0,2),(0,4),(3,1),(4,3)],5) => 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => [1,1,2,1] => [[2,2,1,1],[1]] => ([(0,4),(1,2),(1,4),(2,3)],5) => 0
([(1,3),(1,4),(2,3),(2,4)],5) => [1,2,2] => [[3,2,1],[1]] => ([(0,3),(0,4),(1,2),(1,4)],5) => 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [[1,1,1,1,1],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,1,2] => [[3,2,2],[1,1]] => ([(0,4),(1,2),(1,3),(3,4)],5) => 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [[1,1,1,1,1],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [[1,1,1,1,1],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => [1,1,2,1] => [[2,2,1,1],[1]] => ([(0,4),(1,2),(1,4),(2,3)],5) => 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,2,1] => [[3,3,2],[2,1]] => ([(0,4),(1,3),(2,3),(2,4)],5) => 0
([(0,4),(1,3),(2,3),(2,4)],5) => [1,1,1,1,1] => [[1,1,1,1,1],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
([(0,1),(2,3),(2,4),(3,4)],5) => [2,1,2] => [[3,2,2],[1,1]] => ([(0,4),(1,2),(1,3),(3,4)],5) => 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => [1,1,1,1,1] => [[1,1,1,1,1],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => [1,2,1,1] => [[2,2,2,1],[1,1]] => ([(0,3),(1,2),(1,4),(3,4)],5) => 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => [[3,3,2],[2,1]] => ([(0,4),(1,3),(2,3),(2,4)],5) => 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [[1,1,1,1,1],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [[1,1,1,1,1],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [[1,1,1,1,1],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,2] => [[4,3],[2]] => ([(0,3),(1,2),(1,4),(3,4)],5) => 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [1,2,1,1] => [[2,2,2,1],[1,1]] => ([(0,3),(1,2),(1,4),(3,4)],5) => 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,1,1,1] => [[2,2,2,2],[1,1,1]] => ([(0,4),(1,2),(2,3),(3,4)],5) => 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => [1,1,1,1,1] => [[1,1,1,1,1],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => [2,2,1] => [[3,3,2],[2,1]] => ([(0,4),(1,3),(2,3),(2,4)],5) => 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [[3,3,3],[2,2]] => ([(0,3),(1,2),(2,4),(3,4)],5) => 0
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [4,1] => [[4,4],[3]] => ([(0,4),(1,2),(2,3),(3,4)],5) => 0
([],6) => [6] => [[6],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => 0
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,1] => [[4,4,3],[3,2]] => ([(0,4),(1,4),(1,5),(2,3),(3,5)],6) => 0
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
>>> Load all 117 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The interval resolution global dimension of a poset.
This is the cardinality of the longest chain of right minimal approximations by interval modules of an indecomposable module over the incidence algebra.
This is the cardinality of the longest chain of right minimal approximations by interval modules of an indecomposable module over the incidence algebra.
Map
to ribbon
Description
The ribbon shape corresponding to an integer composition.
For an integer composition (a1,…,an), this is the ribbon shape whose ith row from the bottom has ai cells.
For an integer composition (a1,…,an), this is the ribbon shape whose ith row from the bottom has ai cells.
Map
cell poset
Description
The Young diagram of a skew partition regarded as a poset.
This is the poset on the cells of the Young diagram, such that a cell d is greater than a cell c if the entry in d must be larger than the entry of c in any standard Young tableau on the skew partition.
This is the poset on the cells of the Young diagram, such that a cell d is greater than a cell c if the entry in d must be larger than the entry of c in any standard Young tableau on the skew partition.
Map
Laplacian multiplicities
Description
The composition of multiplicities of the Laplacian eigenvalues.
Let λ1>λ2>… be the eigenvalues of the Laplacian matrix of a graph on n vertices. Then this map returns the composition a1,…,ak of n where ai is the multiplicity of λi.
Let λ1>λ2>… be the eigenvalues of the Laplacian matrix of a graph on n vertices. Then this map returns the composition a1,…,ak of n where ai is the multiplicity of λi.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!