Processing math: 100%

Identifier
Values
([],1) => [1] => [[1],[]] => ([],1) => 0
([],2) => [2] => [[2],[]] => ([(0,1)],2) => 0
([(0,1)],2) => [1,1] => [[1,1],[]] => ([(0,1)],2) => 0
([],3) => [3] => [[3],[]] => ([(0,2),(2,1)],3) => 0
([(1,2)],3) => [1,2] => [[2,1],[]] => ([(0,1),(0,2)],3) => 0
([(0,2),(1,2)],3) => [1,1,1] => [[1,1,1],[]] => ([(0,2),(2,1)],3) => 0
([(0,1),(0,2),(1,2)],3) => [2,1] => [[2,2],[1]] => ([(0,2),(1,2)],3) => 0
([],4) => [4] => [[4],[]] => ([(0,3),(2,1),(3,2)],4) => 0
([(2,3)],4) => [1,3] => [[3,1],[]] => ([(0,2),(0,3),(3,1)],4) => 0
([(1,3),(2,3)],4) => [1,1,2] => [[2,1,1],[]] => ([(0,2),(0,3),(3,1)],4) => 0
([(0,3),(1,3),(2,3)],4) => [1,2,1] => [[2,2,1],[1]] => ([(0,3),(1,2),(1,3)],4) => 0
([(0,3),(1,2)],4) => [2,2] => [[3,2],[1]] => ([(0,3),(1,2),(1,3)],4) => 0
([(0,3),(1,2),(2,3)],4) => [1,1,1,1] => [[1,1,1,1],[]] => ([(0,3),(2,1),(3,2)],4) => 0
([(1,2),(1,3),(2,3)],4) => [2,2] => [[3,2],[1]] => ([(0,3),(1,2),(1,3)],4) => 0
([(0,3),(1,2),(1,3),(2,3)],4) => [1,1,1,1] => [[1,1,1,1],[]] => ([(0,3),(2,1),(3,2)],4) => 0
([(0,2),(0,3),(1,2),(1,3)],4) => [1,2,1] => [[2,2,1],[1]] => ([(0,3),(1,2),(1,3)],4) => 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [2,1,1] => [[2,2,2],[1,1]] => ([(0,3),(1,2),(2,3)],4) => 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [3,1] => [[3,3],[2]] => ([(0,3),(1,2),(2,3)],4) => 0
([],5) => [5] => [[5],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
([(3,4)],5) => [1,4] => [[4,1],[]] => ([(0,2),(0,4),(3,1),(4,3)],5) => 0
([(2,4),(3,4)],5) => [1,1,3] => [[3,1,1],[]] => ([(0,3),(0,4),(3,2),(4,1)],5) => 0
([(1,4),(2,4),(3,4)],5) => [1,2,2] => [[3,2,1],[1]] => ([(0,3),(0,4),(1,2),(1,4)],5) => 0
([(0,4),(1,4),(2,4),(3,4)],5) => [1,3,1] => [[3,3,1],[2]] => ([(0,4),(1,2),(1,3),(3,4)],5) => 0
([(1,4),(2,3)],5) => [2,3] => [[4,2],[1]] => ([(0,4),(1,2),(1,4),(2,3)],5) => 0
([(1,4),(2,3),(3,4)],5) => [1,1,1,2] => [[2,1,1,1],[]] => ([(0,2),(0,4),(3,1),(4,3)],5) => 0
([(0,1),(2,4),(3,4)],5) => [1,1,1,2] => [[2,1,1,1],[]] => ([(0,2),(0,4),(3,1),(4,3)],5) => 0
([(2,3),(2,4),(3,4)],5) => [2,3] => [[4,2],[1]] => ([(0,4),(1,2),(1,4),(2,3)],5) => 0
([(0,4),(1,4),(2,3),(3,4)],5) => [1,1,1,1,1] => [[1,1,1,1,1],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
([(1,4),(2,3),(2,4),(3,4)],5) => [1,1,1,2] => [[2,1,1,1],[]] => ([(0,2),(0,4),(3,1),(4,3)],5) => 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => [1,1,2,1] => [[2,2,1,1],[1]] => ([(0,4),(1,2),(1,4),(2,3)],5) => 0
([(1,3),(1,4),(2,3),(2,4)],5) => [1,2,2] => [[3,2,1],[1]] => ([(0,3),(0,4),(1,2),(1,4)],5) => 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [[1,1,1,1,1],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,1,2] => [[3,2,2],[1,1]] => ([(0,4),(1,2),(1,3),(3,4)],5) => 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [[1,1,1,1,1],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [[1,1,1,1,1],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => [1,1,2,1] => [[2,2,1,1],[1]] => ([(0,4),(1,2),(1,4),(2,3)],5) => 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,2,1] => [[3,3,2],[2,1]] => ([(0,4),(1,3),(2,3),(2,4)],5) => 0
([(0,4),(1,3),(2,3),(2,4)],5) => [1,1,1,1,1] => [[1,1,1,1,1],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
([(0,1),(2,3),(2,4),(3,4)],5) => [2,1,2] => [[3,2,2],[1,1]] => ([(0,4),(1,2),(1,3),(3,4)],5) => 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => [1,1,1,1,1] => [[1,1,1,1,1],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => [1,2,1,1] => [[2,2,2,1],[1,1]] => ([(0,3),(1,2),(1,4),(3,4)],5) => 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [2,2,1] => [[3,3,2],[2,1]] => ([(0,4),(1,3),(2,3),(2,4)],5) => 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [[1,1,1,1,1],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [[1,1,1,1,1],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => [1,1,1,1,1] => [[1,1,1,1,1],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,2] => [[4,3],[2]] => ([(0,3),(1,2),(1,4),(3,4)],5) => 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [1,2,1,1] => [[2,2,2,1],[1,1]] => ([(0,3),(1,2),(1,4),(3,4)],5) => 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [2,1,1,1] => [[2,2,2,2],[1,1,1]] => ([(0,4),(1,2),(2,3),(3,4)],5) => 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => [1,1,1,1,1] => [[1,1,1,1,1],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => [2,2,1] => [[3,3,2],[2,1]] => ([(0,4),(1,3),(2,3),(2,4)],5) => 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [[3,3,3],[2,2]] => ([(0,3),(1,2),(2,4),(3,4)],5) => 0
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [4,1] => [[4,4],[3]] => ([(0,4),(1,2),(2,3),(3,4)],5) => 0
([],6) => [6] => [[6],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => 0
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,1] => [[4,4,3],[3,2]] => ([(0,4),(1,4),(1,5),(2,3),(3,5)],6) => 0
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
>>> Load all 117 entries. <<<
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => [[3,3,3,2],[2,2,1]] => ([(0,4),(1,4),(1,5),(2,3),(3,5)],6) => 0
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6) => [2,2,1,1] => [[3,3,3,2],[2,2,1]] => ([(0,4),(1,4),(1,5),(2,3),(3,5)],6) => 0
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => 0
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [2,2,1,1] => [[3,3,3,2],[2,2,1]] => ([(0,4),(1,4),(1,5),(2,3),(3,5)],6) => 0
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [[3,3,3,3],[2,2,2]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => 0
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => [2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => 0
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [3,2,1] => [[4,4,3],[3,2]] => ([(0,4),(1,4),(1,5),(2,3),(3,5)],6) => 0
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [[4,4,4],[3,3]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => 0
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1] => [[5,5],[4]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The interval resolution global dimension of a poset.
This is the cardinality of the longest chain of right minimal approximations by interval modules of an indecomposable module over the incidence algebra.
Map
to ribbon
Description
The ribbon shape corresponding to an integer composition.
For an integer composition (a1,,an), this is the ribbon shape whose ith row from the bottom has ai cells.
Map
cell poset
Description
The Young diagram of a skew partition regarded as a poset.
This is the poset on the cells of the Young diagram, such that a cell d is greater than a cell c if the entry in d must be larger than the entry of c in any standard Young tableau on the skew partition.
Map
Laplacian multiplicities
Description
The composition of multiplicities of the Laplacian eigenvalues.
Let λ1>λ2> be the eigenvalues of the Laplacian matrix of a graph on n vertices. Then this map returns the composition a1,,ak of n where ai is the multiplicity of λi.