Processing math: 100%

Your data matches 40 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001462: Standard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> 1
[[1,2]]
=> 2
[[1],[2]]
=> 1
[[1,2,3]]
=> 3
[[1,3],[2]]
=> 2
[[1,2],[3]]
=> 2
[[1],[2],[3]]
=> 1
[[1,2,3,4]]
=> 4
[[1,3,4],[2]]
=> 3
[[1,2,4],[3]]
=> 3
[[1,2,3],[4]]
=> 3
[[1,3],[2,4]]
=> 2
[[1,2],[3,4]]
=> 1
[[1,4],[2],[3]]
=> 2
[[1,3],[2],[4]]
=> 1
[[1,2],[3],[4]]
=> 2
[[1],[2],[3],[4]]
=> 1
[[1,2,3,4,5]]
=> 5
[[1,3,4,5],[2]]
=> 4
[[1,2,4,5],[3]]
=> 4
[[1,2,3,5],[4]]
=> 4
[[1,2,3,4],[5]]
=> 4
[[1,3,5],[2,4]]
=> 3
[[1,2,5],[3,4]]
=> 2
[[1,3,4],[2,5]]
=> 3
[[1,2,4],[3,5]]
=> 3
[[1,2,3],[4,5]]
=> 2
[[1,4,5],[2],[3]]
=> 3
[[1,3,5],[2],[4]]
=> 2
[[1,2,5],[3],[4]]
=> 3
[[1,3,4],[2],[5]]
=> 1
[[1,2,4],[3],[5]]
=> 2
[[1,2,3],[4],[5]]
=> 3
[[1,4],[2,5],[3]]
=> 2
[[1,3],[2,5],[4]]
=> 1
[[1,2],[3,5],[4]]
=> 1
[[1,3],[2,4],[5]]
=> 2
[[1,2],[3,4],[5]]
=> 1
[[1,5],[2],[3],[4]]
=> 2
[[1,4],[2],[3],[5]]
=> 1
[[1,3],[2],[4],[5]]
=> 1
[[1,2],[3],[4],[5]]
=> 2
[[1],[2],[3],[4],[5]]
=> 1
[[1,2,3,4,5,6]]
=> 6
[[1,3,4,5,6],[2]]
=> 5
[[1,2,4,5,6],[3]]
=> 5
[[1,2,3,5,6],[4]]
=> 5
[[1,2,3,4,6],[5]]
=> 5
[[1,2,3,4,5],[6]]
=> 5
[[1,3,5,6],[2,4]]
=> 4
Description
The number of factors of a standard tableaux under concatenation. The concatenation of two standard Young tableaux T1 and T2 is obtained by adding the largest entry of T1 to each entry of T2, and then appending the rows of the result to T1, see [1, dfn 2.10]. This statistic returns the maximal number of standard tableaux such that their concatenation is the given tableau.
Matching statistic: St000056
Mp00284: Standard tableaux rowsSet partitions
Mp00171: Set partitions intertwining number to dual major indexSet partitions
Mp00080: Set partitions to permutationPermutations
St000056: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> {{1}}
=> {{1}}
=> [1] => 1
[[1,2]]
=> {{1,2}}
=> {{1,2}}
=> [2,1] => 1
[[1],[2]]
=> {{1},{2}}
=> {{1},{2}}
=> [1,2] => 2
[[1,2,3]]
=> {{1,2,3}}
=> {{1,2,3}}
=> [2,3,1] => 1
[[1,3],[2]]
=> {{1,3},{2}}
=> {{1},{2,3}}
=> [1,3,2] => 2
[[1,2],[3]]
=> {{1,2},{3}}
=> {{1,2},{3}}
=> [2,1,3] => 2
[[1],[2],[3]]
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> [1,2,3] => 3
[[1,2,3,4]]
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> [2,3,4,1] => 1
[[1,3,4],[2]]
=> {{1,3,4},{2}}
=> {{1,4},{2,3}}
=> [4,3,2,1] => 1
[[1,2,4],[3]]
=> {{1,2,4},{3}}
=> {{1,2},{3,4}}
=> [2,1,4,3] => 2
[[1,2,3],[4]]
=> {{1,2,3},{4}}
=> {{1,2,3},{4}}
=> [2,3,1,4] => 2
[[1,3],[2,4]]
=> {{1,3},{2,4}}
=> {{1},{2,3,4}}
=> [1,3,4,2] => 2
[[1,2],[3,4]]
=> {{1,2},{3,4}}
=> {{1,2,4},{3}}
=> [2,4,3,1] => 1
[[1,4],[2],[3]]
=> {{1,4},{2},{3}}
=> {{1},{2},{3,4}}
=> [1,2,4,3] => 3
[[1,3],[2],[4]]
=> {{1,3},{2},{4}}
=> {{1},{2,3},{4}}
=> [1,3,2,4] => 3
[[1,2],[3],[4]]
=> {{1,2},{3},{4}}
=> {{1,2},{3},{4}}
=> [2,1,3,4] => 3
[[1],[2],[3],[4]]
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> [1,2,3,4] => 4
[[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> {{1,2,3,4,5}}
=> [2,3,4,5,1] => 1
[[1,3,4,5],[2]]
=> {{1,3,4,5},{2}}
=> {{1,4,5},{2,3}}
=> [4,3,2,5,1] => 1
[[1,2,4,5],[3]]
=> {{1,2,4,5},{3}}
=> {{1,2,5},{3,4}}
=> [2,5,4,3,1] => 1
[[1,2,3,5],[4]]
=> {{1,2,3,5},{4}}
=> {{1,2,3},{4,5}}
=> [2,3,1,5,4] => 2
[[1,2,3,4],[5]]
=> {{1,2,3,4},{5}}
=> {{1,2,3,4},{5}}
=> [2,3,4,1,5] => 2
[[1,3,5],[2,4]]
=> {{1,3,5},{2,4}}
=> {{1},{2,3,4,5}}
=> [1,3,4,5,2] => 2
[[1,2,5],[3,4]]
=> {{1,2,5},{3,4}}
=> {{1,2,4},{3,5}}
=> [2,4,5,1,3] => 1
[[1,3,4],[2,5]]
=> {{1,3,4},{2,5}}
=> {{1,4},{2,3,5}}
=> [4,3,5,1,2] => 1
[[1,2,4],[3,5]]
=> {{1,2,4},{3,5}}
=> {{1,2},{3,4,5}}
=> [2,1,4,5,3] => 2
[[1,2,3],[4,5]]
=> {{1,2,3},{4,5}}
=> {{1,2,3,5},{4}}
=> [2,3,5,4,1] => 1
[[1,4,5],[2],[3]]
=> {{1,4,5},{2},{3}}
=> {{1,5},{2},{3,4}}
=> [5,2,4,3,1] => 1
[[1,3,5],[2],[4]]
=> {{1,3,5},{2},{4}}
=> {{1},{2,3,5},{4}}
=> [1,3,5,4,2] => 2
[[1,2,5],[3],[4]]
=> {{1,2,5},{3},{4}}
=> {{1,2},{3},{4,5}}
=> [2,1,3,5,4] => 3
[[1,3,4],[2],[5]]
=> {{1,3,4},{2},{5}}
=> {{1,4},{2,3},{5}}
=> [4,3,2,1,5] => 2
[[1,2,4],[3],[5]]
=> {{1,2,4},{3},{5}}
=> {{1,2},{3,4},{5}}
=> [2,1,4,3,5] => 3
[[1,2,3],[4],[5]]
=> {{1,2,3},{4},{5}}
=> {{1,2,3},{4},{5}}
=> [2,3,1,4,5] => 3
[[1,4],[2,5],[3]]
=> {{1,4},{2,5},{3}}
=> {{1},{2},{3,4,5}}
=> [1,2,4,5,3] => 3
[[1,3],[2,5],[4]]
=> {{1,3},{2,5},{4}}
=> {{1},{2,3},{4,5}}
=> [1,3,2,5,4] => 3
[[1,2],[3,5],[4]]
=> {{1,2},{3,5},{4}}
=> {{1,2},{3,5},{4}}
=> [2,1,5,4,3] => 2
[[1,3],[2,4],[5]]
=> {{1,3},{2,4},{5}}
=> {{1},{2,3,4},{5}}
=> [1,3,4,2,5] => 3
[[1,2],[3,4],[5]]
=> {{1,2},{3,4},{5}}
=> {{1,2,4},{3},{5}}
=> [2,4,3,1,5] => 2
[[1,5],[2],[3],[4]]
=> {{1,5},{2},{3},{4}}
=> {{1},{2},{3},{4,5}}
=> [1,2,3,5,4] => 4
[[1,4],[2],[3],[5]]
=> {{1,4},{2},{3},{5}}
=> {{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => 4
[[1,3],[2],[4],[5]]
=> {{1,3},{2},{4},{5}}
=> {{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => 4
[[1,2],[3],[4],[5]]
=> {{1,2},{3},{4},{5}}
=> {{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => 4
[[1],[2],[3],[4],[5]]
=> {{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => 5
[[1,2,3,4,5,6]]
=> {{1,2,3,4,5,6}}
=> {{1,2,3,4,5,6}}
=> [2,3,4,5,6,1] => 1
[[1,3,4,5,6],[2]]
=> {{1,3,4,5,6},{2}}
=> {{1,4,5,6},{2,3}}
=> [4,3,2,5,6,1] => 1
[[1,2,4,5,6],[3]]
=> {{1,2,4,5,6},{3}}
=> {{1,2,5,6},{3,4}}
=> [2,5,4,3,6,1] => 1
[[1,2,3,5,6],[4]]
=> {{1,2,3,5,6},{4}}
=> {{1,2,3,6},{4,5}}
=> [2,3,6,5,4,1] => 1
[[1,2,3,4,6],[5]]
=> {{1,2,3,4,6},{5}}
=> {{1,2,3,4},{5,6}}
=> [2,3,4,1,6,5] => 2
[[1,2,3,4,5],[6]]
=> {{1,2,3,4,5},{6}}
=> {{1,2,3,4,5},{6}}
=> [2,3,4,5,1,6] => 2
[[1,3,5,6],[2,4]]
=> {{1,3,5,6},{2,4}}
=> {{1,6},{2,3,4,5}}
=> [6,3,4,5,2,1] => 1
Description
The decomposition (or block) number of a permutation. For πSn, this is given by #{1kn:{π1,,πk}={1,,k}}. This is also known as the number of connected components [1] or the number of blocks [2] of the permutation, considering it as a direct sum. This is one plus [[St000234]].
Matching statistic: St000234
Mp00284: Standard tableaux rowsSet partitions
Mp00171: Set partitions intertwining number to dual major indexSet partitions
Mp00080: Set partitions to permutationPermutations
St000234: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> {{1}}
=> {{1}}
=> [1] => 0 = 1 - 1
[[1,2]]
=> {{1,2}}
=> {{1,2}}
=> [2,1] => 0 = 1 - 1
[[1],[2]]
=> {{1},{2}}
=> {{1},{2}}
=> [1,2] => 1 = 2 - 1
[[1,2,3]]
=> {{1,2,3}}
=> {{1,2,3}}
=> [2,3,1] => 0 = 1 - 1
[[1,3],[2]]
=> {{1,3},{2}}
=> {{1},{2,3}}
=> [1,3,2] => 1 = 2 - 1
[[1,2],[3]]
=> {{1,2},{3}}
=> {{1,2},{3}}
=> [2,1,3] => 1 = 2 - 1
[[1],[2],[3]]
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> [1,2,3] => 2 = 3 - 1
[[1,2,3,4]]
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> [2,3,4,1] => 0 = 1 - 1
[[1,3,4],[2]]
=> {{1,3,4},{2}}
=> {{1,4},{2,3}}
=> [4,3,2,1] => 0 = 1 - 1
[[1,2,4],[3]]
=> {{1,2,4},{3}}
=> {{1,2},{3,4}}
=> [2,1,4,3] => 1 = 2 - 1
[[1,2,3],[4]]
=> {{1,2,3},{4}}
=> {{1,2,3},{4}}
=> [2,3,1,4] => 1 = 2 - 1
[[1,3],[2,4]]
=> {{1,3},{2,4}}
=> {{1},{2,3,4}}
=> [1,3,4,2] => 1 = 2 - 1
[[1,2],[3,4]]
=> {{1,2},{3,4}}
=> {{1,2,4},{3}}
=> [2,4,3,1] => 0 = 1 - 1
[[1,4],[2],[3]]
=> {{1,4},{2},{3}}
=> {{1},{2},{3,4}}
=> [1,2,4,3] => 2 = 3 - 1
[[1,3],[2],[4]]
=> {{1,3},{2},{4}}
=> {{1},{2,3},{4}}
=> [1,3,2,4] => 2 = 3 - 1
[[1,2],[3],[4]]
=> {{1,2},{3},{4}}
=> {{1,2},{3},{4}}
=> [2,1,3,4] => 2 = 3 - 1
[[1],[2],[3],[4]]
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> [1,2,3,4] => 3 = 4 - 1
[[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> {{1,2,3,4,5}}
=> [2,3,4,5,1] => 0 = 1 - 1
[[1,3,4,5],[2]]
=> {{1,3,4,5},{2}}
=> {{1,4,5},{2,3}}
=> [4,3,2,5,1] => 0 = 1 - 1
[[1,2,4,5],[3]]
=> {{1,2,4,5},{3}}
=> {{1,2,5},{3,4}}
=> [2,5,4,3,1] => 0 = 1 - 1
[[1,2,3,5],[4]]
=> {{1,2,3,5},{4}}
=> {{1,2,3},{4,5}}
=> [2,3,1,5,4] => 1 = 2 - 1
[[1,2,3,4],[5]]
=> {{1,2,3,4},{5}}
=> {{1,2,3,4},{5}}
=> [2,3,4,1,5] => 1 = 2 - 1
[[1,3,5],[2,4]]
=> {{1,3,5},{2,4}}
=> {{1},{2,3,4,5}}
=> [1,3,4,5,2] => 1 = 2 - 1
[[1,2,5],[3,4]]
=> {{1,2,5},{3,4}}
=> {{1,2,4},{3,5}}
=> [2,4,5,1,3] => 0 = 1 - 1
[[1,3,4],[2,5]]
=> {{1,3,4},{2,5}}
=> {{1,4},{2,3,5}}
=> [4,3,5,1,2] => 0 = 1 - 1
[[1,2,4],[3,5]]
=> {{1,2,4},{3,5}}
=> {{1,2},{3,4,5}}
=> [2,1,4,5,3] => 1 = 2 - 1
[[1,2,3],[4,5]]
=> {{1,2,3},{4,5}}
=> {{1,2,3,5},{4}}
=> [2,3,5,4,1] => 0 = 1 - 1
[[1,4,5],[2],[3]]
=> {{1,4,5},{2},{3}}
=> {{1,5},{2},{3,4}}
=> [5,2,4,3,1] => 0 = 1 - 1
[[1,3,5],[2],[4]]
=> {{1,3,5},{2},{4}}
=> {{1},{2,3,5},{4}}
=> [1,3,5,4,2] => 1 = 2 - 1
[[1,2,5],[3],[4]]
=> {{1,2,5},{3},{4}}
=> {{1,2},{3},{4,5}}
=> [2,1,3,5,4] => 2 = 3 - 1
[[1,3,4],[2],[5]]
=> {{1,3,4},{2},{5}}
=> {{1,4},{2,3},{5}}
=> [4,3,2,1,5] => 1 = 2 - 1
[[1,2,4],[3],[5]]
=> {{1,2,4},{3},{5}}
=> {{1,2},{3,4},{5}}
=> [2,1,4,3,5] => 2 = 3 - 1
[[1,2,3],[4],[5]]
=> {{1,2,3},{4},{5}}
=> {{1,2,3},{4},{5}}
=> [2,3,1,4,5] => 2 = 3 - 1
[[1,4],[2,5],[3]]
=> {{1,4},{2,5},{3}}
=> {{1},{2},{3,4,5}}
=> [1,2,4,5,3] => 2 = 3 - 1
[[1,3],[2,5],[4]]
=> {{1,3},{2,5},{4}}
=> {{1},{2,3},{4,5}}
=> [1,3,2,5,4] => 2 = 3 - 1
[[1,2],[3,5],[4]]
=> {{1,2},{3,5},{4}}
=> {{1,2},{3,5},{4}}
=> [2,1,5,4,3] => 1 = 2 - 1
[[1,3],[2,4],[5]]
=> {{1,3},{2,4},{5}}
=> {{1},{2,3,4},{5}}
=> [1,3,4,2,5] => 2 = 3 - 1
[[1,2],[3,4],[5]]
=> {{1,2},{3,4},{5}}
=> {{1,2,4},{3},{5}}
=> [2,4,3,1,5] => 1 = 2 - 1
[[1,5],[2],[3],[4]]
=> {{1,5},{2},{3},{4}}
=> {{1},{2},{3},{4,5}}
=> [1,2,3,5,4] => 3 = 4 - 1
[[1,4],[2],[3],[5]]
=> {{1,4},{2},{3},{5}}
=> {{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => 3 = 4 - 1
[[1,3],[2],[4],[5]]
=> {{1,3},{2},{4},{5}}
=> {{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => 3 = 4 - 1
[[1,2],[3],[4],[5]]
=> {{1,2},{3},{4},{5}}
=> {{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => 3 = 4 - 1
[[1],[2],[3],[4],[5]]
=> {{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => 4 = 5 - 1
[[1,2,3,4,5,6]]
=> {{1,2,3,4,5,6}}
=> {{1,2,3,4,5,6}}
=> [2,3,4,5,6,1] => 0 = 1 - 1
[[1,3,4,5,6],[2]]
=> {{1,3,4,5,6},{2}}
=> {{1,4,5,6},{2,3}}
=> [4,3,2,5,6,1] => 0 = 1 - 1
[[1,2,4,5,6],[3]]
=> {{1,2,4,5,6},{3}}
=> {{1,2,5,6},{3,4}}
=> [2,5,4,3,6,1] => 0 = 1 - 1
[[1,2,3,5,6],[4]]
=> {{1,2,3,5,6},{4}}
=> {{1,2,3,6},{4,5}}
=> [2,3,6,5,4,1] => 0 = 1 - 1
[[1,2,3,4,6],[5]]
=> {{1,2,3,4,6},{5}}
=> {{1,2,3,4},{5,6}}
=> [2,3,4,1,6,5] => 1 = 2 - 1
[[1,2,3,4,5],[6]]
=> {{1,2,3,4,5},{6}}
=> {{1,2,3,4,5},{6}}
=> [2,3,4,5,1,6] => 1 = 2 - 1
[[1,3,5,6],[2,4]]
=> {{1,3,5,6},{2,4}}
=> {{1,6},{2,3,4,5}}
=> [6,3,4,5,2,1] => 0 = 1 - 1
Description
The number of global ascents of a permutation. The global ascents are the integers i such that C(π)={i[n1]1ji<kn:π(j)<π(k)}. Equivalently, by the pigeonhole principle, C(π)={i[n1]1ji:π(j)i}. For n>1 it can also be described as an occurrence of the mesh pattern ([1,2],{(0,2),(1,0),(1,1),(2,0),(2,1)}) or equivalently ([1,2],{(0,1),(0,2),(1,1),(1,2),(2,0)}), see [3]. According to [2], this is also the cardinality of the connectivity set of a permutation. The permutation is connected, when the connectivity set is empty. This gives [[oeis:A003319]].
Mp00081: Standard tableaux reading word permutationPermutations
Mp00160: Permutations graph of inversionsGraphs
St000771: Graphs ⟶ ℤResult quality: 64% values known / values provided: 64%distinct values known / distinct values provided: 83%
Values
[[1]]
=> [1] => ([],1)
=> 1
[[1,2]]
=> [1,2] => ([],2)
=> ? = 2
[[1],[2]]
=> [2,1] => ([(0,1)],2)
=> 1
[[1,2,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {2,3}
[[1,3],[2]]
=> [2,1,3] => ([(1,2)],3)
=> ? ∊ {2,3}
[[1,2],[3]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1],[2],[3]]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,2,3,4]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {1,3,3,4}
[[1,3,4],[2]]
=> [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {1,3,3,4}
[[1,2,4],[3]]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,3,3,4}
[[1,2,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,3],[2,4]]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 1
[[1,2],[3,4]]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[[1,4],[2],[3]]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,3,3,4}
[[1,3],[2],[4]]
=> [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[1,2],[3],[4]]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[[1],[2],[3],[4]]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,2,3,4,5]]
=> [1,2,3,4,5] => ([],5)
=> ? ∊ {2,2,3,3,3,3,4,4,4,5}
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,4,4,4,5}
[[1,2,4,5],[3]]
=> [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,4,4,4,5}
[[1,2,3,5],[4]]
=> [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,4,4,4,5}
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[1,3,5],[2,4]]
=> [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,4,4,4,5}
[[1,2,5],[3,4]]
=> [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {2,2,3,3,3,3,4,4,4,5}
[[1,3,4],[2,5]]
=> [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[[1,2,4],[3,5]]
=> [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1
[[1,2,3],[4,5]]
=> [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,4,4,4,5}
[[1,3,5],[2],[4]]
=> [4,2,1,3,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,4,4,4,5}
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,4,4,4,5}
[[1,3,4],[2],[5]]
=> [5,2,1,3,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,2,4],[3],[5]]
=> [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,4],[2,5],[3]]
=> [3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 1
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,4,4,4,5}
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => ([],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => ([(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
[[1,3,5,6],[2,4]]
=> [2,4,1,3,5,6] => ([(2,5),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,4,6],[2,5]]
=> [2,5,1,3,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,4,5],[2,6]]
=> [2,6,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2
[[1,2,4,5],[3,6]]
=> [3,6,1,2,4,5] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 1
[[1,2,3,5],[4,6]]
=> [4,6,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
[[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,5,6],[2],[4]]
=> [4,2,1,3,5,6] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,5,6],[3],[4]]
=> [4,3,1,2,5,6] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,4,6],[2],[5]]
=> [5,2,1,3,4,6] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,4,6],[3],[5]]
=> [5,3,1,2,4,6] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3,6],[4],[5]]
=> [5,4,1,2,3,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,4,5],[2],[6]]
=> [6,2,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,3,5],[4],[6]]
=> [6,4,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 1
[[1,2,5],[3,4,6]]
=> [3,4,6,1,2,5] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[[1,3,4],[2,5,6]]
=> [2,5,6,1,3,4] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[[1,2,4],[3,5,6]]
=> [3,5,6,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
[[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> 4
[[1,4,6],[2,5],[3]]
=> [3,2,5,1,4,6] => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,6],[3,5],[4]]
=> [4,3,5,1,2,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,6],[2,4],[5]]
=> [5,2,4,1,3,6] => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,6],[3,4],[5]]
=> [5,3,4,1,2,6] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,4,5],[2,6],[3]]
=> [3,2,6,1,4,5] => ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 1
[[1,3,5],[2,6],[4]]
=> [4,2,6,1,3,5] => ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[[1,2,5],[3,6],[4]]
=> [4,3,6,1,2,5] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 3
[[1,3,4],[2,6],[5]]
=> [5,2,6,1,3,4] => ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> 1
[[1,2,4],[3,6],[5]]
=> [5,3,6,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[[1,2,3],[4,6],[5]]
=> [5,4,6,1,2,3] => ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,3,5],[2,4],[6]]
=> [6,2,4,1,3,5] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,5],[3,4],[6]]
=> [6,3,4,1,2,5] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 2
[[1,3,4],[2,5],[6]]
=> [6,2,5,1,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,4],[3,5],[6]]
=> [6,3,5,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,4,6],[2],[3],[5]]
=> [5,3,2,1,4,6] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,6],[2],[4],[5]]
=> [5,4,2,1,3,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,6],[3],[4],[5]]
=> [5,4,3,1,2,6] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,6],[2],[3],[4],[5]]
=> [5,4,3,2,1,6] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums 0, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian (4121141221411214). Its eigenvalues are 0,4,4,6, so the statistic is 2. The path on four vertices has eigenvalues 0,4.7,6,9.2 and therefore statistic 1.
Mp00207: Standard tableaux horizontal strip sizesInteger compositions
Mp00180: Integer compositions to ribbonSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
St000939: Integer partitions ⟶ ℤResult quality: 63% values known / values provided: 63%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1] => [[1],[]]
=> []
=> ? = 1
[[1,2]]
=> [2] => [[2],[]]
=> []
=> ? ∊ {1,2}
[[1],[2]]
=> [1,1] => [[1,1],[]]
=> []
=> ? ∊ {1,2}
[[1,2,3]]
=> [3] => [[3],[]]
=> []
=> ? ∊ {1,2,2,3}
[[1,3],[2]]
=> [1,2] => [[2,1],[]]
=> []
=> ? ∊ {1,2,2,3}
[[1,2],[3]]
=> [2,1] => [[2,2],[1]]
=> [1]
=> ? ∊ {1,2,2,3}
[[1],[2],[3]]
=> [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {1,2,2,3}
[[1,2,3,4]]
=> [4] => [[4],[]]
=> []
=> ? ∊ {1,1,2,2,3,3,3,4}
[[1,3,4],[2]]
=> [1,3] => [[3,1],[]]
=> []
=> ? ∊ {1,1,2,2,3,3,3,4}
[[1,2,4],[3]]
=> [2,2] => [[3,2],[1]]
=> [1]
=> ? ∊ {1,1,2,2,3,3,3,4}
[[1,2,3],[4]]
=> [3,1] => [[3,3],[2]]
=> [2]
=> 1
[[1,3],[2,4]]
=> [1,2,1] => [[2,2,1],[1]]
=> [1]
=> ? ∊ {1,1,2,2,3,3,3,4}
[[1,2],[3,4]]
=> [2,2] => [[3,2],[1]]
=> [1]
=> ? ∊ {1,1,2,2,3,3,3,4}
[[1,4],[2],[3]]
=> [1,1,2] => [[2,1,1],[]]
=> []
=> ? ∊ {1,1,2,2,3,3,3,4}
[[1,3],[2],[4]]
=> [1,2,1] => [[2,2,1],[1]]
=> [1]
=> ? ∊ {1,1,2,2,3,3,3,4}
[[1,2],[3],[4]]
=> [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 2
[[1],[2],[3],[4]]
=> [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? ∊ {1,1,2,2,3,3,3,4}
[[1,2,3,4,5]]
=> [5] => [[5],[]]
=> []
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,5}
[[1,3,4,5],[2]]
=> [1,4] => [[4,1],[]]
=> []
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,5}
[[1,2,4,5],[3]]
=> [2,3] => [[4,2],[1]]
=> [1]
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,5}
[[1,2,3,5],[4]]
=> [3,2] => [[4,3],[2]]
=> [2]
=> 1
[[1,2,3,4],[5]]
=> [4,1] => [[4,4],[3]]
=> [3]
=> 2
[[1,3,5],[2,4]]
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,5}
[[1,2,5],[3,4]]
=> [2,3] => [[4,2],[1]]
=> [1]
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,5}
[[1,3,4],[2,5]]
=> [1,3,1] => [[3,3,1],[2]]
=> [2]
=> 1
[[1,2,4],[3,5]]
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 1
[[1,2,3],[4,5]]
=> [3,2] => [[4,3],[2]]
=> [2]
=> 1
[[1,4,5],[2],[3]]
=> [1,1,3] => [[3,1,1],[]]
=> []
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,5}
[[1,3,5],[2],[4]]
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,5}
[[1,2,5],[3],[4]]
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 2
[[1,3,4],[2],[5]]
=> [1,3,1] => [[3,3,1],[2]]
=> [2]
=> 1
[[1,2,4],[3],[5]]
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 1
[[1,2,3],[4],[5]]
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 3
[[1,4],[2,5],[3]]
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,5}
[[1,3],[2,5],[4]]
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,5}
[[1,2],[3,5],[4]]
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 2
[[1,3],[2,4],[5]]
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 2
[[1,2],[3,4],[5]]
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 1
[[1,5],[2],[3],[4]]
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,5}
[[1,4],[2],[3],[5]]
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,5}
[[1,3],[2],[4],[5]]
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 2
[[1,2],[3],[4],[5]]
=> [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 3
[[1],[2],[3],[4],[5]]
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,5}
[[1,2,3,4,5,6]]
=> [6] => [[6],[]]
=> []
=> ? ∊ {1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
[[1,3,4,5,6],[2]]
=> [1,5] => [[5,1],[]]
=> []
=> ? ∊ {1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
[[1,2,4,5,6],[3]]
=> [2,4] => [[5,2],[1]]
=> [1]
=> ? ∊ {1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
[[1,2,3,5,6],[4]]
=> [3,3] => [[5,3],[2]]
=> [2]
=> 1
[[1,2,3,4,6],[5]]
=> [4,2] => [[5,4],[3]]
=> [3]
=> 2
[[1,2,3,4,5],[6]]
=> [5,1] => [[5,5],[4]]
=> [4]
=> 2
[[1,3,5,6],[2,4]]
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> ? ∊ {1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
[[1,2,5,6],[3,4]]
=> [2,4] => [[5,2],[1]]
=> [1]
=> ? ∊ {1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
[[1,3,4,6],[2,5]]
=> [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 1
[[1,2,4,6],[3,5]]
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 1
[[1,2,3,6],[4,5]]
=> [3,3] => [[5,3],[2]]
=> [2]
=> 1
[[1,3,4,5],[2,6]]
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 2
[[1,2,4,5],[3,6]]
=> [2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> 2
[[1,2,3,5],[4,6]]
=> [3,2,1] => [[4,4,3],[3,2]]
=> [3,2]
=> 3
[[1,2,3,4],[5,6]]
=> [4,2] => [[5,4],[3]]
=> [3]
=> 2
[[1,4,5,6],[2],[3]]
=> [1,1,4] => [[4,1,1],[]]
=> []
=> ? ∊ {1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
[[1,3,5,6],[2],[4]]
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> ? ∊ {1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
[[1,2,5,6],[3],[4]]
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 2
[[1,3,4,6],[2],[5]]
=> [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 1
[[1,2,4,6],[3],[5]]
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 1
[[1,2,3,6],[4],[5]]
=> [3,1,2] => [[4,3,3],[2,2]]
=> [2,2]
=> 3
[[1,3,4,5],[2],[6]]
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 2
[[1,2,4,5],[3],[6]]
=> [2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> 2
[[1,2,3,5],[4],[6]]
=> [3,2,1] => [[4,4,3],[3,2]]
=> [3,2]
=> 3
[[1,2,3,4],[5],[6]]
=> [4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> 6
[[1,3,5],[2,4,6]]
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> 1
[[1,2,5],[3,4,6]]
=> [2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> 2
[[1,3,4],[2,5,6]]
=> [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 1
[[1,2,4],[3,5,6]]
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 1
[[1,2,3],[4,5,6]]
=> [3,3] => [[5,3],[2]]
=> [2]
=> 1
[[1,4,6],[2,5],[3]]
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> ? ∊ {1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
[[1,3,6],[2,5],[4]]
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> ? ∊ {1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
[[1,2,6],[3,5],[4]]
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 2
[[1,3,6],[2,4],[5]]
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 2
[[1,2,6],[3,4],[5]]
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 1
[[1,4,5],[2,6],[3]]
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 1
[[1,3,5],[2,6],[4]]
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> 1
[[1,2,5],[3,6],[4]]
=> [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> [2,1,1]
=> 2
[[1,3,4],[2,6],[5]]
=> [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 1
[[1,2,4],[3,6],[5]]
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 1
[[1,2,3],[4,6],[5]]
=> [3,1,2] => [[4,3,3],[2,2]]
=> [2,2]
=> 3
[[1,3,5],[2,4],[6]]
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> 1
[[1,2,5],[3,4],[6]]
=> [2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> 2
[[1,5,6],[2],[3],[4]]
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
[[1,4,6],[2],[3],[5]]
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> ? ∊ {1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
[[1,4],[2,5],[3,6]]
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> ? ∊ {1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
[[1,5],[2,6],[3],[4]]
=> [1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> [1]
=> ? ∊ {1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
[[1,4],[2,6],[3],[5]]
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> ? ∊ {1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
[[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
[[1,5],[2],[3],[4],[6]]
=> [1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> [1]
=> ? ∊ {1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
[[1],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
Description
The number of characters of the symmetric group whose value on the partition is positive.
Matching statistic: St000815
Mp00081: Standard tableaux reading word permutationPermutations
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000815: Integer partitions ⟶ ℤResult quality: 56% values known / values provided: 56%distinct values known / distinct values provided: 67%
Values
[[1]]
=> [1] => [1]
=> []
=> ? = 1
[[1,2]]
=> [1,2] => [1,1]
=> [1]
=> ? ∊ {1,2}
[[1],[2]]
=> [2,1] => [2]
=> []
=> ? ∊ {1,2}
[[1,2,3]]
=> [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[[1,3],[2]]
=> [2,1,3] => [2,1]
=> [1]
=> ? ∊ {2,2,3}
[[1,2],[3]]
=> [3,1,2] => [3]
=> []
=> ? ∊ {2,2,3}
[[1],[2],[3]]
=> [3,2,1] => [2,1]
=> [1]
=> ? ∊ {2,2,3}
[[1,2,3,4]]
=> [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[[1,3,4],[2]]
=> [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[[1,2,4],[3]]
=> [3,1,2,4] => [3,1]
=> [1]
=> ? ∊ {2,3,3,3,4}
[[1,2,3],[4]]
=> [4,1,2,3] => [4]
=> []
=> ? ∊ {2,3,3,3,4}
[[1,3],[2,4]]
=> [2,4,1,3] => [4]
=> []
=> ? ∊ {2,3,3,3,4}
[[1,2],[3,4]]
=> [3,4,1,2] => [2,2]
=> [2]
=> 2
[[1,4],[2],[3]]
=> [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[[1,3],[2],[4]]
=> [4,2,1,3] => [3,1]
=> [1]
=> ? ∊ {2,3,3,3,4}
[[1,2],[3],[4]]
=> [4,3,1,2] => [4]
=> []
=> ? ∊ {2,3,3,3,4}
[[1],[2],[3],[4]]
=> [4,3,2,1] => [2,2]
=> [2]
=> 2
[[1,2,3,4,5]]
=> [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> 1
[[1,2,4,5],[3]]
=> [3,1,2,4,5] => [3,1,1]
=> [1,1]
=> 1
[[1,2,3,5],[4]]
=> [4,1,2,3,5] => [4,1]
=> [1]
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,5}
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => [5]
=> []
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,5}
[[1,3,5],[2,4]]
=> [2,4,1,3,5] => [4,1]
=> [1]
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,5}
[[1,2,5],[3,4]]
=> [3,4,1,2,5] => [2,2,1]
=> [2,1]
=> 3
[[1,3,4],[2,5]]
=> [2,5,1,3,4] => [5]
=> []
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,5}
[[1,2,4],[3,5]]
=> [3,5,1,2,4] => [3,2]
=> [2]
=> 2
[[1,2,3],[4,5]]
=> [4,5,1,2,3] => [5]
=> []
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,5}
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> 1
[[1,3,5],[2],[4]]
=> [4,2,1,3,5] => [3,1,1]
=> [1,1]
=> 1
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => [4,1]
=> [1]
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,5}
[[1,3,4],[2],[5]]
=> [5,2,1,3,4] => [4,1]
=> [1]
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,5}
[[1,2,4],[3],[5]]
=> [5,3,1,2,4] => [5]
=> []
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,5}
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [3,2]
=> [2]
=> 2
[[1,4],[2,5],[3]]
=> [3,2,5,1,4] => [4,1]
=> [1]
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,5}
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [2,2,1]
=> [2,1]
=> 3
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => [3,2]
=> [2]
=> 2
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => [4,1]
=> [1]
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,5}
[[1,2],[3,4],[5]]
=> [5,3,4,1,2] => [5]
=> []
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,5}
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => [2,2,1]
=> [2,1]
=> 3
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => [3,2]
=> [2]
=> 2
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [5]
=> []
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,5}
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [4,1]
=> [1]
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,5}
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [2,2,1]
=> [2,1]
=> 3
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => [3,1,1,1]
=> [1,1,1]
=> 1
[[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => [4,1,1]
=> [1,1]
=> 1
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,3,5,6],[2,4]]
=> [2,4,1,3,5,6] => [4,1,1]
=> [1,1]
=> 1
[[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => [2,2,1,1]
=> [2,1,1]
=> 4
[[1,3,4,6],[2,5]]
=> [2,5,1,3,4,6] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => [3,2,1]
=> [2,1]
=> 3
[[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,3,4,5],[2,6]]
=> [2,6,1,3,4,5] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,2,4,5],[3,6]]
=> [3,6,1,2,4,5] => [4,2]
=> [2]
=> 2
[[1,2,3,5],[4,6]]
=> [4,6,1,2,3,5] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => [3,3]
=> [3]
=> 3
[[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[[1,3,5,6],[2],[4]]
=> [4,2,1,3,5,6] => [3,1,1,1]
=> [1,1,1]
=> 1
[[1,2,5,6],[3],[4]]
=> [4,3,1,2,5,6] => [4,1,1]
=> [1,1]
=> 1
[[1,3,4,6],[2],[5]]
=> [5,2,1,3,4,6] => [4,1,1]
=> [1,1]
=> 1
[[1,2,4,6],[3],[5]]
=> [5,3,1,2,4,6] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,2,3,6],[4],[5]]
=> [5,4,1,2,3,6] => [3,2,1]
=> [2,1]
=> 3
[[1,3,4,5],[2],[6]]
=> [6,2,1,3,4,5] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,2,3,5],[4],[6]]
=> [6,4,1,2,3,5] => [4,2]
=> [2]
=> 2
[[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => [3,3]
=> [3]
=> 3
[[1,2,5],[3,4,6]]
=> [3,4,6,1,2,5] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,3,4],[2,5,6]]
=> [2,5,6,1,3,4] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,2,4],[3,5,6]]
=> [3,5,6,1,2,4] => [4,2]
=> [2]
=> 2
[[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => [2,2,2]
=> [2,2]
=> 4
[[1,4,6],[2,5],[3]]
=> [3,2,5,1,4,6] => [4,1,1]
=> [1,1]
=> 1
[[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => [2,2,1,1]
=> [2,1,1]
=> 4
[[1,2,6],[3,5],[4]]
=> [4,3,5,1,2,6] => [3,2,1]
=> [2,1]
=> 3
[[1,3,6],[2,4],[5]]
=> [5,2,4,1,3,6] => [4,1,1]
=> [1,1]
=> 1
[[1,2,6],[3,4],[5]]
=> [5,3,4,1,2,6] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,4,5],[2,6],[3]]
=> [3,2,6,1,4,5] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,3,5],[2,6],[4]]
=> [4,2,6,1,3,5] => [3,2,1]
=> [2,1]
=> 3
[[1,2,5],[3,6],[4]]
=> [4,3,6,1,2,5] => [4,2]
=> [2]
=> 2
[[1,3,4],[2,6],[5]]
=> [5,2,6,1,3,4] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,2,4],[3,6],[5]]
=> [5,3,6,1,2,4] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,2,3],[4,6],[5]]
=> [5,4,6,1,2,3] => [4,2]
=> [2]
=> 2
[[1,3,5],[2,4],[6]]
=> [6,2,4,1,3,5] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,2,5],[3,4],[6]]
=> [6,3,4,1,2,5] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,3,4],[2,5],[6]]
=> [6,2,5,1,3,4] => [3,2,1]
=> [2,1]
=> 3
[[1,2,4],[3,5],[6]]
=> [6,3,5,1,2,4] => [3,3]
=> [3]
=> 3
[[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => [2,2,1,1]
=> [2,1,1]
=> 4
[[1,4,6],[2],[3],[5]]
=> [5,3,2,1,4,6] => [3,2,1]
=> [2,1]
=> 3
[[1,3,6],[2],[4],[5]]
=> [5,4,2,1,3,6] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,2,6],[3],[4],[5]]
=> [5,4,3,1,2,6] => [4,1,1]
=> [1,1]
=> 1
[[1,4,5],[2],[3],[6]]
=> [6,3,2,1,4,5] => [4,2]
=> [2]
=> 2
[[1,3,5],[2],[4],[6]]
=> [6,4,2,1,3,5] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,2,5],[3],[4],[6]]
=> [6,4,3,1,2,5] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,4],[2,5],[3,6]]
=> [3,6,2,5,1,4] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,2],[3,5],[4],[6]]
=> [6,4,3,5,1,2] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,3],[2,4],[5],[6]]
=> [6,5,2,4,1,3] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
Description
The number of semistandard Young tableaux of partition weight of given shape. The weight of a semistandard Young tableaux is the sequence (m1,m2,), where mi is the number of occurrences of the number i in the tableau. This statistic counts those tableaux whose weight is a weakly decreasing sequence. Alternatively, this is the sum of the entries in the column specified by the partition of the change of basis matrix from Schur functions to monomial symmetric functions.
Mp00081: Standard tableaux reading word permutationPermutations
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000937: Integer partitions ⟶ ℤResult quality: 56% values known / values provided: 56%distinct values known / distinct values provided: 67%
Values
[[1]]
=> [1] => [1]
=> []
=> ? = 1
[[1,2]]
=> [1,2] => [1,1]
=> [1]
=> ? ∊ {1,2}
[[1],[2]]
=> [2,1] => [2]
=> []
=> ? ∊ {1,2}
[[1,2,3]]
=> [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[[1,3],[2]]
=> [2,1,3] => [2,1]
=> [1]
=> ? ∊ {2,2,3}
[[1,2],[3]]
=> [3,1,2] => [3]
=> []
=> ? ∊ {2,2,3}
[[1],[2],[3]]
=> [3,2,1] => [2,1]
=> [1]
=> ? ∊ {2,2,3}
[[1,2,3,4]]
=> [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 2
[[1,3,4],[2]]
=> [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[[1,2,4],[3]]
=> [3,1,2,4] => [3,1]
=> [1]
=> ? ∊ {1,3,3,3,4}
[[1,2,3],[4]]
=> [4,1,2,3] => [4]
=> []
=> ? ∊ {1,3,3,3,4}
[[1,3],[2,4]]
=> [2,4,1,3] => [4]
=> []
=> ? ∊ {1,3,3,3,4}
[[1,2],[3,4]]
=> [3,4,1,2] => [2,2]
=> [2]
=> 2
[[1,4],[2],[3]]
=> [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[[1,3],[2],[4]]
=> [4,2,1,3] => [3,1]
=> [1]
=> ? ∊ {1,3,3,3,4}
[[1,2],[3],[4]]
=> [4,3,1,2] => [4]
=> []
=> ? ∊ {1,3,3,3,4}
[[1],[2],[3],[4]]
=> [4,3,2,1] => [2,2]
=> [2]
=> 2
[[1,2,3,4,5]]
=> [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 3
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[[1,2,4,5],[3]]
=> [3,1,2,4,5] => [3,1,1]
=> [1,1]
=> 1
[[1,2,3,5],[4]]
=> [4,1,2,3,5] => [4,1]
=> [1]
=> ? ∊ {1,2,2,3,3,3,3,3,4,4,4,4,5}
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => [5]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,4,4,4,4,5}
[[1,3,5],[2,4]]
=> [2,4,1,3,5] => [4,1]
=> [1]
=> ? ∊ {1,2,2,3,3,3,3,3,4,4,4,4,5}
[[1,2,5],[3,4]]
=> [3,4,1,2,5] => [2,2,1]
=> [2,1]
=> 1
[[1,3,4],[2,5]]
=> [2,5,1,3,4] => [5]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,4,4,4,4,5}
[[1,2,4],[3,5]]
=> [3,5,1,2,4] => [3,2]
=> [2]
=> 2
[[1,2,3],[4,5]]
=> [4,5,1,2,3] => [5]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,4,4,4,4,5}
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[[1,3,5],[2],[4]]
=> [4,2,1,3,5] => [3,1,1]
=> [1,1]
=> 1
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => [4,1]
=> [1]
=> ? ∊ {1,2,2,3,3,3,3,3,4,4,4,4,5}
[[1,3,4],[2],[5]]
=> [5,2,1,3,4] => [4,1]
=> [1]
=> ? ∊ {1,2,2,3,3,3,3,3,4,4,4,4,5}
[[1,2,4],[3],[5]]
=> [5,3,1,2,4] => [5]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,4,4,4,4,5}
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [3,2]
=> [2]
=> 2
[[1,4],[2,5],[3]]
=> [3,2,5,1,4] => [4,1]
=> [1]
=> ? ∊ {1,2,2,3,3,3,3,3,4,4,4,4,5}
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [2,2,1]
=> [2,1]
=> 1
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => [3,2]
=> [2]
=> 2
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => [4,1]
=> [1]
=> ? ∊ {1,2,2,3,3,3,3,3,4,4,4,4,5}
[[1,2],[3,4],[5]]
=> [5,3,4,1,2] => [5]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,4,4,4,4,5}
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => [2,2,1]
=> [2,1]
=> 1
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => [3,2]
=> [2]
=> 2
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [5]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,4,4,4,4,5}
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [4,1]
=> [1]
=> ? ∊ {1,2,2,3,3,3,3,3,4,4,4,4,5}
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [2,2,1]
=> [2,1]
=> 1
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 4
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> 3
[[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => [3,1,1,1]
=> [1,1,1]
=> 2
[[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => [4,1,1]
=> [1,1]
=> 1
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [6]
=> []
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,3,5,6],[2,4]]
=> [2,4,1,3,5,6] => [4,1,1]
=> [1,1]
=> 1
[[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => [2,2,1,1]
=> [2,1,1]
=> 2
[[1,3,4,6],[2,5]]
=> [2,5,1,3,4,6] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => [3,2,1]
=> [2,1]
=> 1
[[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,3,4,5],[2,6]]
=> [2,6,1,3,4,5] => [6]
=> []
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,2,4,5],[3,6]]
=> [3,6,1,2,4,5] => [4,2]
=> [2]
=> 2
[[1,2,3,5],[4,6]]
=> [4,6,1,2,3,5] => [6]
=> []
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => [3,3]
=> [3]
=> 3
[[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> 3
[[1,3,5,6],[2],[4]]
=> [4,2,1,3,5,6] => [3,1,1,1]
=> [1,1,1]
=> 2
[[1,2,5,6],[3],[4]]
=> [4,3,1,2,5,6] => [4,1,1]
=> [1,1]
=> 1
[[1,3,4,6],[2],[5]]
=> [5,2,1,3,4,6] => [4,1,1]
=> [1,1]
=> 1
[[1,2,4,6],[3],[5]]
=> [5,3,1,2,4,6] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,2,3,6],[4],[5]]
=> [5,4,1,2,3,6] => [3,2,1]
=> [2,1]
=> 1
[[1,3,4,5],[2],[6]]
=> [6,2,1,3,4,5] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => [6]
=> []
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,2,3,5],[4],[6]]
=> [6,4,1,2,3,5] => [4,2]
=> [2]
=> 2
[[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => [6]
=> []
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => [3,3]
=> [3]
=> 3
[[1,2,5],[3,4,6]]
=> [3,4,6,1,2,5] => [6]
=> []
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,3,4],[2,5,6]]
=> [2,5,6,1,3,4] => [6]
=> []
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,2,4],[3,5,6]]
=> [3,5,6,1,2,4] => [4,2]
=> [2]
=> 2
[[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => [2,2,2]
=> [2,2]
=> 2
[[1,4,6],[2,5],[3]]
=> [3,2,5,1,4,6] => [4,1,1]
=> [1,1]
=> 1
[[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => [2,2,1,1]
=> [2,1,1]
=> 2
[[1,2,6],[3,5],[4]]
=> [4,3,5,1,2,6] => [3,2,1]
=> [2,1]
=> 1
[[1,3,6],[2,4],[5]]
=> [5,2,4,1,3,6] => [4,1,1]
=> [1,1]
=> 1
[[1,2,6],[3,4],[5]]
=> [5,3,4,1,2,6] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,4,5],[2,6],[3]]
=> [3,2,6,1,4,5] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,3,5],[2,6],[4]]
=> [4,2,6,1,3,5] => [3,2,1]
=> [2,1]
=> 1
[[1,2,5],[3,6],[4]]
=> [4,3,6,1,2,5] => [4,2]
=> [2]
=> 2
[[1,3,4],[2,6],[5]]
=> [5,2,6,1,3,4] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,2,4],[3,6],[5]]
=> [5,3,6,1,2,4] => [6]
=> []
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,2,3],[4,6],[5]]
=> [5,4,6,1,2,3] => [4,2]
=> [2]
=> 2
[[1,3,5],[2,4],[6]]
=> [6,2,4,1,3,5] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,2,5],[3,4],[6]]
=> [6,3,4,1,2,5] => [6]
=> []
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,3,4],[2,5],[6]]
=> [6,2,5,1,3,4] => [3,2,1]
=> [2,1]
=> 1
[[1,2,4],[3,5],[6]]
=> [6,3,5,1,2,4] => [3,3]
=> [3]
=> 3
[[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => [6]
=> []
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => [2,2,1,1]
=> [2,1,1]
=> 2
[[1,4,6],[2],[3],[5]]
=> [5,3,2,1,4,6] => [3,2,1]
=> [2,1]
=> 1
[[1,3,6],[2],[4],[5]]
=> [5,4,2,1,3,6] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,2,6],[3],[4],[5]]
=> [5,4,3,1,2,6] => [4,1,1]
=> [1,1]
=> 1
[[1,4,5],[2],[3],[6]]
=> [6,3,2,1,4,5] => [4,2]
=> [2]
=> 2
[[1,3,5],[2],[4],[6]]
=> [6,4,2,1,3,5] => [6]
=> []
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,2,5],[3],[4],[6]]
=> [6,4,3,1,2,5] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,4],[2,5],[3,6]]
=> [3,6,2,5,1,4] => [6]
=> []
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => [6]
=> []
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,2],[3,5],[4],[6]]
=> [6,4,3,5,1,2] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,3],[2,4],[5],[6]]
=> [6,5,2,4,1,3] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
Description
The number of positive values of the symmetric group character corresponding to the partition. For example, the character values of the irreducible representation S(2,2) are 2 on the conjugacy classes (4) and (2,2), 0 on the conjugacy classes (3,1) and (1,1,1,1), and 1 on the conjugacy class (2,1,1). Therefore, the statistic on the partition (2,2) is 2.
Mp00081: Standard tableaux reading word permutationPermutations
Mp00071: Permutations descent compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000454: Graphs ⟶ ℤResult quality: 53% values known / values provided: 53%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1] => [1] => ([],1)
=> 0 = 1 - 1
[[1,2]]
=> [1,2] => [2] => ([],2)
=> 0 = 1 - 1
[[1],[2]]
=> [2,1] => [1,1] => ([(0,1)],2)
=> 1 = 2 - 1
[[1,2,3]]
=> [1,2,3] => [3] => ([],3)
=> 0 = 1 - 1
[[1,3],[2]]
=> [2,1,3] => [1,2] => ([(1,2)],3)
=> 1 = 2 - 1
[[1,2],[3]]
=> [3,1,2] => [1,2] => ([(1,2)],3)
=> 1 = 2 - 1
[[1],[2],[3]]
=> [3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[[1,2,3,4]]
=> [1,2,3,4] => [4] => ([],4)
=> 0 = 1 - 1
[[1,3,4],[2]]
=> [2,1,3,4] => [1,3] => ([(2,3)],4)
=> 1 = 2 - 1
[[1,2,4],[3]]
=> [3,1,2,4] => [1,3] => ([(2,3)],4)
=> 1 = 2 - 1
[[1,2,3],[4]]
=> [4,1,2,3] => [1,3] => ([(2,3)],4)
=> 1 = 2 - 1
[[1,3],[2,4]]
=> [2,4,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1} - 1
[[1,2],[3,4]]
=> [3,4,1,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1} - 1
[[1,4],[2],[3]]
=> [3,2,1,4] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[[1,3],[2],[4]]
=> [4,2,1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[[1,2],[3],[4]]
=> [4,3,1,2] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[[1],[2],[3],[4]]
=> [4,3,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[[1,2,3,4,5]]
=> [1,2,3,4,5] => [5] => ([],5)
=> 0 = 1 - 1
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => [1,4] => ([(3,4)],5)
=> 1 = 2 - 1
[[1,2,4,5],[3]]
=> [3,1,2,4,5] => [1,4] => ([(3,4)],5)
=> 1 = 2 - 1
[[1,2,3,5],[4]]
=> [4,1,2,3,5] => [1,4] => ([(3,4)],5)
=> 1 = 2 - 1
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => [1,4] => ([(3,4)],5)
=> 1 = 2 - 1
[[1,3,5],[2,4]]
=> [2,4,1,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,2,5],[3,4]]
=> [3,4,1,2,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,3,4],[2,5]]
=> [2,5,1,3,4] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,2,4],[3,5]]
=> [3,5,1,2,4] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,2,3],[4,5]]
=> [4,5,1,2,3] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[[1,3,5],[2],[4]]
=> [4,2,1,3,5] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[[1,3,4],[2],[5]]
=> [5,2,1,3,4] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[[1,2,4],[3],[5]]
=> [5,3,1,2,4] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[[1,4],[2,5],[3]]
=> [3,2,5,1,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,2],[3,4],[5]]
=> [5,3,4,1,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [6] => ([],6)
=> 0 = 1 - 1
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => [1,5] => ([(4,5)],6)
=> 1 = 2 - 1
[[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => [1,5] => ([(4,5)],6)
=> 1 = 2 - 1
[[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => [1,5] => ([(4,5)],6)
=> 1 = 2 - 1
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => [1,5] => ([(4,5)],6)
=> 1 = 2 - 1
[[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [1,5] => ([(4,5)],6)
=> 1 = 2 - 1
[[1,3,5,6],[2,4]]
=> [2,4,1,3,5,6] => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3,4,6],[2,5]]
=> [2,5,1,3,4,6] => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3,4,5],[2,6]]
=> [2,6,1,3,4,5] => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,4,5],[3,6]]
=> [3,6,1,2,4,5] => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,3,5],[4,6]]
=> [4,6,1,2,3,5] => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[1,3,5,6],[2],[4]]
=> [4,2,1,3,5,6] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[1,2,5,6],[3],[4]]
=> [4,3,1,2,5,6] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[1,3,4,6],[2],[5]]
=> [5,2,1,3,4,6] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[1,2,4,6],[3],[5]]
=> [5,3,1,2,4,6] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[1,2,3,6],[4],[5]]
=> [5,4,1,2,3,6] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[1,3,4,5],[2],[6]]
=> [6,2,1,3,4,5] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[1,2,3,5],[4],[6]]
=> [6,4,1,2,3,5] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,5],[3,4,6]]
=> [3,4,6,1,2,5] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3,4],[2,5,6]]
=> [2,5,6,1,3,4] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,4],[3,5,6]]
=> [3,5,6,1,2,4] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,4,6],[2,5],[3]]
=> [3,2,5,1,4,6] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,6],[3,5],[4]]
=> [4,3,5,1,2,6] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3,6],[2,4],[5]]
=> [5,2,4,1,3,6] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,6],[3,4],[5]]
=> [5,3,4,1,2,6] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,4,5],[2,6],[3]]
=> [3,2,6,1,4,5] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3,5],[2,6],[4]]
=> [4,2,6,1,3,5] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,5],[3,6],[4]]
=> [4,3,6,1,2,5] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3,4],[2,6],[5]]
=> [5,2,6,1,3,4] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,4],[3,6],[5]]
=> [5,3,6,1,2,4] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,3],[4,6],[5]]
=> [5,4,6,1,2,3] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3,5],[2,4],[6]]
=> [6,2,4,1,3,5] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,5],[3,4],[6]]
=> [6,3,4,1,2,5] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3,4],[2,5],[6]]
=> [6,2,5,1,3,4] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,4],[3,5],[6]]
=> [6,3,5,1,2,4] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[[1,4,6],[2],[3],[5]]
=> [5,3,2,1,4,6] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[[1,3,6],[2],[4],[5]]
=> [5,4,2,1,3,6] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[[1,4],[2,5],[3,6]]
=> [3,6,2,5,1,4] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3],[2,5],[4,6]]
=> [4,6,2,5,1,3] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2],[3,5],[4,6]]
=> [4,6,3,5,1,2] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3],[2,4],[5,6]]
=> [5,6,2,4,1,3] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,5],[2,6],[3],[4]]
=> [4,3,2,6,1,5] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3],[2,6],[4],[5]]
=> [5,4,2,6,1,3] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
Description
The largest eigenvalue of a graph if it is integral. If a graph is d-regular, then its largest eigenvalue equals d. One can show that the largest eigenvalue always lies between the average degree and the maximal degree. This statistic is undefined if the largest eigenvalue of the graph is not integral.
Mp00083: Standard tableaux shapeInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
St001232: Dyck paths ⟶ ℤResult quality: 53% values known / values provided: 53%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1]
=> [1,0]
=> [1,0]
=> 0 = 1 - 1
[[1,2]]
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0 = 1 - 1
[[1],[2]]
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1 = 2 - 1
[[1,2,3]]
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0 = 1 - 1
[[1,3],[2]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1 = 2 - 1
[[1,2],[3]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1 = 2 - 1
[[1],[2],[3]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 2 = 3 - 1
[[1,2,3,4]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[[1,3,4],[2]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[[1,2,4],[3]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[[1,2,3],[4]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[[1,3],[2,4]]
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {1,1} - 1
[[1,2],[3,4]]
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {1,1} - 1
[[1,4],[2],[3]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[[1,3],[2],[4]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[[1,2],[3],[4]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[[1],[2],[3],[4]]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 4 - 1
[[1,2,3,4,5]]
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
[[1,3,4,5],[2]]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
[[1,2,4,5],[3]]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
[[1,2,3,5],[4]]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
[[1,2,3,4],[5]]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
[[1,3,5],[2,4]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,2,5],[3,4]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,3,4],[2,5]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,2,4],[3,5]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,2,3],[4,5]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,4,5],[2],[3]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 3 - 1
[[1,3,5],[2],[4]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 3 - 1
[[1,2,5],[3],[4]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 3 - 1
[[1,3,4],[2],[5]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 3 - 1
[[1,2,4],[3],[5]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 3 - 1
[[1,2,3],[4],[5]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 3 - 1
[[1,4],[2,5],[3]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,3],[2,5],[4]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,2],[3,5],[4]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,3],[2,4],[5]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,2],[3,4],[5]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,5],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 4 - 1
[[1,4],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 4 - 1
[[1,3],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 4 - 1
[[1,2],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 4 - 1
[[1],[2],[3],[4],[5]]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 5 - 1
[[1,2,3,4,5,6]]
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0 = 1 - 1
[[1,3,4,5,6],[2]]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
[[1,2,4,5,6],[3]]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
[[1,2,3,5,6],[4]]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
[[1,2,3,4,6],[5]]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
[[1,2,3,4,5],[6]]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
[[1,3,5,6],[2,4]]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,5,6],[3,4]]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3,4,6],[2,5]]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,4,6],[3,5]]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,3,6],[4,5]]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3,4,5],[2,6]]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,4,5],[3,6]]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,3,5],[4,6]]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,3,4],[5,6]]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,4,5,6],[2],[3]]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 3 - 1
[[1,3,5,6],[2],[4]]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 3 - 1
[[1,2,5,6],[3],[4]]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 3 - 1
[[1,3,4,6],[2],[5]]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 3 - 1
[[1,2,4,6],[3],[5]]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 3 - 1
[[1,2,3,6],[4],[5]]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 3 - 1
[[1,3,4,5],[2],[6]]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 3 - 1
[[1,2,4,5],[3],[6]]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 3 - 1
[[1,2,3,5],[4],[6]]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 3 - 1
[[1,2,3,4],[5],[6]]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 3 - 1
[[1,3,5],[2,4,6]]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,5],[3,4,6]]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3,4],[2,5,6]]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,4],[3,5,6]]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,3],[4,5,6]]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,4,6],[2,5],[3]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3,6],[2,5],[4]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,6],[3,5],[4]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3,6],[2,4],[5]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,6],[3,4],[5]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,4,5],[2,6],[3]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3,5],[2,6],[4]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,5],[3,6],[4]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3,4],[2,6],[5]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,4],[3,6],[5]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,3],[4,6],[5]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3,5],[2,4],[6]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,5],[3,4],[6]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3,4],[2,5],[6]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,4],[3,5],[6]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,3],[4,5],[6]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,5,6],[2],[3],[4]]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3 = 4 - 1
[[1,4,6],[2],[3],[5]]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3 = 4 - 1
[[1,3,6],[2],[4],[5]]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3 = 4 - 1
[[1,4],[2,5],[3,6]]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3],[2,5],[4,6]]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2],[3,5],[4,6]]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3],[2,4],[5,6]]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2],[3,4],[5,6]]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,5],[2,6],[3],[4]]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,4],[2,6],[3],[5]]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3],[2,6],[4],[5]]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Mp00083: Standard tableaux shapeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00313: Integer partitions Glaisher-Franklin inverseInteger partitions
St001605: Integer partitions ⟶ ℤResult quality: 52% values known / values provided: 52%distinct values known / distinct values provided: 67%
Values
[[1]]
=> [1]
=> []
=> ?
=> ? = 1
[[1,2]]
=> [2]
=> []
=> ?
=> ? ∊ {1,2}
[[1],[2]]
=> [1,1]
=> [1]
=> [1]
=> ? ∊ {1,2}
[[1,2,3]]
=> [3]
=> []
=> ?
=> ? ∊ {1,2,2,3}
[[1,3],[2]]
=> [2,1]
=> [1]
=> [1]
=> ? ∊ {1,2,2,3}
[[1,2],[3]]
=> [2,1]
=> [1]
=> [1]
=> ? ∊ {1,2,2,3}
[[1],[2],[3]]
=> [1,1,1]
=> [1,1]
=> [2]
=> ? ∊ {1,2,2,3}
[[1,2,3,4]]
=> [4]
=> []
=> ?
=> ? ∊ {1,1,2,2,2,3,3,3,4}
[[1,3,4],[2]]
=> [3,1]
=> [1]
=> [1]
=> ? ∊ {1,1,2,2,2,3,3,3,4}
[[1,2,4],[3]]
=> [3,1]
=> [1]
=> [1]
=> ? ∊ {1,1,2,2,2,3,3,3,4}
[[1,2,3],[4]]
=> [3,1]
=> [1]
=> [1]
=> ? ∊ {1,1,2,2,2,3,3,3,4}
[[1,3],[2,4]]
=> [2,2]
=> [2]
=> [1,1]
=> ? ∊ {1,1,2,2,2,3,3,3,4}
[[1,2],[3,4]]
=> [2,2]
=> [2]
=> [1,1]
=> ? ∊ {1,1,2,2,2,3,3,3,4}
[[1,4],[2],[3]]
=> [2,1,1]
=> [1,1]
=> [2]
=> ? ∊ {1,1,2,2,2,3,3,3,4}
[[1,3],[2],[4]]
=> [2,1,1]
=> [1,1]
=> [2]
=> ? ∊ {1,1,2,2,2,3,3,3,4}
[[1,2],[3],[4]]
=> [2,1,1]
=> [1,1]
=> [2]
=> ? ∊ {1,1,2,2,2,3,3,3,4}
[[1],[2],[3],[4]]
=> [1,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[[1,2,3,4,5]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,4,4,5}
[[1,3,4,5],[2]]
=> [4,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,4,4,5}
[[1,2,4,5],[3]]
=> [4,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,4,4,5}
[[1,2,3,5],[4]]
=> [4,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,4,4,5}
[[1,2,3,4],[5]]
=> [4,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,4,4,5}
[[1,3,5],[2,4]]
=> [3,2]
=> [2]
=> [1,1]
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,4,4,5}
[[1,2,5],[3,4]]
=> [3,2]
=> [2]
=> [1,1]
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,4,4,5}
[[1,3,4],[2,5]]
=> [3,2]
=> [2]
=> [1,1]
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,4,4,5}
[[1,2,4],[3,5]]
=> [3,2]
=> [2]
=> [1,1]
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,4,4,5}
[[1,2,3],[4,5]]
=> [3,2]
=> [2]
=> [1,1]
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,4,4,5}
[[1,4,5],[2],[3]]
=> [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,4,4,5}
[[1,3,5],[2],[4]]
=> [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,4,4,5}
[[1,2,5],[3],[4]]
=> [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,4,4,5}
[[1,3,4],[2],[5]]
=> [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,4,4,5}
[[1,2,4],[3],[5]]
=> [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,4,4,5}
[[1,2,3],[4],[5]]
=> [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,4,4,5}
[[1,4],[2,5],[3]]
=> [2,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,3],[2,5],[4]]
=> [2,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,2],[3,5],[4]]
=> [2,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,3],[2,4],[5]]
=> [2,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,2],[3,4],[5]]
=> [2,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,5],[2],[3],[4]]
=> [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[[1,4],[2],[3],[5]]
=> [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[[1,3],[2],[4],[5]]
=> [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[[1,2],[3],[4],[5]]
=> [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[[1],[2],[3],[4],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [2,2]
=> 2
[[1,2,3,4,5,6]]
=> [6]
=> []
=> ?
=> ? ∊ {1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5}
[[1,3,4,5,6],[2]]
=> [5,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5}
[[1,2,4,5,6],[3]]
=> [5,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5}
[[1,2,3,5,6],[4]]
=> [5,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5}
[[1,2,3,4,6],[5]]
=> [5,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5}
[[1,2,3,4,5],[6]]
=> [5,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5}
[[1,3,5,6],[2,4]]
=> [4,2]
=> [2]
=> [1,1]
=> ? ∊ {1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5}
[[1,2,5,6],[3,4]]
=> [4,2]
=> [2]
=> [1,1]
=> ? ∊ {1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5}
[[1,3,4,6],[2,5]]
=> [4,2]
=> [2]
=> [1,1]
=> ? ∊ {1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5}
[[1,2,4,6],[3,5]]
=> [4,2]
=> [2]
=> [1,1]
=> ? ∊ {1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5}
[[1,2,3,6],[4,5]]
=> [4,2]
=> [2]
=> [1,1]
=> ? ∊ {1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5}
[[1,3,4,5],[2,6]]
=> [4,2]
=> [2]
=> [1,1]
=> ? ∊ {1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5}
[[1,2,4,5],[3,6]]
=> [4,2]
=> [2]
=> [1,1]
=> ? ∊ {1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5}
[[1,2,3,5],[4,6]]
=> [4,2]
=> [2]
=> [1,1]
=> ? ∊ {1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5}
[[1,2,3,4],[5,6]]
=> [4,2]
=> [2]
=> [1,1]
=> ? ∊ {1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5}
[[1,4,5,6],[2],[3]]
=> [4,1,1]
=> [1,1]
=> [2]
=> ? ∊ {1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5}
[[1,3,5,6],[2],[4]]
=> [4,1,1]
=> [1,1]
=> [2]
=> ? ∊ {1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5}
[[1,2,5,6],[3],[4]]
=> [4,1,1]
=> [1,1]
=> [2]
=> ? ∊ {1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5}
[[1,3,5],[2,4,6]]
=> [3,3]
=> [3]
=> [3]
=> 1
[[1,2,5],[3,4,6]]
=> [3,3]
=> [3]
=> [3]
=> 1
[[1,3,4],[2,5,6]]
=> [3,3]
=> [3]
=> [3]
=> 1
[[1,2,4],[3,5,6]]
=> [3,3]
=> [3]
=> [3]
=> 1
[[1,2,3],[4,5,6]]
=> [3,3]
=> [3]
=> [3]
=> 1
[[1,4,6],[2,5],[3]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,3,6],[2,5],[4]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,2,6],[3,5],[4]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,3,6],[2,4],[5]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,2,6],[3,4],[5]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,4,5],[2,6],[3]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,3,5],[2,6],[4]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,2,5],[3,6],[4]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,3,4],[2,6],[5]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,2,4],[3,6],[5]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,2,3],[4,6],[5]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,3,5],[2,4],[6]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,2,5],[3,4],[6]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,3,4],[2,5],[6]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,2,4],[3,5],[6]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,2,3],[4,5],[6]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,5,6],[2],[3],[4]]
=> [3,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[[1,4,6],[2],[3],[5]]
=> [3,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[[1,3,6],[2],[4],[5]]
=> [3,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[[1,2,6],[3],[4],[5]]
=> [3,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[[1,4,5],[2],[3],[6]]
=> [3,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[[1,3,5],[2],[4],[6]]
=> [3,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[[1,2,5],[3],[4],[6]]
=> [3,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[[1,3,4],[2],[5],[6]]
=> [3,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[[1,2,4],[3],[5],[6]]
=> [3,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[[1,2,3],[4],[5],[6]]
=> [3,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[[1,4],[2,5],[3,6]]
=> [2,2,2]
=> [2,2]
=> [4]
=> 1
[[1,3],[2,5],[4,6]]
=> [2,2,2]
=> [2,2]
=> [4]
=> 1
[[1,2],[3,5],[4,6]]
=> [2,2,2]
=> [2,2]
=> [4]
=> 1
[[1,3],[2,4],[5,6]]
=> [2,2,2]
=> [2,2]
=> [4]
=> 1
[[1,2],[3,4],[5,6]]
=> [2,2,2]
=> [2,2]
=> [4]
=> 1
[[1,5],[2,6],[3],[4]]
=> [2,2,1,1]
=> [2,1,1]
=> [2,1,1]
=> 3
[[1,4],[2,6],[3],[5]]
=> [2,2,1,1]
=> [2,1,1]
=> [2,1,1]
=> 3
[[1,3],[2,6],[4],[5]]
=> [2,2,1,1]
=> [2,1,1]
=> [2,1,1]
=> 3
Description
The number of colourings of a cycle such that the multiplicities of colours are given by a partition. Two colourings are considered equal, if they are obtained by an action of the cyclic group. This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
The following 30 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001060The distinguishing index of a graph. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St000456The monochromatic index of a connected graph. St000993The multiplicity of the largest part of an integer partition. St001330The hat guessing number of a graph. St001889The size of the connectivity set of a signed permutation. St001720The minimal length of a chain of small intervals in a lattice. St001200The number of simple modules in eAe with projective dimension at most 2 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St000455The second largest eigenvalue of a graph if it is integral. St000259The diameter of a connected graph. St000260The radius of a connected graph. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St000942The number of critical left to right maxima of the parking functions. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St001904The length of the initial strictly increasing segment of a parking function. St000264The girth of a graph, which is not a tree. St001621The number of atoms of a lattice. St001624The breadth of a lattice. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001626The number of maximal proper sublattices of a lattice. St001877Number of indecomposable injective modules with projective dimension 2.