searching the database
Your data matches 40 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001462
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
St001462: Standard tableaux ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> 1
[[1,2]]
=> 2
[[1],[2]]
=> 1
[[1,2,3]]
=> 3
[[1,3],[2]]
=> 2
[[1,2],[3]]
=> 2
[[1],[2],[3]]
=> 1
[[1,2,3,4]]
=> 4
[[1,3,4],[2]]
=> 3
[[1,2,4],[3]]
=> 3
[[1,2,3],[4]]
=> 3
[[1,3],[2,4]]
=> 2
[[1,2],[3,4]]
=> 1
[[1,4],[2],[3]]
=> 2
[[1,3],[2],[4]]
=> 1
[[1,2],[3],[4]]
=> 2
[[1],[2],[3],[4]]
=> 1
[[1,2,3,4,5]]
=> 5
[[1,3,4,5],[2]]
=> 4
[[1,2,4,5],[3]]
=> 4
[[1,2,3,5],[4]]
=> 4
[[1,2,3,4],[5]]
=> 4
[[1,3,5],[2,4]]
=> 3
[[1,2,5],[3,4]]
=> 2
[[1,3,4],[2,5]]
=> 3
[[1,2,4],[3,5]]
=> 3
[[1,2,3],[4,5]]
=> 2
[[1,4,5],[2],[3]]
=> 3
[[1,3,5],[2],[4]]
=> 2
[[1,2,5],[3],[4]]
=> 3
[[1,3,4],[2],[5]]
=> 1
[[1,2,4],[3],[5]]
=> 2
[[1,2,3],[4],[5]]
=> 3
[[1,4],[2,5],[3]]
=> 2
[[1,3],[2,5],[4]]
=> 1
[[1,2],[3,5],[4]]
=> 1
[[1,3],[2,4],[5]]
=> 2
[[1,2],[3,4],[5]]
=> 1
[[1,5],[2],[3],[4]]
=> 2
[[1,4],[2],[3],[5]]
=> 1
[[1,3],[2],[4],[5]]
=> 1
[[1,2],[3],[4],[5]]
=> 2
[[1],[2],[3],[4],[5]]
=> 1
[[1,2,3,4,5,6]]
=> 6
[[1,3,4,5,6],[2]]
=> 5
[[1,2,4,5,6],[3]]
=> 5
[[1,2,3,5,6],[4]]
=> 5
[[1,2,3,4,6],[5]]
=> 5
[[1,2,3,4,5],[6]]
=> 5
[[1,3,5,6],[2,4]]
=> 4
Description
The number of factors of a standard tableaux under concatenation.
The concatenation of two standard Young tableaux T1 and T2 is obtained by adding the largest entry of T1 to each entry of T2, and then appending the rows of the result to T1, see [1, dfn 2.10].
This statistic returns the maximal number of standard tableaux such that their concatenation is the given tableau.
Matching statistic: St000056
Mp00284: Standard tableaux —rows⟶ Set partitions
Mp00171: Set partitions —intertwining number to dual major index⟶ Set partitions
Mp00080: Set partitions —to permutation⟶ Permutations
St000056: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00171: Set partitions —intertwining number to dual major index⟶ Set partitions
Mp00080: Set partitions —to permutation⟶ Permutations
St000056: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> {{1}}
=> {{1}}
=> [1] => 1
[[1,2]]
=> {{1,2}}
=> {{1,2}}
=> [2,1] => 1
[[1],[2]]
=> {{1},{2}}
=> {{1},{2}}
=> [1,2] => 2
[[1,2,3]]
=> {{1,2,3}}
=> {{1,2,3}}
=> [2,3,1] => 1
[[1,3],[2]]
=> {{1,3},{2}}
=> {{1},{2,3}}
=> [1,3,2] => 2
[[1,2],[3]]
=> {{1,2},{3}}
=> {{1,2},{3}}
=> [2,1,3] => 2
[[1],[2],[3]]
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> [1,2,3] => 3
[[1,2,3,4]]
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> [2,3,4,1] => 1
[[1,3,4],[2]]
=> {{1,3,4},{2}}
=> {{1,4},{2,3}}
=> [4,3,2,1] => 1
[[1,2,4],[3]]
=> {{1,2,4},{3}}
=> {{1,2},{3,4}}
=> [2,1,4,3] => 2
[[1,2,3],[4]]
=> {{1,2,3},{4}}
=> {{1,2,3},{4}}
=> [2,3,1,4] => 2
[[1,3],[2,4]]
=> {{1,3},{2,4}}
=> {{1},{2,3,4}}
=> [1,3,4,2] => 2
[[1,2],[3,4]]
=> {{1,2},{3,4}}
=> {{1,2,4},{3}}
=> [2,4,3,1] => 1
[[1,4],[2],[3]]
=> {{1,4},{2},{3}}
=> {{1},{2},{3,4}}
=> [1,2,4,3] => 3
[[1,3],[2],[4]]
=> {{1,3},{2},{4}}
=> {{1},{2,3},{4}}
=> [1,3,2,4] => 3
[[1,2],[3],[4]]
=> {{1,2},{3},{4}}
=> {{1,2},{3},{4}}
=> [2,1,3,4] => 3
[[1],[2],[3],[4]]
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> [1,2,3,4] => 4
[[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> {{1,2,3,4,5}}
=> [2,3,4,5,1] => 1
[[1,3,4,5],[2]]
=> {{1,3,4,5},{2}}
=> {{1,4,5},{2,3}}
=> [4,3,2,5,1] => 1
[[1,2,4,5],[3]]
=> {{1,2,4,5},{3}}
=> {{1,2,5},{3,4}}
=> [2,5,4,3,1] => 1
[[1,2,3,5],[4]]
=> {{1,2,3,5},{4}}
=> {{1,2,3},{4,5}}
=> [2,3,1,5,4] => 2
[[1,2,3,4],[5]]
=> {{1,2,3,4},{5}}
=> {{1,2,3,4},{5}}
=> [2,3,4,1,5] => 2
[[1,3,5],[2,4]]
=> {{1,3,5},{2,4}}
=> {{1},{2,3,4,5}}
=> [1,3,4,5,2] => 2
[[1,2,5],[3,4]]
=> {{1,2,5},{3,4}}
=> {{1,2,4},{3,5}}
=> [2,4,5,1,3] => 1
[[1,3,4],[2,5]]
=> {{1,3,4},{2,5}}
=> {{1,4},{2,3,5}}
=> [4,3,5,1,2] => 1
[[1,2,4],[3,5]]
=> {{1,2,4},{3,5}}
=> {{1,2},{3,4,5}}
=> [2,1,4,5,3] => 2
[[1,2,3],[4,5]]
=> {{1,2,3},{4,5}}
=> {{1,2,3,5},{4}}
=> [2,3,5,4,1] => 1
[[1,4,5],[2],[3]]
=> {{1,4,5},{2},{3}}
=> {{1,5},{2},{3,4}}
=> [5,2,4,3,1] => 1
[[1,3,5],[2],[4]]
=> {{1,3,5},{2},{4}}
=> {{1},{2,3,5},{4}}
=> [1,3,5,4,2] => 2
[[1,2,5],[3],[4]]
=> {{1,2,5},{3},{4}}
=> {{1,2},{3},{4,5}}
=> [2,1,3,5,4] => 3
[[1,3,4],[2],[5]]
=> {{1,3,4},{2},{5}}
=> {{1,4},{2,3},{5}}
=> [4,3,2,1,5] => 2
[[1,2,4],[3],[5]]
=> {{1,2,4},{3},{5}}
=> {{1,2},{3,4},{5}}
=> [2,1,4,3,5] => 3
[[1,2,3],[4],[5]]
=> {{1,2,3},{4},{5}}
=> {{1,2,3},{4},{5}}
=> [2,3,1,4,5] => 3
[[1,4],[2,5],[3]]
=> {{1,4},{2,5},{3}}
=> {{1},{2},{3,4,5}}
=> [1,2,4,5,3] => 3
[[1,3],[2,5],[4]]
=> {{1,3},{2,5},{4}}
=> {{1},{2,3},{4,5}}
=> [1,3,2,5,4] => 3
[[1,2],[3,5],[4]]
=> {{1,2},{3,5},{4}}
=> {{1,2},{3,5},{4}}
=> [2,1,5,4,3] => 2
[[1,3],[2,4],[5]]
=> {{1,3},{2,4},{5}}
=> {{1},{2,3,4},{5}}
=> [1,3,4,2,5] => 3
[[1,2],[3,4],[5]]
=> {{1,2},{3,4},{5}}
=> {{1,2,4},{3},{5}}
=> [2,4,3,1,5] => 2
[[1,5],[2],[3],[4]]
=> {{1,5},{2},{3},{4}}
=> {{1},{2},{3},{4,5}}
=> [1,2,3,5,4] => 4
[[1,4],[2],[3],[5]]
=> {{1,4},{2},{3},{5}}
=> {{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => 4
[[1,3],[2],[4],[5]]
=> {{1,3},{2},{4},{5}}
=> {{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => 4
[[1,2],[3],[4],[5]]
=> {{1,2},{3},{4},{5}}
=> {{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => 4
[[1],[2],[3],[4],[5]]
=> {{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => 5
[[1,2,3,4,5,6]]
=> {{1,2,3,4,5,6}}
=> {{1,2,3,4,5,6}}
=> [2,3,4,5,6,1] => 1
[[1,3,4,5,6],[2]]
=> {{1,3,4,5,6},{2}}
=> {{1,4,5,6},{2,3}}
=> [4,3,2,5,6,1] => 1
[[1,2,4,5,6],[3]]
=> {{1,2,4,5,6},{3}}
=> {{1,2,5,6},{3,4}}
=> [2,5,4,3,6,1] => 1
[[1,2,3,5,6],[4]]
=> {{1,2,3,5,6},{4}}
=> {{1,2,3,6},{4,5}}
=> [2,3,6,5,4,1] => 1
[[1,2,3,4,6],[5]]
=> {{1,2,3,4,6},{5}}
=> {{1,2,3,4},{5,6}}
=> [2,3,4,1,6,5] => 2
[[1,2,3,4,5],[6]]
=> {{1,2,3,4,5},{6}}
=> {{1,2,3,4,5},{6}}
=> [2,3,4,5,1,6] => 2
[[1,3,5,6],[2,4]]
=> {{1,3,5,6},{2,4}}
=> {{1,6},{2,3,4,5}}
=> [6,3,4,5,2,1] => 1
Description
The decomposition (or block) number of a permutation.
For π∈Sn, this is given by
#{1≤k≤n:{π1,…,πk}={1,…,k}}.
This is also known as the number of connected components [1] or the number of blocks [2] of the permutation, considering it as a direct sum.
This is one plus [[St000234]].
Matching statistic: St000234
Mp00284: Standard tableaux —rows⟶ Set partitions
Mp00171: Set partitions —intertwining number to dual major index⟶ Set partitions
Mp00080: Set partitions —to permutation⟶ Permutations
St000234: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00171: Set partitions —intertwining number to dual major index⟶ Set partitions
Mp00080: Set partitions —to permutation⟶ Permutations
St000234: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> {{1}}
=> {{1}}
=> [1] => 0 = 1 - 1
[[1,2]]
=> {{1,2}}
=> {{1,2}}
=> [2,1] => 0 = 1 - 1
[[1],[2]]
=> {{1},{2}}
=> {{1},{2}}
=> [1,2] => 1 = 2 - 1
[[1,2,3]]
=> {{1,2,3}}
=> {{1,2,3}}
=> [2,3,1] => 0 = 1 - 1
[[1,3],[2]]
=> {{1,3},{2}}
=> {{1},{2,3}}
=> [1,3,2] => 1 = 2 - 1
[[1,2],[3]]
=> {{1,2},{3}}
=> {{1,2},{3}}
=> [2,1,3] => 1 = 2 - 1
[[1],[2],[3]]
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> [1,2,3] => 2 = 3 - 1
[[1,2,3,4]]
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> [2,3,4,1] => 0 = 1 - 1
[[1,3,4],[2]]
=> {{1,3,4},{2}}
=> {{1,4},{2,3}}
=> [4,3,2,1] => 0 = 1 - 1
[[1,2,4],[3]]
=> {{1,2,4},{3}}
=> {{1,2},{3,4}}
=> [2,1,4,3] => 1 = 2 - 1
[[1,2,3],[4]]
=> {{1,2,3},{4}}
=> {{1,2,3},{4}}
=> [2,3,1,4] => 1 = 2 - 1
[[1,3],[2,4]]
=> {{1,3},{2,4}}
=> {{1},{2,3,4}}
=> [1,3,4,2] => 1 = 2 - 1
[[1,2],[3,4]]
=> {{1,2},{3,4}}
=> {{1,2,4},{3}}
=> [2,4,3,1] => 0 = 1 - 1
[[1,4],[2],[3]]
=> {{1,4},{2},{3}}
=> {{1},{2},{3,4}}
=> [1,2,4,3] => 2 = 3 - 1
[[1,3],[2],[4]]
=> {{1,3},{2},{4}}
=> {{1},{2,3},{4}}
=> [1,3,2,4] => 2 = 3 - 1
[[1,2],[3],[4]]
=> {{1,2},{3},{4}}
=> {{1,2},{3},{4}}
=> [2,1,3,4] => 2 = 3 - 1
[[1],[2],[3],[4]]
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> [1,2,3,4] => 3 = 4 - 1
[[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> {{1,2,3,4,5}}
=> [2,3,4,5,1] => 0 = 1 - 1
[[1,3,4,5],[2]]
=> {{1,3,4,5},{2}}
=> {{1,4,5},{2,3}}
=> [4,3,2,5,1] => 0 = 1 - 1
[[1,2,4,5],[3]]
=> {{1,2,4,5},{3}}
=> {{1,2,5},{3,4}}
=> [2,5,4,3,1] => 0 = 1 - 1
[[1,2,3,5],[4]]
=> {{1,2,3,5},{4}}
=> {{1,2,3},{4,5}}
=> [2,3,1,5,4] => 1 = 2 - 1
[[1,2,3,4],[5]]
=> {{1,2,3,4},{5}}
=> {{1,2,3,4},{5}}
=> [2,3,4,1,5] => 1 = 2 - 1
[[1,3,5],[2,4]]
=> {{1,3,5},{2,4}}
=> {{1},{2,3,4,5}}
=> [1,3,4,5,2] => 1 = 2 - 1
[[1,2,5],[3,4]]
=> {{1,2,5},{3,4}}
=> {{1,2,4},{3,5}}
=> [2,4,5,1,3] => 0 = 1 - 1
[[1,3,4],[2,5]]
=> {{1,3,4},{2,5}}
=> {{1,4},{2,3,5}}
=> [4,3,5,1,2] => 0 = 1 - 1
[[1,2,4],[3,5]]
=> {{1,2,4},{3,5}}
=> {{1,2},{3,4,5}}
=> [2,1,4,5,3] => 1 = 2 - 1
[[1,2,3],[4,5]]
=> {{1,2,3},{4,5}}
=> {{1,2,3,5},{4}}
=> [2,3,5,4,1] => 0 = 1 - 1
[[1,4,5],[2],[3]]
=> {{1,4,5},{2},{3}}
=> {{1,5},{2},{3,4}}
=> [5,2,4,3,1] => 0 = 1 - 1
[[1,3,5],[2],[4]]
=> {{1,3,5},{2},{4}}
=> {{1},{2,3,5},{4}}
=> [1,3,5,4,2] => 1 = 2 - 1
[[1,2,5],[3],[4]]
=> {{1,2,5},{3},{4}}
=> {{1,2},{3},{4,5}}
=> [2,1,3,5,4] => 2 = 3 - 1
[[1,3,4],[2],[5]]
=> {{1,3,4},{2},{5}}
=> {{1,4},{2,3},{5}}
=> [4,3,2,1,5] => 1 = 2 - 1
[[1,2,4],[3],[5]]
=> {{1,2,4},{3},{5}}
=> {{1,2},{3,4},{5}}
=> [2,1,4,3,5] => 2 = 3 - 1
[[1,2,3],[4],[5]]
=> {{1,2,3},{4},{5}}
=> {{1,2,3},{4},{5}}
=> [2,3,1,4,5] => 2 = 3 - 1
[[1,4],[2,5],[3]]
=> {{1,4},{2,5},{3}}
=> {{1},{2},{3,4,5}}
=> [1,2,4,5,3] => 2 = 3 - 1
[[1,3],[2,5],[4]]
=> {{1,3},{2,5},{4}}
=> {{1},{2,3},{4,5}}
=> [1,3,2,5,4] => 2 = 3 - 1
[[1,2],[3,5],[4]]
=> {{1,2},{3,5},{4}}
=> {{1,2},{3,5},{4}}
=> [2,1,5,4,3] => 1 = 2 - 1
[[1,3],[2,4],[5]]
=> {{1,3},{2,4},{5}}
=> {{1},{2,3,4},{5}}
=> [1,3,4,2,5] => 2 = 3 - 1
[[1,2],[3,4],[5]]
=> {{1,2},{3,4},{5}}
=> {{1,2,4},{3},{5}}
=> [2,4,3,1,5] => 1 = 2 - 1
[[1,5],[2],[3],[4]]
=> {{1,5},{2},{3},{4}}
=> {{1},{2},{3},{4,5}}
=> [1,2,3,5,4] => 3 = 4 - 1
[[1,4],[2],[3],[5]]
=> {{1,4},{2},{3},{5}}
=> {{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => 3 = 4 - 1
[[1,3],[2],[4],[5]]
=> {{1,3},{2},{4},{5}}
=> {{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => 3 = 4 - 1
[[1,2],[3],[4],[5]]
=> {{1,2},{3},{4},{5}}
=> {{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => 3 = 4 - 1
[[1],[2],[3],[4],[5]]
=> {{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => 4 = 5 - 1
[[1,2,3,4,5,6]]
=> {{1,2,3,4,5,6}}
=> {{1,2,3,4,5,6}}
=> [2,3,4,5,6,1] => 0 = 1 - 1
[[1,3,4,5,6],[2]]
=> {{1,3,4,5,6},{2}}
=> {{1,4,5,6},{2,3}}
=> [4,3,2,5,6,1] => 0 = 1 - 1
[[1,2,4,5,6],[3]]
=> {{1,2,4,5,6},{3}}
=> {{1,2,5,6},{3,4}}
=> [2,5,4,3,6,1] => 0 = 1 - 1
[[1,2,3,5,6],[4]]
=> {{1,2,3,5,6},{4}}
=> {{1,2,3,6},{4,5}}
=> [2,3,6,5,4,1] => 0 = 1 - 1
[[1,2,3,4,6],[5]]
=> {{1,2,3,4,6},{5}}
=> {{1,2,3,4},{5,6}}
=> [2,3,4,1,6,5] => 1 = 2 - 1
[[1,2,3,4,5],[6]]
=> {{1,2,3,4,5},{6}}
=> {{1,2,3,4,5},{6}}
=> [2,3,4,5,1,6] => 1 = 2 - 1
[[1,3,5,6],[2,4]]
=> {{1,3,5,6},{2,4}}
=> {{1,6},{2,3,4,5}}
=> [6,3,4,5,2,1] => 0 = 1 - 1
Description
The number of global ascents of a permutation.
The global ascents are the integers i such that
C(π)={i∈[n−1]∣∀1≤j≤i<k≤n:π(j)<π(k)}.
Equivalently, by the pigeonhole principle,
C(π)={i∈[n−1]∣∀1≤j≤i:π(j)≤i}.
For n>1 it can also be described as an occurrence of the mesh pattern
([1,2],{(0,2),(1,0),(1,1),(2,0),(2,1)})
or equivalently
([1,2],{(0,1),(0,2),(1,1),(1,2),(2,0)}),
see [3].
According to [2], this is also the cardinality of the connectivity set of a permutation. The permutation is connected, when the connectivity set is empty. This gives [[oeis:A003319]].
Matching statistic: St000771
(load all 16 compositions to match this statistic)
(load all 16 compositions to match this statistic)
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 64% ●values known / values provided: 64%●distinct values known / distinct values provided: 83%
Mp00160: Permutations —graph of inversions⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 64% ●values known / values provided: 64%●distinct values known / distinct values provided: 83%
Values
[[1]]
=> [1] => ([],1)
=> 1
[[1,2]]
=> [1,2] => ([],2)
=> ? = 2
[[1],[2]]
=> [2,1] => ([(0,1)],2)
=> 1
[[1,2,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {2,3}
[[1,3],[2]]
=> [2,1,3] => ([(1,2)],3)
=> ? ∊ {2,3}
[[1,2],[3]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1],[2],[3]]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,2,3,4]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {1,3,3,4}
[[1,3,4],[2]]
=> [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {1,3,3,4}
[[1,2,4],[3]]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,3,3,4}
[[1,2,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,3],[2,4]]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 1
[[1,2],[3,4]]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[[1,4],[2],[3]]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,3,3,4}
[[1,3],[2],[4]]
=> [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[1,2],[3],[4]]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[[1],[2],[3],[4]]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,2,3,4,5]]
=> [1,2,3,4,5] => ([],5)
=> ? ∊ {2,2,3,3,3,3,4,4,4,5}
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,4,4,4,5}
[[1,2,4,5],[3]]
=> [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,4,4,4,5}
[[1,2,3,5],[4]]
=> [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,4,4,4,5}
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[1,3,5],[2,4]]
=> [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,4,4,4,5}
[[1,2,5],[3,4]]
=> [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {2,2,3,3,3,3,4,4,4,5}
[[1,3,4],[2,5]]
=> [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[[1,2,4],[3,5]]
=> [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1
[[1,2,3],[4,5]]
=> [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,4,4,4,5}
[[1,3,5],[2],[4]]
=> [4,2,1,3,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,4,4,4,5}
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,4,4,4,5}
[[1,3,4],[2],[5]]
=> [5,2,1,3,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,2,4],[3],[5]]
=> [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,4],[2,5],[3]]
=> [3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 1
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,3,3,3,4,4,4,5}
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => ([],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => ([(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
[[1,3,5,6],[2,4]]
=> [2,4,1,3,5,6] => ([(2,5),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,4,6],[2,5]]
=> [2,5,1,3,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,4,5],[2,6]]
=> [2,6,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2
[[1,2,4,5],[3,6]]
=> [3,6,1,2,4,5] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 1
[[1,2,3,5],[4,6]]
=> [4,6,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
[[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,5,6],[2],[4]]
=> [4,2,1,3,5,6] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,5,6],[3],[4]]
=> [4,3,1,2,5,6] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,4,6],[2],[5]]
=> [5,2,1,3,4,6] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,4,6],[3],[5]]
=> [5,3,1,2,4,6] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3,6],[4],[5]]
=> [5,4,1,2,3,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,4,5],[2],[6]]
=> [6,2,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,3,5],[4],[6]]
=> [6,4,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 1
[[1,2,5],[3,4,6]]
=> [3,4,6,1,2,5] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[[1,3,4],[2,5,6]]
=> [2,5,6,1,3,4] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[[1,2,4],[3,5,6]]
=> [3,5,6,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
[[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> 4
[[1,4,6],[2,5],[3]]
=> [3,2,5,1,4,6] => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,6],[3,5],[4]]
=> [4,3,5,1,2,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,6],[2,4],[5]]
=> [5,2,4,1,3,6] => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,6],[3,4],[5]]
=> [5,3,4,1,2,6] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,4,5],[2,6],[3]]
=> [3,2,6,1,4,5] => ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> 1
[[1,3,5],[2,6],[4]]
=> [4,2,6,1,3,5] => ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[[1,2,5],[3,6],[4]]
=> [4,3,6,1,2,5] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 3
[[1,3,4],[2,6],[5]]
=> [5,2,6,1,3,4] => ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> 1
[[1,2,4],[3,6],[5]]
=> [5,3,6,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[[1,2,3],[4,6],[5]]
=> [5,4,6,1,2,3] => ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,3,5],[2,4],[6]]
=> [6,2,4,1,3,5] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,5],[3,4],[6]]
=> [6,3,4,1,2,5] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 2
[[1,3,4],[2,5],[6]]
=> [6,2,5,1,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,4],[3,5],[6]]
=> [6,3,5,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,4,6],[2],[3],[5]]
=> [5,3,2,1,4,6] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,6],[2],[4],[5]]
=> [5,4,2,1,3,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,6],[3],[4],[5]]
=> [5,4,3,1,2,6] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,6],[2],[3],[4],[5]]
=> [5,4,3,2,1,6] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6}
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums 0, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
(4−1−2−1−14−1−2−2−14−1−1−2−14).
Its eigenvalues are 0,4,4,6, so the statistic is 2.
The path on four vertices has eigenvalues 0,4.7…,6,9.2… and therefore statistic 1.
Matching statistic: St000939
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00207: Standard tableaux —horizontal strip sizes⟶ Integer compositions
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St000939: Integer partitions ⟶ ℤResult quality: 63% ●values known / values provided: 63%●distinct values known / distinct values provided: 100%
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St000939: Integer partitions ⟶ ℤResult quality: 63% ●values known / values provided: 63%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1] => [[1],[]]
=> []
=> ? = 1
[[1,2]]
=> [2] => [[2],[]]
=> []
=> ? ∊ {1,2}
[[1],[2]]
=> [1,1] => [[1,1],[]]
=> []
=> ? ∊ {1,2}
[[1,2,3]]
=> [3] => [[3],[]]
=> []
=> ? ∊ {1,2,2,3}
[[1,3],[2]]
=> [1,2] => [[2,1],[]]
=> []
=> ? ∊ {1,2,2,3}
[[1,2],[3]]
=> [2,1] => [[2,2],[1]]
=> [1]
=> ? ∊ {1,2,2,3}
[[1],[2],[3]]
=> [1,1,1] => [[1,1,1],[]]
=> []
=> ? ∊ {1,2,2,3}
[[1,2,3,4]]
=> [4] => [[4],[]]
=> []
=> ? ∊ {1,1,2,2,3,3,3,4}
[[1,3,4],[2]]
=> [1,3] => [[3,1],[]]
=> []
=> ? ∊ {1,1,2,2,3,3,3,4}
[[1,2,4],[3]]
=> [2,2] => [[3,2],[1]]
=> [1]
=> ? ∊ {1,1,2,2,3,3,3,4}
[[1,2,3],[4]]
=> [3,1] => [[3,3],[2]]
=> [2]
=> 1
[[1,3],[2,4]]
=> [1,2,1] => [[2,2,1],[1]]
=> [1]
=> ? ∊ {1,1,2,2,3,3,3,4}
[[1,2],[3,4]]
=> [2,2] => [[3,2],[1]]
=> [1]
=> ? ∊ {1,1,2,2,3,3,3,4}
[[1,4],[2],[3]]
=> [1,1,2] => [[2,1,1],[]]
=> []
=> ? ∊ {1,1,2,2,3,3,3,4}
[[1,3],[2],[4]]
=> [1,2,1] => [[2,2,1],[1]]
=> [1]
=> ? ∊ {1,1,2,2,3,3,3,4}
[[1,2],[3],[4]]
=> [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 2
[[1],[2],[3],[4]]
=> [1,1,1,1] => [[1,1,1,1],[]]
=> []
=> ? ∊ {1,1,2,2,3,3,3,4}
[[1,2,3,4,5]]
=> [5] => [[5],[]]
=> []
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,5}
[[1,3,4,5],[2]]
=> [1,4] => [[4,1],[]]
=> []
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,5}
[[1,2,4,5],[3]]
=> [2,3] => [[4,2],[1]]
=> [1]
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,5}
[[1,2,3,5],[4]]
=> [3,2] => [[4,3],[2]]
=> [2]
=> 1
[[1,2,3,4],[5]]
=> [4,1] => [[4,4],[3]]
=> [3]
=> 2
[[1,3,5],[2,4]]
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,5}
[[1,2,5],[3,4]]
=> [2,3] => [[4,2],[1]]
=> [1]
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,5}
[[1,3,4],[2,5]]
=> [1,3,1] => [[3,3,1],[2]]
=> [2]
=> 1
[[1,2,4],[3,5]]
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 1
[[1,2,3],[4,5]]
=> [3,2] => [[4,3],[2]]
=> [2]
=> 1
[[1,4,5],[2],[3]]
=> [1,1,3] => [[3,1,1],[]]
=> []
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,5}
[[1,3,5],[2],[4]]
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,5}
[[1,2,5],[3],[4]]
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 2
[[1,3,4],[2],[5]]
=> [1,3,1] => [[3,3,1],[2]]
=> [2]
=> 1
[[1,2,4],[3],[5]]
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 1
[[1,2,3],[4],[5]]
=> [3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> 3
[[1,4],[2,5],[3]]
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,5}
[[1,3],[2,5],[4]]
=> [1,2,2] => [[3,2,1],[1]]
=> [1]
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,5}
[[1,2],[3,5],[4]]
=> [2,1,2] => [[3,2,2],[1,1]]
=> [1,1]
=> 2
[[1,3],[2,4],[5]]
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 2
[[1,2],[3,4],[5]]
=> [2,2,1] => [[3,3,2],[2,1]]
=> [2,1]
=> 1
[[1,5],[2],[3],[4]]
=> [1,1,1,2] => [[2,1,1,1],[]]
=> []
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,5}
[[1,4],[2],[3],[5]]
=> [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,5}
[[1,3],[2],[4],[5]]
=> [1,2,1,1] => [[2,2,2,1],[1,1]]
=> [1,1]
=> 2
[[1,2],[3],[4],[5]]
=> [2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 3
[[1],[2],[3],[4],[5]]
=> [1,1,1,1,1] => [[1,1,1,1,1],[]]
=> []
=> ? ∊ {2,2,2,3,3,3,3,4,4,4,4,5}
[[1,2,3,4,5,6]]
=> [6] => [[6],[]]
=> []
=> ? ∊ {1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
[[1,3,4,5,6],[2]]
=> [1,5] => [[5,1],[]]
=> []
=> ? ∊ {1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
[[1,2,4,5,6],[3]]
=> [2,4] => [[5,2],[1]]
=> [1]
=> ? ∊ {1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
[[1,2,3,5,6],[4]]
=> [3,3] => [[5,3],[2]]
=> [2]
=> 1
[[1,2,3,4,6],[5]]
=> [4,2] => [[5,4],[3]]
=> [3]
=> 2
[[1,2,3,4,5],[6]]
=> [5,1] => [[5,5],[4]]
=> [4]
=> 2
[[1,3,5,6],[2,4]]
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> ? ∊ {1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
[[1,2,5,6],[3,4]]
=> [2,4] => [[5,2],[1]]
=> [1]
=> ? ∊ {1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
[[1,3,4,6],[2,5]]
=> [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 1
[[1,2,4,6],[3,5]]
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 1
[[1,2,3,6],[4,5]]
=> [3,3] => [[5,3],[2]]
=> [2]
=> 1
[[1,3,4,5],[2,6]]
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 2
[[1,2,4,5],[3,6]]
=> [2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> 2
[[1,2,3,5],[4,6]]
=> [3,2,1] => [[4,4,3],[3,2]]
=> [3,2]
=> 3
[[1,2,3,4],[5,6]]
=> [4,2] => [[5,4],[3]]
=> [3]
=> 2
[[1,4,5,6],[2],[3]]
=> [1,1,4] => [[4,1,1],[]]
=> []
=> ? ∊ {1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
[[1,3,5,6],[2],[4]]
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> ? ∊ {1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
[[1,2,5,6],[3],[4]]
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 2
[[1,3,4,6],[2],[5]]
=> [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 1
[[1,2,4,6],[3],[5]]
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 1
[[1,2,3,6],[4],[5]]
=> [3,1,2] => [[4,3,3],[2,2]]
=> [2,2]
=> 3
[[1,3,4,5],[2],[6]]
=> [1,4,1] => [[4,4,1],[3]]
=> [3]
=> 2
[[1,2,4,5],[3],[6]]
=> [2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> 2
[[1,2,3,5],[4],[6]]
=> [3,2,1] => [[4,4,3],[3,2]]
=> [3,2]
=> 3
[[1,2,3,4],[5],[6]]
=> [4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> 6
[[1,3,5],[2,4,6]]
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> 1
[[1,2,5],[3,4,6]]
=> [2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> 2
[[1,3,4],[2,5,6]]
=> [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 1
[[1,2,4],[3,5,6]]
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 1
[[1,2,3],[4,5,6]]
=> [3,3] => [[5,3],[2]]
=> [2]
=> 1
[[1,4,6],[2,5],[3]]
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> ? ∊ {1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
[[1,3,6],[2,5],[4]]
=> [1,2,3] => [[4,2,1],[1]]
=> [1]
=> ? ∊ {1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
[[1,2,6],[3,5],[4]]
=> [2,1,3] => [[4,2,2],[1,1]]
=> [1,1]
=> 2
[[1,3,6],[2,4],[5]]
=> [1,2,1,2] => [[3,2,2,1],[1,1]]
=> [1,1]
=> 2
[[1,2,6],[3,4],[5]]
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 1
[[1,4,5],[2,6],[3]]
=> [1,1,3,1] => [[3,3,1,1],[2]]
=> [2]
=> 1
[[1,3,5],[2,6],[4]]
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> 1
[[1,2,5],[3,6],[4]]
=> [2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> [2,1,1]
=> 2
[[1,3,4],[2,6],[5]]
=> [1,3,2] => [[4,3,1],[2]]
=> [2]
=> 1
[[1,2,4],[3,6],[5]]
=> [2,2,2] => [[4,3,2],[2,1]]
=> [2,1]
=> 1
[[1,2,3],[4,6],[5]]
=> [3,1,2] => [[4,3,3],[2,2]]
=> [2,2]
=> 3
[[1,3,5],[2,4],[6]]
=> [1,2,2,1] => [[3,3,2,1],[2,1]]
=> [2,1]
=> 1
[[1,2,5],[3,4],[6]]
=> [2,3,1] => [[4,4,2],[3,1]]
=> [3,1]
=> 2
[[1,5,6],[2],[3],[4]]
=> [1,1,1,3] => [[3,1,1,1],[]]
=> []
=> ? ∊ {1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
[[1,4,6],[2],[3],[5]]
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> ? ∊ {1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
[[1,4],[2,5],[3,6]]
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> ? ∊ {1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
[[1,5],[2,6],[3],[4]]
=> [1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> [1]
=> ? ∊ {1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
[[1,4],[2,6],[3],[5]]
=> [1,1,2,2] => [[3,2,1,1],[1]]
=> [1]
=> ? ∊ {1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
[[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => [[2,1,1,1,1],[]]
=> []
=> ? ∊ {1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
[[1,5],[2],[3],[4],[6]]
=> [1,1,1,2,1] => [[2,2,1,1,1],[1]]
=> [1]
=> ? ∊ {1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
[[1],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,1] => [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {1,1,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5}
Description
The number of characters of the symmetric group whose value on the partition is positive.
Matching statistic: St000815
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000815: Integer partitions ⟶ ℤResult quality: 56% ●values known / values provided: 56%●distinct values known / distinct values provided: 67%
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000815: Integer partitions ⟶ ℤResult quality: 56% ●values known / values provided: 56%●distinct values known / distinct values provided: 67%
Values
[[1]]
=> [1] => [1]
=> []
=> ? = 1
[[1,2]]
=> [1,2] => [1,1]
=> [1]
=> ? ∊ {1,2}
[[1],[2]]
=> [2,1] => [2]
=> []
=> ? ∊ {1,2}
[[1,2,3]]
=> [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[[1,3],[2]]
=> [2,1,3] => [2,1]
=> [1]
=> ? ∊ {2,2,3}
[[1,2],[3]]
=> [3,1,2] => [3]
=> []
=> ? ∊ {2,2,3}
[[1],[2],[3]]
=> [3,2,1] => [2,1]
=> [1]
=> ? ∊ {2,2,3}
[[1,2,3,4]]
=> [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[[1,3,4],[2]]
=> [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[[1,2,4],[3]]
=> [3,1,2,4] => [3,1]
=> [1]
=> ? ∊ {2,3,3,3,4}
[[1,2,3],[4]]
=> [4,1,2,3] => [4]
=> []
=> ? ∊ {2,3,3,3,4}
[[1,3],[2,4]]
=> [2,4,1,3] => [4]
=> []
=> ? ∊ {2,3,3,3,4}
[[1,2],[3,4]]
=> [3,4,1,2] => [2,2]
=> [2]
=> 2
[[1,4],[2],[3]]
=> [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[[1,3],[2],[4]]
=> [4,2,1,3] => [3,1]
=> [1]
=> ? ∊ {2,3,3,3,4}
[[1,2],[3],[4]]
=> [4,3,1,2] => [4]
=> []
=> ? ∊ {2,3,3,3,4}
[[1],[2],[3],[4]]
=> [4,3,2,1] => [2,2]
=> [2]
=> 2
[[1,2,3,4,5]]
=> [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> 1
[[1,2,4,5],[3]]
=> [3,1,2,4,5] => [3,1,1]
=> [1,1]
=> 1
[[1,2,3,5],[4]]
=> [4,1,2,3,5] => [4,1]
=> [1]
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,5}
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => [5]
=> []
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,5}
[[1,3,5],[2,4]]
=> [2,4,1,3,5] => [4,1]
=> [1]
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,5}
[[1,2,5],[3,4]]
=> [3,4,1,2,5] => [2,2,1]
=> [2,1]
=> 3
[[1,3,4],[2,5]]
=> [2,5,1,3,4] => [5]
=> []
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,5}
[[1,2,4],[3,5]]
=> [3,5,1,2,4] => [3,2]
=> [2]
=> 2
[[1,2,3],[4,5]]
=> [4,5,1,2,3] => [5]
=> []
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,5}
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> 1
[[1,3,5],[2],[4]]
=> [4,2,1,3,5] => [3,1,1]
=> [1,1]
=> 1
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => [4,1]
=> [1]
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,5}
[[1,3,4],[2],[5]]
=> [5,2,1,3,4] => [4,1]
=> [1]
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,5}
[[1,2,4],[3],[5]]
=> [5,3,1,2,4] => [5]
=> []
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,5}
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [3,2]
=> [2]
=> 2
[[1,4],[2,5],[3]]
=> [3,2,5,1,4] => [4,1]
=> [1]
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,5}
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [2,2,1]
=> [2,1]
=> 3
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => [3,2]
=> [2]
=> 2
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => [4,1]
=> [1]
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,5}
[[1,2],[3,4],[5]]
=> [5,3,4,1,2] => [5]
=> []
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,5}
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => [2,2,1]
=> [2,1]
=> 3
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => [3,2]
=> [2]
=> 2
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [5]
=> []
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,5}
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [4,1]
=> [1]
=> ? ∊ {1,1,2,2,2,2,3,3,4,4,4,4,5}
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [2,2,1]
=> [2,1]
=> 3
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => [3,1,1,1]
=> [1,1,1]
=> 1
[[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => [4,1,1]
=> [1,1]
=> 1
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,3,5,6],[2,4]]
=> [2,4,1,3,5,6] => [4,1,1]
=> [1,1]
=> 1
[[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => [2,2,1,1]
=> [2,1,1]
=> 4
[[1,3,4,6],[2,5]]
=> [2,5,1,3,4,6] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => [3,2,1]
=> [2,1]
=> 3
[[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,3,4,5],[2,6]]
=> [2,6,1,3,4,5] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,2,4,5],[3,6]]
=> [3,6,1,2,4,5] => [4,2]
=> [2]
=> 2
[[1,2,3,5],[4,6]]
=> [4,6,1,2,3,5] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => [3,3]
=> [3]
=> 3
[[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[[1,3,5,6],[2],[4]]
=> [4,2,1,3,5,6] => [3,1,1,1]
=> [1,1,1]
=> 1
[[1,2,5,6],[3],[4]]
=> [4,3,1,2,5,6] => [4,1,1]
=> [1,1]
=> 1
[[1,3,4,6],[2],[5]]
=> [5,2,1,3,4,6] => [4,1,1]
=> [1,1]
=> 1
[[1,2,4,6],[3],[5]]
=> [5,3,1,2,4,6] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,2,3,6],[4],[5]]
=> [5,4,1,2,3,6] => [3,2,1]
=> [2,1]
=> 3
[[1,3,4,5],[2],[6]]
=> [6,2,1,3,4,5] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,2,3,5],[4],[6]]
=> [6,4,1,2,3,5] => [4,2]
=> [2]
=> 2
[[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => [3,3]
=> [3]
=> 3
[[1,2,5],[3,4,6]]
=> [3,4,6,1,2,5] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,3,4],[2,5,6]]
=> [2,5,6,1,3,4] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,2,4],[3,5,6]]
=> [3,5,6,1,2,4] => [4,2]
=> [2]
=> 2
[[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => [2,2,2]
=> [2,2]
=> 4
[[1,4,6],[2,5],[3]]
=> [3,2,5,1,4,6] => [4,1,1]
=> [1,1]
=> 1
[[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => [2,2,1,1]
=> [2,1,1]
=> 4
[[1,2,6],[3,5],[4]]
=> [4,3,5,1,2,6] => [3,2,1]
=> [2,1]
=> 3
[[1,3,6],[2,4],[5]]
=> [5,2,4,1,3,6] => [4,1,1]
=> [1,1]
=> 1
[[1,2,6],[3,4],[5]]
=> [5,3,4,1,2,6] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,4,5],[2,6],[3]]
=> [3,2,6,1,4,5] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,3,5],[2,6],[4]]
=> [4,2,6,1,3,5] => [3,2,1]
=> [2,1]
=> 3
[[1,2,5],[3,6],[4]]
=> [4,3,6,1,2,5] => [4,2]
=> [2]
=> 2
[[1,3,4],[2,6],[5]]
=> [5,2,6,1,3,4] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,2,4],[3,6],[5]]
=> [5,3,6,1,2,4] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,2,3],[4,6],[5]]
=> [5,4,6,1,2,3] => [4,2]
=> [2]
=> 2
[[1,3,5],[2,4],[6]]
=> [6,2,4,1,3,5] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,2,5],[3,4],[6]]
=> [6,3,4,1,2,5] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,3,4],[2,5],[6]]
=> [6,2,5,1,3,4] => [3,2,1]
=> [2,1]
=> 3
[[1,2,4],[3,5],[6]]
=> [6,3,5,1,2,4] => [3,3]
=> [3]
=> 3
[[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => [2,2,1,1]
=> [2,1,1]
=> 4
[[1,4,6],[2],[3],[5]]
=> [5,3,2,1,4,6] => [3,2,1]
=> [2,1]
=> 3
[[1,3,6],[2],[4],[5]]
=> [5,4,2,1,3,6] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,2,6],[3],[4],[5]]
=> [5,4,3,1,2,6] => [4,1,1]
=> [1,1]
=> 1
[[1,4,5],[2],[3],[6]]
=> [6,3,2,1,4,5] => [4,2]
=> [2]
=> 2
[[1,3,5],[2],[4],[6]]
=> [6,4,2,1,3,5] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,2,5],[3],[4],[6]]
=> [6,4,3,1,2,5] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,4],[2,5],[3,6]]
=> [3,6,2,5,1,4] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,2],[3,5],[4],[6]]
=> [6,4,3,5,1,2] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
[[1,3],[2,4],[5],[6]]
=> [6,5,2,4,1,3] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,4,4,5,5,5,5,5,6}
Description
The number of semistandard Young tableaux of partition weight of given shape.
The weight of a semistandard Young tableaux is the sequence (m1,m2,…), where mi is the number of occurrences of the number i in the tableau. This statistic counts those tableaux whose weight is a weakly decreasing sequence.
Alternatively, this is the sum of the entries in the column specified by the partition of the change of basis matrix from Schur functions to monomial symmetric functions.
Matching statistic: St000937
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000937: Integer partitions ⟶ ℤResult quality: 56% ●values known / values provided: 56%●distinct values known / distinct values provided: 67%
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000937: Integer partitions ⟶ ℤResult quality: 56% ●values known / values provided: 56%●distinct values known / distinct values provided: 67%
Values
[[1]]
=> [1] => [1]
=> []
=> ? = 1
[[1,2]]
=> [1,2] => [1,1]
=> [1]
=> ? ∊ {1,2}
[[1],[2]]
=> [2,1] => [2]
=> []
=> ? ∊ {1,2}
[[1,2,3]]
=> [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[[1,3],[2]]
=> [2,1,3] => [2,1]
=> [1]
=> ? ∊ {2,2,3}
[[1,2],[3]]
=> [3,1,2] => [3]
=> []
=> ? ∊ {2,2,3}
[[1],[2],[3]]
=> [3,2,1] => [2,1]
=> [1]
=> ? ∊ {2,2,3}
[[1,2,3,4]]
=> [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 2
[[1,3,4],[2]]
=> [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[[1,2,4],[3]]
=> [3,1,2,4] => [3,1]
=> [1]
=> ? ∊ {1,3,3,3,4}
[[1,2,3],[4]]
=> [4,1,2,3] => [4]
=> []
=> ? ∊ {1,3,3,3,4}
[[1,3],[2,4]]
=> [2,4,1,3] => [4]
=> []
=> ? ∊ {1,3,3,3,4}
[[1,2],[3,4]]
=> [3,4,1,2] => [2,2]
=> [2]
=> 2
[[1,4],[2],[3]]
=> [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[[1,3],[2],[4]]
=> [4,2,1,3] => [3,1]
=> [1]
=> ? ∊ {1,3,3,3,4}
[[1,2],[3],[4]]
=> [4,3,1,2] => [4]
=> []
=> ? ∊ {1,3,3,3,4}
[[1],[2],[3],[4]]
=> [4,3,2,1] => [2,2]
=> [2]
=> 2
[[1,2,3,4,5]]
=> [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 3
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[[1,2,4,5],[3]]
=> [3,1,2,4,5] => [3,1,1]
=> [1,1]
=> 1
[[1,2,3,5],[4]]
=> [4,1,2,3,5] => [4,1]
=> [1]
=> ? ∊ {1,2,2,3,3,3,3,3,4,4,4,4,5}
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => [5]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,4,4,4,4,5}
[[1,3,5],[2,4]]
=> [2,4,1,3,5] => [4,1]
=> [1]
=> ? ∊ {1,2,2,3,3,3,3,3,4,4,4,4,5}
[[1,2,5],[3,4]]
=> [3,4,1,2,5] => [2,2,1]
=> [2,1]
=> 1
[[1,3,4],[2,5]]
=> [2,5,1,3,4] => [5]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,4,4,4,4,5}
[[1,2,4],[3,5]]
=> [3,5,1,2,4] => [3,2]
=> [2]
=> 2
[[1,2,3],[4,5]]
=> [4,5,1,2,3] => [5]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,4,4,4,4,5}
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> 2
[[1,3,5],[2],[4]]
=> [4,2,1,3,5] => [3,1,1]
=> [1,1]
=> 1
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => [4,1]
=> [1]
=> ? ∊ {1,2,2,3,3,3,3,3,4,4,4,4,5}
[[1,3,4],[2],[5]]
=> [5,2,1,3,4] => [4,1]
=> [1]
=> ? ∊ {1,2,2,3,3,3,3,3,4,4,4,4,5}
[[1,2,4],[3],[5]]
=> [5,3,1,2,4] => [5]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,4,4,4,4,5}
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [3,2]
=> [2]
=> 2
[[1,4],[2,5],[3]]
=> [3,2,5,1,4] => [4,1]
=> [1]
=> ? ∊ {1,2,2,3,3,3,3,3,4,4,4,4,5}
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [2,2,1]
=> [2,1]
=> 1
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => [3,2]
=> [2]
=> 2
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => [4,1]
=> [1]
=> ? ∊ {1,2,2,3,3,3,3,3,4,4,4,4,5}
[[1,2],[3,4],[5]]
=> [5,3,4,1,2] => [5]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,4,4,4,4,5}
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => [2,2,1]
=> [2,1]
=> 1
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => [3,2]
=> [2]
=> 2
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [5]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,4,4,4,4,5}
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [4,1]
=> [1]
=> ? ∊ {1,2,2,3,3,3,3,3,4,4,4,4,5}
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [2,2,1]
=> [2,1]
=> 1
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 4
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> 3
[[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => [3,1,1,1]
=> [1,1,1]
=> 2
[[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => [4,1,1]
=> [1,1]
=> 1
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [6]
=> []
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,3,5,6],[2,4]]
=> [2,4,1,3,5,6] => [4,1,1]
=> [1,1]
=> 1
[[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => [2,2,1,1]
=> [2,1,1]
=> 2
[[1,3,4,6],[2,5]]
=> [2,5,1,3,4,6] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => [3,2,1]
=> [2,1]
=> 1
[[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,3,4,5],[2,6]]
=> [2,6,1,3,4,5] => [6]
=> []
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,2,4,5],[3,6]]
=> [3,6,1,2,4,5] => [4,2]
=> [2]
=> 2
[[1,2,3,5],[4,6]]
=> [4,6,1,2,3,5] => [6]
=> []
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => [3,3]
=> [3]
=> 3
[[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> 3
[[1,3,5,6],[2],[4]]
=> [4,2,1,3,5,6] => [3,1,1,1]
=> [1,1,1]
=> 2
[[1,2,5,6],[3],[4]]
=> [4,3,1,2,5,6] => [4,1,1]
=> [1,1]
=> 1
[[1,3,4,6],[2],[5]]
=> [5,2,1,3,4,6] => [4,1,1]
=> [1,1]
=> 1
[[1,2,4,6],[3],[5]]
=> [5,3,1,2,4,6] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,2,3,6],[4],[5]]
=> [5,4,1,2,3,6] => [3,2,1]
=> [2,1]
=> 1
[[1,3,4,5],[2],[6]]
=> [6,2,1,3,4,5] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => [6]
=> []
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,2,3,5],[4],[6]]
=> [6,4,1,2,3,5] => [4,2]
=> [2]
=> 2
[[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => [6]
=> []
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => [3,3]
=> [3]
=> 3
[[1,2,5],[3,4,6]]
=> [3,4,6,1,2,5] => [6]
=> []
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,3,4],[2,5,6]]
=> [2,5,6,1,3,4] => [6]
=> []
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,2,4],[3,5,6]]
=> [3,5,6,1,2,4] => [4,2]
=> [2]
=> 2
[[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => [2,2,2]
=> [2,2]
=> 2
[[1,4,6],[2,5],[3]]
=> [3,2,5,1,4,6] => [4,1,1]
=> [1,1]
=> 1
[[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => [2,2,1,1]
=> [2,1,1]
=> 2
[[1,2,6],[3,5],[4]]
=> [4,3,5,1,2,6] => [3,2,1]
=> [2,1]
=> 1
[[1,3,6],[2,4],[5]]
=> [5,2,4,1,3,6] => [4,1,1]
=> [1,1]
=> 1
[[1,2,6],[3,4],[5]]
=> [5,3,4,1,2,6] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,4,5],[2,6],[3]]
=> [3,2,6,1,4,5] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,3,5],[2,6],[4]]
=> [4,2,6,1,3,5] => [3,2,1]
=> [2,1]
=> 1
[[1,2,5],[3,6],[4]]
=> [4,3,6,1,2,5] => [4,2]
=> [2]
=> 2
[[1,3,4],[2,6],[5]]
=> [5,2,6,1,3,4] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,2,4],[3,6],[5]]
=> [5,3,6,1,2,4] => [6]
=> []
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,2,3],[4,6],[5]]
=> [5,4,6,1,2,3] => [4,2]
=> [2]
=> 2
[[1,3,5],[2,4],[6]]
=> [6,2,4,1,3,5] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,2,5],[3,4],[6]]
=> [6,3,4,1,2,5] => [6]
=> []
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,3,4],[2,5],[6]]
=> [6,2,5,1,3,4] => [3,2,1]
=> [2,1]
=> 1
[[1,2,4],[3,5],[6]]
=> [6,3,5,1,2,4] => [3,3]
=> [3]
=> 3
[[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => [6]
=> []
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => [2,2,1,1]
=> [2,1,1]
=> 2
[[1,4,6],[2],[3],[5]]
=> [5,3,2,1,4,6] => [3,2,1]
=> [2,1]
=> 1
[[1,3,6],[2],[4],[5]]
=> [5,4,2,1,3,6] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,2,6],[3],[4],[5]]
=> [5,4,3,1,2,6] => [4,1,1]
=> [1,1]
=> 1
[[1,4,5],[2],[3],[6]]
=> [6,3,2,1,4,5] => [4,2]
=> [2]
=> 2
[[1,3,5],[2],[4],[6]]
=> [6,4,2,1,3,5] => [6]
=> []
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,2,5],[3],[4],[6]]
=> [6,4,3,1,2,5] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,4],[2,5],[3,6]]
=> [3,6,2,5,1,4] => [6]
=> []
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => [6]
=> []
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,2],[3,5],[4],[6]]
=> [6,4,3,5,1,2] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
[[1,3],[2,4],[5],[6]]
=> [6,5,2,4,1,3] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,6}
Description
The number of positive values of the symmetric group character corresponding to the partition.
For example, the character values of the irreducible representation S(2,2) are 2 on the conjugacy classes (4) and (2,2), 0 on the conjugacy classes (3,1) and (1,1,1,1), and −1 on the conjugacy class (2,1,1). Therefore, the statistic on the partition (2,2) is 2.
Matching statistic: St000454
(load all 29 compositions to match this statistic)
(load all 29 compositions to match this statistic)
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 53% ●values known / values provided: 53%●distinct values known / distinct values provided: 100%
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 53% ●values known / values provided: 53%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1] => [1] => ([],1)
=> 0 = 1 - 1
[[1,2]]
=> [1,2] => [2] => ([],2)
=> 0 = 1 - 1
[[1],[2]]
=> [2,1] => [1,1] => ([(0,1)],2)
=> 1 = 2 - 1
[[1,2,3]]
=> [1,2,3] => [3] => ([],3)
=> 0 = 1 - 1
[[1,3],[2]]
=> [2,1,3] => [1,2] => ([(1,2)],3)
=> 1 = 2 - 1
[[1,2],[3]]
=> [3,1,2] => [1,2] => ([(1,2)],3)
=> 1 = 2 - 1
[[1],[2],[3]]
=> [3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[[1,2,3,4]]
=> [1,2,3,4] => [4] => ([],4)
=> 0 = 1 - 1
[[1,3,4],[2]]
=> [2,1,3,4] => [1,3] => ([(2,3)],4)
=> 1 = 2 - 1
[[1,2,4],[3]]
=> [3,1,2,4] => [1,3] => ([(2,3)],4)
=> 1 = 2 - 1
[[1,2,3],[4]]
=> [4,1,2,3] => [1,3] => ([(2,3)],4)
=> 1 = 2 - 1
[[1,3],[2,4]]
=> [2,4,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1} - 1
[[1,2],[3,4]]
=> [3,4,1,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1} - 1
[[1,4],[2],[3]]
=> [3,2,1,4] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[[1,3],[2],[4]]
=> [4,2,1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[[1,2],[3],[4]]
=> [4,3,1,2] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[[1],[2],[3],[4]]
=> [4,3,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[[1,2,3,4,5]]
=> [1,2,3,4,5] => [5] => ([],5)
=> 0 = 1 - 1
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => [1,4] => ([(3,4)],5)
=> 1 = 2 - 1
[[1,2,4,5],[3]]
=> [3,1,2,4,5] => [1,4] => ([(3,4)],5)
=> 1 = 2 - 1
[[1,2,3,5],[4]]
=> [4,1,2,3,5] => [1,4] => ([(3,4)],5)
=> 1 = 2 - 1
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => [1,4] => ([(3,4)],5)
=> 1 = 2 - 1
[[1,3,5],[2,4]]
=> [2,4,1,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,2,5],[3,4]]
=> [3,4,1,2,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,3,4],[2,5]]
=> [2,5,1,3,4] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,2,4],[3,5]]
=> [3,5,1,2,4] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,2,3],[4,5]]
=> [4,5,1,2,3] => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[[1,3,5],[2],[4]]
=> [4,2,1,3,5] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[[1,3,4],[2],[5]]
=> [5,2,1,3,4] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[[1,2,4],[3],[5]]
=> [5,3,1,2,4] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[[1,4],[2,5],[3]]
=> [3,2,5,1,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,2],[3,4],[5]]
=> [5,3,4,1,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [6] => ([],6)
=> 0 = 1 - 1
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => [1,5] => ([(4,5)],6)
=> 1 = 2 - 1
[[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => [1,5] => ([(4,5)],6)
=> 1 = 2 - 1
[[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => [1,5] => ([(4,5)],6)
=> 1 = 2 - 1
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => [1,5] => ([(4,5)],6)
=> 1 = 2 - 1
[[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [1,5] => ([(4,5)],6)
=> 1 = 2 - 1
[[1,3,5,6],[2,4]]
=> [2,4,1,3,5,6] => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3,4,6],[2,5]]
=> [2,5,1,3,4,6] => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3,4,5],[2,6]]
=> [2,6,1,3,4,5] => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,4,5],[3,6]]
=> [3,6,1,2,4,5] => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,3,5],[4,6]]
=> [4,6,1,2,3,5] => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[1,3,5,6],[2],[4]]
=> [4,2,1,3,5,6] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[1,2,5,6],[3],[4]]
=> [4,3,1,2,5,6] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[1,3,4,6],[2],[5]]
=> [5,2,1,3,4,6] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[1,2,4,6],[3],[5]]
=> [5,3,1,2,4,6] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[1,2,3,6],[4],[5]]
=> [5,4,1,2,3,6] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[1,3,4,5],[2],[6]]
=> [6,2,1,3,4,5] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[1,2,3,5],[4],[6]]
=> [6,4,1,2,3,5] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,5],[3,4,6]]
=> [3,4,6,1,2,5] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3,4],[2,5,6]]
=> [2,5,6,1,3,4] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,4],[3,5,6]]
=> [3,5,6,1,2,4] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,4,6],[2,5],[3]]
=> [3,2,5,1,4,6] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,6],[3,5],[4]]
=> [4,3,5,1,2,6] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3,6],[2,4],[5]]
=> [5,2,4,1,3,6] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,6],[3,4],[5]]
=> [5,3,4,1,2,6] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,4,5],[2,6],[3]]
=> [3,2,6,1,4,5] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3,5],[2,6],[4]]
=> [4,2,6,1,3,5] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,5],[3,6],[4]]
=> [4,3,6,1,2,5] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3,4],[2,6],[5]]
=> [5,2,6,1,3,4] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,4],[3,6],[5]]
=> [5,3,6,1,2,4] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,3],[4,6],[5]]
=> [5,4,6,1,2,3] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3,5],[2,4],[6]]
=> [6,2,4,1,3,5] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,5],[3,4],[6]]
=> [6,3,4,1,2,5] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3,4],[2,5],[6]]
=> [6,2,5,1,3,4] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,4],[3,5],[6]]
=> [6,3,5,1,2,4] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[[1,4,6],[2],[3],[5]]
=> [5,3,2,1,4,6] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[[1,3,6],[2],[4],[5]]
=> [5,4,2,1,3,6] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[[1,4],[2,5],[3,6]]
=> [3,6,2,5,1,4] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3],[2,5],[4,6]]
=> [4,6,2,5,1,3] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2],[3,5],[4,6]]
=> [4,6,3,5,1,2] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3],[2,4],[5,6]]
=> [5,6,2,4,1,3] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,5],[2,6],[3],[4]]
=> [4,3,2,6,1,5] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3],[2,6],[4],[5]]
=> [5,4,2,6,1,3] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
Description
The largest eigenvalue of a graph if it is integral.
If a graph is d-regular, then its largest eigenvalue equals d. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St001232
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00083: Standard tableaux —shape⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 53% ●values known / values provided: 53%●distinct values known / distinct values provided: 100%
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 53% ●values known / values provided: 53%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1]
=> [1,0]
=> [1,0]
=> 0 = 1 - 1
[[1,2]]
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0 = 1 - 1
[[1],[2]]
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1 = 2 - 1
[[1,2,3]]
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0 = 1 - 1
[[1,3],[2]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1 = 2 - 1
[[1,2],[3]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1 = 2 - 1
[[1],[2],[3]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 2 = 3 - 1
[[1,2,3,4]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[[1,3,4],[2]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[[1,2,4],[3]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[[1,2,3],[4]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[[1,3],[2,4]]
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {1,1} - 1
[[1,2],[3,4]]
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? ∊ {1,1} - 1
[[1,4],[2],[3]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[[1,3],[2],[4]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[[1,2],[3],[4]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[[1],[2],[3],[4]]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 4 - 1
[[1,2,3,4,5]]
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
[[1,3,4,5],[2]]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
[[1,2,4,5],[3]]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
[[1,2,3,5],[4]]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
[[1,2,3,4],[5]]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
[[1,3,5],[2,4]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,2,5],[3,4]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,3,4],[2,5]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,2,4],[3,5]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,2,3],[4,5]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,4,5],[2],[3]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 3 - 1
[[1,3,5],[2],[4]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 3 - 1
[[1,2,5],[3],[4]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 3 - 1
[[1,3,4],[2],[5]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 3 - 1
[[1,2,4],[3],[5]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 3 - 1
[[1,2,3],[4],[5]]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 3 - 1
[[1,4],[2,5],[3]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,3],[2,5],[4]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,2],[3,5],[4]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,3],[2,4],[5]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,2],[3,4],[5]]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2} - 1
[[1,5],[2],[3],[4]]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 4 - 1
[[1,4],[2],[3],[5]]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 4 - 1
[[1,3],[2],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 4 - 1
[[1,2],[3],[4],[5]]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 4 - 1
[[1],[2],[3],[4],[5]]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 5 - 1
[[1,2,3,4,5,6]]
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0 = 1 - 1
[[1,3,4,5,6],[2]]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
[[1,2,4,5,6],[3]]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
[[1,2,3,5,6],[4]]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
[[1,2,3,4,6],[5]]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
[[1,2,3,4,5],[6]]
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
[[1,3,5,6],[2,4]]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,5,6],[3,4]]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3,4,6],[2,5]]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,4,6],[3,5]]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,3,6],[4,5]]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3,4,5],[2,6]]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,4,5],[3,6]]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,3,5],[4,6]]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,3,4],[5,6]]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,4,5,6],[2],[3]]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 3 - 1
[[1,3,5,6],[2],[4]]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 3 - 1
[[1,2,5,6],[3],[4]]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 3 - 1
[[1,3,4,6],[2],[5]]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 3 - 1
[[1,2,4,6],[3],[5]]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 3 - 1
[[1,2,3,6],[4],[5]]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 3 - 1
[[1,3,4,5],[2],[6]]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 3 - 1
[[1,2,4,5],[3],[6]]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 3 - 1
[[1,2,3,5],[4],[6]]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 3 - 1
[[1,2,3,4],[5],[6]]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2 = 3 - 1
[[1,3,5],[2,4,6]]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,5],[3,4,6]]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3,4],[2,5,6]]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,4],[3,5,6]]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,3],[4,5,6]]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,4,6],[2,5],[3]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3,6],[2,5],[4]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,6],[3,5],[4]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3,6],[2,4],[5]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,6],[3,4],[5]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,4,5],[2,6],[3]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3,5],[2,6],[4]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,5],[3,6],[4]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3,4],[2,6],[5]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,4],[3,6],[5]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,3],[4,6],[5]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3,5],[2,4],[6]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,5],[3,4],[6]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3,4],[2,5],[6]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,4],[3,5],[6]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2,3],[4,5],[6]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,5,6],[2],[3],[4]]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3 = 4 - 1
[[1,4,6],[2],[3],[5]]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3 = 4 - 1
[[1,3,6],[2],[4],[5]]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3 = 4 - 1
[[1,4],[2,5],[3,6]]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3],[2,5],[4,6]]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2],[3,5],[4,6]]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3],[2,4],[5,6]]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,2],[3,4],[5,6]]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,5],[2,6],[3],[4]]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,4],[2,6],[3],[5]]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
[[1,3],[2,6],[4],[5]]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3} - 1
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Matching statistic: St001605
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00083: Standard tableaux —shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00313: Integer partitions —Glaisher-Franklin inverse⟶ Integer partitions
St001605: Integer partitions ⟶ ℤResult quality: 52% ●values known / values provided: 52%●distinct values known / distinct values provided: 67%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00313: Integer partitions —Glaisher-Franklin inverse⟶ Integer partitions
St001605: Integer partitions ⟶ ℤResult quality: 52% ●values known / values provided: 52%●distinct values known / distinct values provided: 67%
Values
[[1]]
=> [1]
=> []
=> ?
=> ? = 1
[[1,2]]
=> [2]
=> []
=> ?
=> ? ∊ {1,2}
[[1],[2]]
=> [1,1]
=> [1]
=> [1]
=> ? ∊ {1,2}
[[1,2,3]]
=> [3]
=> []
=> ?
=> ? ∊ {1,2,2,3}
[[1,3],[2]]
=> [2,1]
=> [1]
=> [1]
=> ? ∊ {1,2,2,3}
[[1,2],[3]]
=> [2,1]
=> [1]
=> [1]
=> ? ∊ {1,2,2,3}
[[1],[2],[3]]
=> [1,1,1]
=> [1,1]
=> [2]
=> ? ∊ {1,2,2,3}
[[1,2,3,4]]
=> [4]
=> []
=> ?
=> ? ∊ {1,1,2,2,2,3,3,3,4}
[[1,3,4],[2]]
=> [3,1]
=> [1]
=> [1]
=> ? ∊ {1,1,2,2,2,3,3,3,4}
[[1,2,4],[3]]
=> [3,1]
=> [1]
=> [1]
=> ? ∊ {1,1,2,2,2,3,3,3,4}
[[1,2,3],[4]]
=> [3,1]
=> [1]
=> [1]
=> ? ∊ {1,1,2,2,2,3,3,3,4}
[[1,3],[2,4]]
=> [2,2]
=> [2]
=> [1,1]
=> ? ∊ {1,1,2,2,2,3,3,3,4}
[[1,2],[3,4]]
=> [2,2]
=> [2]
=> [1,1]
=> ? ∊ {1,1,2,2,2,3,3,3,4}
[[1,4],[2],[3]]
=> [2,1,1]
=> [1,1]
=> [2]
=> ? ∊ {1,1,2,2,2,3,3,3,4}
[[1,3],[2],[4]]
=> [2,1,1]
=> [1,1]
=> [2]
=> ? ∊ {1,1,2,2,2,3,3,3,4}
[[1,2],[3],[4]]
=> [2,1,1]
=> [1,1]
=> [2]
=> ? ∊ {1,1,2,2,2,3,3,3,4}
[[1],[2],[3],[4]]
=> [1,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[[1,2,3,4,5]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,4,4,5}
[[1,3,4,5],[2]]
=> [4,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,4,4,5}
[[1,2,4,5],[3]]
=> [4,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,4,4,5}
[[1,2,3,5],[4]]
=> [4,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,4,4,5}
[[1,2,3,4],[5]]
=> [4,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,4,4,5}
[[1,3,5],[2,4]]
=> [3,2]
=> [2]
=> [1,1]
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,4,4,5}
[[1,2,5],[3,4]]
=> [3,2]
=> [2]
=> [1,1]
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,4,4,5}
[[1,3,4],[2,5]]
=> [3,2]
=> [2]
=> [1,1]
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,4,4,5}
[[1,2,4],[3,5]]
=> [3,2]
=> [2]
=> [1,1]
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,4,4,5}
[[1,2,3],[4,5]]
=> [3,2]
=> [2]
=> [1,1]
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,4,4,5}
[[1,4,5],[2],[3]]
=> [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,4,4,5}
[[1,3,5],[2],[4]]
=> [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,4,4,5}
[[1,2,5],[3],[4]]
=> [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,4,4,5}
[[1,3,4],[2],[5]]
=> [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,4,4,5}
[[1,2,4],[3],[5]]
=> [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,4,4,5}
[[1,2,3],[4],[5]]
=> [3,1,1]
=> [1,1]
=> [2]
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,4,4,5}
[[1,4],[2,5],[3]]
=> [2,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,3],[2,5],[4]]
=> [2,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,2],[3,5],[4]]
=> [2,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,3],[2,4],[5]]
=> [2,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,2],[3,4],[5]]
=> [2,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,5],[2],[3],[4]]
=> [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[[1,4],[2],[3],[5]]
=> [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[[1,3],[2],[4],[5]]
=> [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[[1,2],[3],[4],[5]]
=> [2,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[[1],[2],[3],[4],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [2,2]
=> 2
[[1,2,3,4,5,6]]
=> [6]
=> []
=> ?
=> ? ∊ {1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5}
[[1,3,4,5,6],[2]]
=> [5,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5}
[[1,2,4,5,6],[3]]
=> [5,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5}
[[1,2,3,5,6],[4]]
=> [5,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5}
[[1,2,3,4,6],[5]]
=> [5,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5}
[[1,2,3,4,5],[6]]
=> [5,1]
=> [1]
=> [1]
=> ? ∊ {1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5}
[[1,3,5,6],[2,4]]
=> [4,2]
=> [2]
=> [1,1]
=> ? ∊ {1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5}
[[1,2,5,6],[3,4]]
=> [4,2]
=> [2]
=> [1,1]
=> ? ∊ {1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5}
[[1,3,4,6],[2,5]]
=> [4,2]
=> [2]
=> [1,1]
=> ? ∊ {1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5}
[[1,2,4,6],[3,5]]
=> [4,2]
=> [2]
=> [1,1]
=> ? ∊ {1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5}
[[1,2,3,6],[4,5]]
=> [4,2]
=> [2]
=> [1,1]
=> ? ∊ {1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5}
[[1,3,4,5],[2,6]]
=> [4,2]
=> [2]
=> [1,1]
=> ? ∊ {1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5}
[[1,2,4,5],[3,6]]
=> [4,2]
=> [2]
=> [1,1]
=> ? ∊ {1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5}
[[1,2,3,5],[4,6]]
=> [4,2]
=> [2]
=> [1,1]
=> ? ∊ {1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5}
[[1,2,3,4],[5,6]]
=> [4,2]
=> [2]
=> [1,1]
=> ? ∊ {1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5}
[[1,4,5,6],[2],[3]]
=> [4,1,1]
=> [1,1]
=> [2]
=> ? ∊ {1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5}
[[1,3,5,6],[2],[4]]
=> [4,1,1]
=> [1,1]
=> [2]
=> ? ∊ {1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5}
[[1,2,5,6],[3],[4]]
=> [4,1,1]
=> [1,1]
=> [2]
=> ? ∊ {1,1,1,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5}
[[1,3,5],[2,4,6]]
=> [3,3]
=> [3]
=> [3]
=> 1
[[1,2,5],[3,4,6]]
=> [3,3]
=> [3]
=> [3]
=> 1
[[1,3,4],[2,5,6]]
=> [3,3]
=> [3]
=> [3]
=> 1
[[1,2,4],[3,5,6]]
=> [3,3]
=> [3]
=> [3]
=> 1
[[1,2,3],[4,5,6]]
=> [3,3]
=> [3]
=> [3]
=> 1
[[1,4,6],[2,5],[3]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,3,6],[2,5],[4]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,2,6],[3,5],[4]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,3,6],[2,4],[5]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,2,6],[3,4],[5]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,4,5],[2,6],[3]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,3,5],[2,6],[4]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,2,5],[3,6],[4]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,3,4],[2,6],[5]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,2,4],[3,6],[5]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,2,3],[4,6],[5]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,3,5],[2,4],[6]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,2,5],[3,4],[6]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,3,4],[2,5],[6]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,2,4],[3,5],[6]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,2,3],[4,5],[6]]
=> [3,2,1]
=> [2,1]
=> [1,1,1]
=> 2
[[1,5,6],[2],[3],[4]]
=> [3,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[[1,4,6],[2],[3],[5]]
=> [3,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[[1,3,6],[2],[4],[5]]
=> [3,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[[1,2,6],[3],[4],[5]]
=> [3,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[[1,4,5],[2],[3],[6]]
=> [3,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[[1,3,5],[2],[4],[6]]
=> [3,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[[1,2,5],[3],[4],[6]]
=> [3,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[[1,3,4],[2],[5],[6]]
=> [3,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[[1,2,4],[3],[5],[6]]
=> [3,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[[1,2,3],[4],[5],[6]]
=> [3,1,1,1]
=> [1,1,1]
=> [2,1]
=> 1
[[1,4],[2,5],[3,6]]
=> [2,2,2]
=> [2,2]
=> [4]
=> 1
[[1,3],[2,5],[4,6]]
=> [2,2,2]
=> [2,2]
=> [4]
=> 1
[[1,2],[3,5],[4,6]]
=> [2,2,2]
=> [2,2]
=> [4]
=> 1
[[1,3],[2,4],[5,6]]
=> [2,2,2]
=> [2,2]
=> [4]
=> 1
[[1,2],[3,4],[5,6]]
=> [2,2,2]
=> [2,2]
=> [4]
=> 1
[[1,5],[2,6],[3],[4]]
=> [2,2,1,1]
=> [2,1,1]
=> [2,1,1]
=> 3
[[1,4],[2,6],[3],[5]]
=> [2,2,1,1]
=> [2,1,1]
=> [2,1,1]
=> 3
[[1,3],[2,6],[4],[5]]
=> [2,2,1,1]
=> [2,1,1]
=> [2,1,1]
=> 3
Description
The number of colourings of a cycle such that the multiplicities of colours are given by a partition.
Two colourings are considered equal, if they are obtained by an action of the cyclic group.
This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
The following 30 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001060The distinguishing index of a graph. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St000456The monochromatic index of a connected graph. St000993The multiplicity of the largest part of an integer partition. St001330The hat guessing number of a graph. St001889The size of the connectivity set of a signed permutation. St001720The minimal length of a chain of small intervals in a lattice. St001200The number of simple modules in eAe with projective dimension at most 2 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St000455The second largest eigenvalue of a graph if it is integral. St000259The diameter of a connected graph. St000260The radius of a connected graph. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St000942The number of critical left to right maxima of the parking functions. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St001904The length of the initial strictly increasing segment of a parking function. St000264The girth of a graph, which is not a tree. St001621The number of atoms of a lattice. St001624The breadth of a lattice. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001626The number of maximal proper sublattices of a lattice. St001877Number of indecomposable injective modules with projective dimension 2.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!