Your data matches 54 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00075: Semistandard tableaux reading word permutationPermutations
St000060: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1,2]]
=> [1,2] => 1
[[2,2]]
=> [1,2] => 1
[[1],[2]]
=> [2,1] => 1
[[1,3]]
=> [1,2] => 1
[[2,3]]
=> [1,2] => 1
[[3,3]]
=> [1,2] => 1
[[1],[3]]
=> [2,1] => 1
[[2],[3]]
=> [2,1] => 1
[[1,1,2]]
=> [1,2,3] => 2
[[1,2,2]]
=> [1,2,3] => 2
[[2,2,2]]
=> [1,2,3] => 2
[[1,1],[2]]
=> [3,1,2] => 1
[[1,2],[2]]
=> [2,1,3] => 1
[[1,4]]
=> [1,2] => 1
[[2,4]]
=> [1,2] => 1
[[3,4]]
=> [1,2] => 1
[[4,4]]
=> [1,2] => 1
[[1],[4]]
=> [2,1] => 1
[[2],[4]]
=> [2,1] => 1
[[3],[4]]
=> [2,1] => 1
[[1,1,3]]
=> [1,2,3] => 2
[[1,2,3]]
=> [1,2,3] => 2
[[1,3,3]]
=> [1,2,3] => 2
[[2,2,3]]
=> [1,2,3] => 2
[[2,3,3]]
=> [1,2,3] => 2
[[3,3,3]]
=> [1,2,3] => 2
[[1,1],[3]]
=> [3,1,2] => 1
[[1,2],[3]]
=> [3,1,2] => 1
[[1,3],[2]]
=> [2,1,3] => 1
[[1,3],[3]]
=> [2,1,3] => 1
[[2,2],[3]]
=> [3,1,2] => 1
[[2,3],[3]]
=> [2,1,3] => 1
[[1],[2],[3]]
=> [3,2,1] => 2
[[1,1,1,2]]
=> [1,2,3,4] => 3
[[1,1,2,2]]
=> [1,2,3,4] => 3
[[1,2,2,2]]
=> [1,2,3,4] => 3
[[2,2,2,2]]
=> [1,2,3,4] => 3
[[1,1,1],[2]]
=> [4,1,2,3] => 1
[[1,1,2],[2]]
=> [3,1,2,4] => 2
[[1,2,2],[2]]
=> [2,1,3,4] => 3
[[1,1],[2,2]]
=> [3,4,1,2] => 3
[[1,5]]
=> [1,2] => 1
[[2,5]]
=> [1,2] => 1
[[3,5]]
=> [1,2] => 1
[[4,5]]
=> [1,2] => 1
[[5,5]]
=> [1,2] => 1
[[1],[5]]
=> [2,1] => 1
[[2],[5]]
=> [2,1] => 1
[[3],[5]]
=> [2,1] => 1
[[4],[5]]
=> [2,1] => 1
Description
The greater neighbor of the maximum. Han [2] showed that this statistic is (up to a shift) equidistributed on zigzag permutations (permutations $\pi$ such that $\pi(1) < \pi(2) > \pi(3) \cdots$) with the smallest path leaf label of the binary tree associated to a permutation ([[St000724]]), see also [3].
Mp00075: Semistandard tableaux reading word permutationPermutations
Mp00159: Permutations Demazure product with inversePermutations
Mp00160: Permutations graph of inversionsGraphs
St000771: Graphs ⟶ ℤResult quality: 42% values known / values provided: 42%distinct values known / distinct values provided: 100%
Values
[[1,2]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,1}
[[2,2]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,1}
[[1],[2]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[[1,3]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,1,1}
[[2,3]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,1,1}
[[3,3]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,1,1}
[[1],[3]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[[2],[3]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[[1,1,2]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,2,2}
[[1,2,2]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,2,2}
[[2,2,2]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,2,2}
[[1,1],[2]]
=> [3,1,2] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,2],[2]]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {1,1,2,2}
[[1,4]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,1,1,1}
[[2,4]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,1,1,1}
[[3,4]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,1,1,1}
[[4,4]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,1,1,1}
[[1],[4]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[[2],[4]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[[3],[4]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[[1,1,3]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2}
[[1,2,3]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2}
[[1,3,3]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2}
[[2,2,3]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2}
[[2,3,3]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2}
[[3,3,3]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2}
[[1,1],[3]]
=> [3,1,2] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,2],[3]]
=> [3,1,2] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,3],[2]]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2}
[[1,3],[3]]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2}
[[2,2],[3]]
=> [3,1,2] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[2,3],[3]]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2}
[[1],[2],[3]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,1,1,2]]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {1,3,3,3,3,3}
[[1,1,2,2]]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {1,3,3,3,3,3}
[[1,2,2,2]]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {1,3,3,3,3,3}
[[2,2,2,2]]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {1,3,3,3,3,3}
[[1,1,1],[2]]
=> [4,1,2,3] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[[1,1,2],[2]]
=> [3,1,2,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,3,3,3,3,3}
[[1,2,2],[2]]
=> [2,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {1,3,3,3,3,3}
[[1,1],[2,2]]
=> [3,4,1,2] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,5]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1}
[[2,5]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1}
[[3,5]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1}
[[4,5]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1}
[[5,5]]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1}
[[1],[5]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[[2],[5]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[[3],[5]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[[4],[5]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[[1,1,4]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,2,4]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,3,4]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,4,4]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,2,4]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,3,4]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,4,4]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[3,3,4]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[3,4,4]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,4,4]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,1],[4]]
=> [3,1,2] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,2],[4]]
=> [3,1,2] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,4],[2]]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,3],[4]]
=> [3,1,2] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,4],[3]]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,4],[4]]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,2],[4]]
=> [3,1,2] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[2,3],[4]]
=> [3,1,2] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[2,4],[3]]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,4],[4]]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[3,3],[4]]
=> [3,1,2] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[3,4],[4]]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1],[2],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1],[3],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[2],[3],[4]]
=> [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,1,1,3]]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[1,1,1],[3]]
=> [4,1,2,3] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[[1,1,2],[3]]
=> [4,1,2,3] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[[1,2,2],[3]]
=> [4,1,2,3] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[[2,2,2],[3]]
=> [4,1,2,3] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[[1,1],[2,3]]
=> [3,4,1,2] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,1],[3,3]]
=> [3,4,1,2] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,2],[2,3]]
=> [2,4,1,3] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[[1,2],[3,3]]
=> [3,4,1,2] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[2,2],[3,3]]
=> [3,4,1,2] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,1],[2],[3]]
=> [4,3,1,2] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,2],[2],[3]]
=> [4,2,1,3] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,1,1,1],[2]]
=> [5,1,2,3,4] => [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,1,1],[2,2]]
=> [4,5,1,2,3] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1],[6]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[[2],[6]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[[3],[6]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[[4],[6]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[[5],[6]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[[1,1],[5]]
=> [3,1,2] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,2],[5]]
=> [3,1,2] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,3],[5]]
=> [3,1,2] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,4],[5]]
=> [3,1,2] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[2,2],[5]]
=> [3,1,2] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[2,3],[5]]
=> [3,1,2] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian $$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$ Its eigenvalues are $0,4,4,6$, so the statistic is $2$. The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Mp00107: Semistandard tableaux catabolismSemistandard tableaux
Mp00075: Semistandard tableaux reading word permutationPermutations
Mp00160: Permutations graph of inversionsGraphs
St001060: Graphs ⟶ ℤResult quality: 39% values known / values provided: 39%distinct values known / distinct values provided: 80%
Values
[[1,2]]
=> [[1,2]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1}
[[2,2]]
=> [[2,2]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1}
[[1],[2]]
=> [[1,2]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1}
[[1,3]]
=> [[1,3]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1}
[[2,3]]
=> [[2,3]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1}
[[3,3]]
=> [[3,3]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1}
[[1],[3]]
=> [[1,3]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1}
[[2],[3]]
=> [[2,3]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1}
[[1,1,2]]
=> [[1,1,2]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,2,2,2}
[[1,2,2]]
=> [[1,2,2]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,2,2,2}
[[2,2,2]]
=> [[2,2,2]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,2,2,2}
[[1,1],[2]]
=> [[1,1,2]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,2,2,2}
[[1,2],[2]]
=> [[1,2,2]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,2,2,2}
[[1,4]]
=> [[1,4]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1}
[[2,4]]
=> [[2,4]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1}
[[3,4]]
=> [[3,4]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1}
[[4,4]]
=> [[4,4]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1}
[[1],[4]]
=> [[1,4]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1}
[[2],[4]]
=> [[2,4]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1}
[[3],[4]]
=> [[3,4]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1}
[[1,1,3]]
=> [[1,1,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2}
[[1,2,3]]
=> [[1,2,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2}
[[1,3,3]]
=> [[1,3,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2}
[[2,2,3]]
=> [[2,2,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2}
[[2,3,3]]
=> [[2,3,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2}
[[3,3,3]]
=> [[3,3,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2}
[[1,1],[3]]
=> [[1,1,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2}
[[1,2],[3]]
=> [[1,2,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2}
[[1,3],[2]]
=> [[1,2],[3]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 2
[[1,3],[3]]
=> [[1,3,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2}
[[2,2],[3]]
=> [[2,2,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2}
[[2,3],[3]]
=> [[2,3,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2}
[[1],[2],[3]]
=> [[1,2],[3]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 2
[[1,1,1,2]]
=> [[1,1,1,2]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {1,2,3,3,3,3,3,3}
[[1,1,2,2]]
=> [[1,1,2,2]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {1,2,3,3,3,3,3,3}
[[1,2,2,2]]
=> [[1,2,2,2]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {1,2,3,3,3,3,3,3}
[[2,2,2,2]]
=> [[2,2,2,2]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {1,2,3,3,3,3,3,3}
[[1,1,1],[2]]
=> [[1,1,1,2]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {1,2,3,3,3,3,3,3}
[[1,1,2],[2]]
=> [[1,1,2,2]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {1,2,3,3,3,3,3,3}
[[1,2,2],[2]]
=> [[1,2,2,2]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {1,2,3,3,3,3,3,3}
[[1,1],[2,2]]
=> [[1,1,2,2]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {1,2,3,3,3,3,3,3}
[[1,5]]
=> [[1,5]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1}
[[2,5]]
=> [[2,5]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1}
[[3,5]]
=> [[3,5]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1}
[[4,5]]
=> [[4,5]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1}
[[5,5]]
=> [[5,5]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1}
[[1],[5]]
=> [[1,5]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1}
[[2],[5]]
=> [[2,5]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1}
[[3],[5]]
=> [[3,5]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1}
[[4],[5]]
=> [[4,5]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1}
[[1,1,4]]
=> [[1,1,4]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2}
[[1,2,4]]
=> [[1,2,4]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2}
[[1,4],[2]]
=> [[1,2],[4]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 2
[[1,4],[3]]
=> [[1,3],[4]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 2
[[2,4],[3]]
=> [[2,3],[4]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 2
[[1],[2],[4]]
=> [[1,2],[4]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 2
[[1],[3],[4]]
=> [[1,3],[4]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 2
[[2],[3],[4]]
=> [[2,3],[4]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 2
[[1,1,3],[2]]
=> [[1,1,2],[3]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 3
[[1,2,3],[2]]
=> [[1,2,2],[3]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 3
[[1,3,3],[2]]
=> [[1,2,3],[3]]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> 2
[[1,1],[2],[3]]
=> [[1,1,2],[3]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 3
[[1,2],[2],[3]]
=> [[1,2,2],[3]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 3
[[1,3],[2],[3]]
=> [[1,2,3],[3]]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> 2
[[1,5],[2]]
=> [[1,2],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 2
[[1,5],[3]]
=> [[1,3],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 2
[[1,5],[4]]
=> [[1,4],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 2
[[2,5],[3]]
=> [[2,3],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 2
[[2,5],[4]]
=> [[2,4],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 2
[[3,5],[4]]
=> [[3,4],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 2
[[1],[2],[5]]
=> [[1,2],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 2
[[1],[3],[5]]
=> [[1,3],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 2
[[1],[4],[5]]
=> [[1,4],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 2
[[2],[3],[5]]
=> [[2,3],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 2
[[2],[4],[5]]
=> [[2,4],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 2
[[3],[4],[5]]
=> [[3,4],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 2
[[1,1,4],[2]]
=> [[1,1,2],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 3
[[1,1,4],[3]]
=> [[1,1,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 3
[[1,2,4],[2]]
=> [[1,2,2],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 3
[[1,2,4],[3]]
=> [[1,2,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 3
[[1,3,4],[2]]
=> [[1,2,4],[3]]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> 2
[[1,4,4],[2]]
=> [[1,2,4],[4]]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> 2
[[1,3,4],[3]]
=> [[1,3,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 3
[[1,4,4],[3]]
=> [[1,3,4],[4]]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> 2
[[2,2,4],[3]]
=> [[2,2,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 3
[[2,3,4],[3]]
=> [[2,3,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 3
[[2,4,4],[3]]
=> [[2,3,4],[4]]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> 2
[[1,3],[2,4]]
=> [[1,2,4],[3]]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> 2
[[1,1],[2],[4]]
=> [[1,1,2],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 3
[[1,1],[3],[4]]
=> [[1,1,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 3
[[1,2],[2],[4]]
=> [[1,2,2],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 3
[[1,2],[3],[4]]
=> [[1,2,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 3
[[1,3],[2],[4]]
=> [[1,2,4],[3]]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> 2
[[1,4],[2],[3]]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[[1,4],[2],[4]]
=> [[1,2,4],[4]]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> 2
[[1,3],[3],[4]]
=> [[1,3,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 3
[[1,4],[3],[4]]
=> [[1,3,4],[4]]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> 2
[[2,2],[3],[4]]
=> [[2,2,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 3
[[2,3],[3],[4]]
=> [[2,3,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 3
[[2,4],[3],[4]]
=> [[2,3,4],[4]]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> 2
Description
The distinguishing index of a graph. This is the smallest number of colours such that there is a colouring of the edges which is not preserved by any automorphism. If the graph has a connected component which is a single edge, or at least two isolated vertices, this statistic is undefined.
Mp00107: Semistandard tableaux catabolismSemistandard tableaux
Mp00075: Semistandard tableaux reading word permutationPermutations
Mp00160: Permutations graph of inversionsGraphs
St000772: Graphs ⟶ ℤResult quality: 24% values known / values provided: 24%distinct values known / distinct values provided: 80%
Values
[[1,2]]
=> [[1,2]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1}
[[2,2]]
=> [[2,2]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1}
[[1],[2]]
=> [[1,2]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1}
[[1,3]]
=> [[1,3]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1}
[[2,3]]
=> [[2,3]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1}
[[3,3]]
=> [[3,3]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1}
[[1],[3]]
=> [[1,3]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1}
[[2],[3]]
=> [[2,3]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1}
[[1,1,2]]
=> [[1,1,2]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,2,2,2}
[[1,2,2]]
=> [[1,2,2]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,2,2,2}
[[2,2,2]]
=> [[2,2,2]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,2,2,2}
[[1,1],[2]]
=> [[1,1,2]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,2,2,2}
[[1,2],[2]]
=> [[1,2,2]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,2,2,2}
[[1,4]]
=> [[1,4]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1}
[[2,4]]
=> [[2,4]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1}
[[3,4]]
=> [[3,4]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1}
[[4,4]]
=> [[4,4]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1}
[[1],[4]]
=> [[1,4]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1}
[[2],[4]]
=> [[2,4]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1}
[[3],[4]]
=> [[3,4]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1}
[[1,1,3]]
=> [[1,1,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2}
[[1,2,3]]
=> [[1,2,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2}
[[1,3,3]]
=> [[1,3,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2}
[[2,2,3]]
=> [[2,2,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2}
[[2,3,3]]
=> [[2,3,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2}
[[3,3,3]]
=> [[3,3,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2}
[[1,1],[3]]
=> [[1,1,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2}
[[1,2],[3]]
=> [[1,2,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2}
[[1,3],[2]]
=> [[1,2],[3]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1,3],[3]]
=> [[1,3,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2}
[[2,2],[3]]
=> [[2,2,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2}
[[2,3],[3]]
=> [[2,3,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2}
[[1],[2],[3]]
=> [[1,2],[3]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1,1,1,2]]
=> [[1,1,1,2]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {1,2,3,3,3,3,3,3}
[[1,1,2,2]]
=> [[1,1,2,2]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {1,2,3,3,3,3,3,3}
[[1,2,2,2]]
=> [[1,2,2,2]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {1,2,3,3,3,3,3,3}
[[2,2,2,2]]
=> [[2,2,2,2]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {1,2,3,3,3,3,3,3}
[[1,1,1],[2]]
=> [[1,1,1,2]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {1,2,3,3,3,3,3,3}
[[1,1,2],[2]]
=> [[1,1,2,2]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {1,2,3,3,3,3,3,3}
[[1,2,2],[2]]
=> [[1,2,2,2]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {1,2,3,3,3,3,3,3}
[[1,1],[2,2]]
=> [[1,1,2,2]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {1,2,3,3,3,3,3,3}
[[1,5]]
=> [[1,5]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1}
[[2,5]]
=> [[2,5]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1}
[[3,5]]
=> [[3,5]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1}
[[4,5]]
=> [[4,5]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1}
[[5,5]]
=> [[5,5]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1}
[[1],[5]]
=> [[1,5]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1}
[[2],[5]]
=> [[2,5]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1}
[[3],[5]]
=> [[3,5]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1}
[[4],[5]]
=> [[4,5]]
=> [1,2] => ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1}
[[1,1,4]]
=> [[1,1,4]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[1,2,4]]
=> [[1,2,4]]
=> [1,2,3] => ([],3)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[1,4],[2]]
=> [[1,2],[4]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1,4],[3]]
=> [[1,3],[4]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[2,4],[3]]
=> [[2,3],[4]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1],[2],[4]]
=> [[1,2],[4]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1],[3],[4]]
=> [[1,3],[4]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[2],[3],[4]]
=> [[2,3],[4]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1,1,3],[2]]
=> [[1,1,2],[3]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,2,3],[2]]
=> [[1,2,2],[3]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,1],[2],[3]]
=> [[1,1,2],[3]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,2],[2],[3]]
=> [[1,2,2],[3]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,5],[2]]
=> [[1,2],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1,5],[3]]
=> [[1,3],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1,5],[4]]
=> [[1,4],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[2,5],[3]]
=> [[2,3],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[2,5],[4]]
=> [[2,4],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[3,5],[4]]
=> [[3,4],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1],[2],[5]]
=> [[1,2],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1],[3],[5]]
=> [[1,3],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1],[4],[5]]
=> [[1,4],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[2],[3],[5]]
=> [[2,3],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[2],[4],[5]]
=> [[2,4],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[3],[4],[5]]
=> [[3,4],[5]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1,1,4],[2]]
=> [[1,1,2],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,1,4],[3]]
=> [[1,1,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,2,4],[2]]
=> [[1,2,2],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,2,4],[3]]
=> [[1,2,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,3,4],[3]]
=> [[1,3,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[2,2,4],[3]]
=> [[2,2,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[2,3,4],[3]]
=> [[2,3,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,1],[2],[4]]
=> [[1,1,2],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,1],[3],[4]]
=> [[1,1,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,2],[2],[4]]
=> [[1,2,2],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,2],[3],[4]]
=> [[1,2,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,4],[2],[3]]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[1,3],[3],[4]]
=> [[1,3,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[2,2],[3],[4]]
=> [[2,2,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[2,3],[3],[4]]
=> [[2,3,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1],[2],[3],[4]]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[1,1,1,3],[2]]
=> [[1,1,1,2],[3]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[1,1,2,3],[2]]
=> [[1,1,2,2],[3]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[1,2,2,3],[2]]
=> [[1,2,2,2],[3]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[1,1,3],[2,2]]
=> [[1,1,2,2],[3]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[1,1,1],[2],[3]]
=> [[1,1,1,2],[3]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[1,1,2],[2],[3]]
=> [[1,1,2,2],[3]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[1,2,2],[2],[3]]
=> [[1,2,2,2],[3]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[1,1],[2,2],[3]]
=> [[1,1,2,2],[3]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[1,6],[2]]
=> [[1,2],[6]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1,6],[3]]
=> [[1,3],[6]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian $$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$ Its eigenvalues are $0,4,4,6$, so the statistic is $1$. The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$. The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
Matching statistic: St001880
Mp00075: Semistandard tableaux reading word permutationPermutations
Mp00252: Permutations restrictionPermutations
Mp00065: Permutations permutation posetPosets
St001880: Posets ⟶ ℤResult quality: 23% values known / values provided: 23%distinct values known / distinct values provided: 60%
Values
[[1,2]]
=> [1,2] => [1] => ([],1)
=> ? ∊ {1,1,1}
[[2,2]]
=> [1,2] => [1] => ([],1)
=> ? ∊ {1,1,1}
[[1],[2]]
=> [2,1] => [1] => ([],1)
=> ? ∊ {1,1,1}
[[1,3]]
=> [1,2] => [1] => ([],1)
=> ? ∊ {1,1,1,1,1}
[[2,3]]
=> [1,2] => [1] => ([],1)
=> ? ∊ {1,1,1,1,1}
[[3,3]]
=> [1,2] => [1] => ([],1)
=> ? ∊ {1,1,1,1,1}
[[1],[3]]
=> [2,1] => [1] => ([],1)
=> ? ∊ {1,1,1,1,1}
[[2],[3]]
=> [2,1] => [1] => ([],1)
=> ? ∊ {1,1,1,1,1}
[[1,1,2]]
=> [1,2,3] => [1,2] => ([(0,1)],2)
=> ? ∊ {1,1,2,2,2}
[[1,2,2]]
=> [1,2,3] => [1,2] => ([(0,1)],2)
=> ? ∊ {1,1,2,2,2}
[[2,2,2]]
=> [1,2,3] => [1,2] => ([(0,1)],2)
=> ? ∊ {1,1,2,2,2}
[[1,1],[2]]
=> [3,1,2] => [1,2] => ([(0,1)],2)
=> ? ∊ {1,1,2,2,2}
[[1,2],[2]]
=> [2,1,3] => [2,1] => ([],2)
=> ? ∊ {1,1,2,2,2}
[[1,4]]
=> [1,2] => [1] => ([],1)
=> ? ∊ {1,1,1,1,1,1,1}
[[2,4]]
=> [1,2] => [1] => ([],1)
=> ? ∊ {1,1,1,1,1,1,1}
[[3,4]]
=> [1,2] => [1] => ([],1)
=> ? ∊ {1,1,1,1,1,1,1}
[[4,4]]
=> [1,2] => [1] => ([],1)
=> ? ∊ {1,1,1,1,1,1,1}
[[1],[4]]
=> [2,1] => [1] => ([],1)
=> ? ∊ {1,1,1,1,1,1,1}
[[2],[4]]
=> [2,1] => [1] => ([],1)
=> ? ∊ {1,1,1,1,1,1,1}
[[3],[4]]
=> [2,1] => [1] => ([],1)
=> ? ∊ {1,1,1,1,1,1,1}
[[1,1,3]]
=> [1,2,3] => [1,2] => ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2}
[[1,2,3]]
=> [1,2,3] => [1,2] => ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2}
[[1,3,3]]
=> [1,2,3] => [1,2] => ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2}
[[2,2,3]]
=> [1,2,3] => [1,2] => ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2}
[[2,3,3]]
=> [1,2,3] => [1,2] => ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2}
[[3,3,3]]
=> [1,2,3] => [1,2] => ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2}
[[1,1],[3]]
=> [3,1,2] => [1,2] => ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2}
[[1,2],[3]]
=> [3,1,2] => [1,2] => ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2}
[[1,3],[2]]
=> [2,1,3] => [2,1] => ([],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2}
[[1,3],[3]]
=> [2,1,3] => [2,1] => ([],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2}
[[2,2],[3]]
=> [3,1,2] => [1,2] => ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2}
[[2,3],[3]]
=> [2,1,3] => [2,1] => ([],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2}
[[1],[2],[3]]
=> [3,2,1] => [2,1] => ([],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2}
[[1,1,1,2]]
=> [1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1,1,2,2]]
=> [1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1,2,2,2]]
=> [1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[2,2,2,2]]
=> [1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1,1,1],[2]]
=> [4,1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1,1,2],[2]]
=> [3,1,2,4] => [3,1,2] => ([(1,2)],3)
=> ? ∊ {1,2,3}
[[1,2,2],[2]]
=> [2,1,3,4] => [2,1,3] => ([(0,2),(1,2)],3)
=> ? ∊ {1,2,3}
[[1,1],[2,2]]
=> [3,4,1,2] => [3,1,2] => ([(1,2)],3)
=> ? ∊ {1,2,3}
[[1,5]]
=> [1,2] => [1] => ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1}
[[2,5]]
=> [1,2] => [1] => ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1}
[[3,5]]
=> [1,2] => [1] => ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1}
[[4,5]]
=> [1,2] => [1] => ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1}
[[5,5]]
=> [1,2] => [1] => ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1}
[[1],[5]]
=> [2,1] => [1] => ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1}
[[2],[5]]
=> [2,1] => [1] => ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1}
[[3],[5]]
=> [2,1] => [1] => ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1}
[[4],[5]]
=> [2,1] => [1] => ([],1)
=> ? ∊ {1,1,1,1,1,1,1,1,1}
[[1,1,4]]
=> [1,2,3] => [1,2] => ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[1,2,4]]
=> [1,2,3] => [1,2] => ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[1,3,4]]
=> [1,2,3] => [1,2] => ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[1,4,4]]
=> [1,2,3] => [1,2] => ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[2,2,4]]
=> [1,2,3] => [1,2] => ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[[1,1,1,3]]
=> [1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1,1,2,3]]
=> [1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1,1,3,3]]
=> [1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1,2,2,3]]
=> [1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1,2,3,3]]
=> [1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1,3,3,3]]
=> [1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[2,2,2,3]]
=> [1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[2,2,3,3]]
=> [1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[2,3,3,3]]
=> [1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[3,3,3,3]]
=> [1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1,1,1],[3]]
=> [4,1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1,1,2],[3]]
=> [4,1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1,2,2],[3]]
=> [4,1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[2,2,2],[3]]
=> [4,1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1,1,1,1,2]]
=> [1,2,3,4,5] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[[1,1,1,2,2]]
=> [1,2,3,4,5] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[[1,1,2,2,2]]
=> [1,2,3,4,5] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[[1,2,2,2,2]]
=> [1,2,3,4,5] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[[2,2,2,2,2]]
=> [1,2,3,4,5] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[[1,1,1,1],[2]]
=> [5,1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[[1,1,1,4]]
=> [1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1,1,2,4]]
=> [1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1,1,3,4]]
=> [1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1,1,4,4]]
=> [1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1,2,2,4]]
=> [1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1,2,3,4]]
=> [1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1,2,4,4]]
=> [1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1,3,3,4]]
=> [1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1,3,4,4]]
=> [1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1,4,4,4]]
=> [1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[2,2,2,4]]
=> [1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[2,2,3,4]]
=> [1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[2,2,4,4]]
=> [1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[2,3,3,4]]
=> [1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[2,3,4,4]]
=> [1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[2,4,4,4]]
=> [1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[3,3,3,4]]
=> [1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[3,3,4,4]]
=> [1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[3,4,4,4]]
=> [1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[4,4,4,4]]
=> [1,2,3,4] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1,1,1],[4]]
=> [4,1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1,1,2],[4]]
=> [4,1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1,1,3],[4]]
=> [4,1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1,2,2],[4]]
=> [4,1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[1,2,3],[4]]
=> [4,1,2,3] => [1,2,3] => ([(0,2),(2,1)],3)
=> 3
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Mp00075: Semistandard tableaux reading word permutationPermutations
Mp00061: Permutations to increasing treeBinary trees
Mp00013: Binary trees to posetPosets
St001879: Posets ⟶ ℤResult quality: 22% values known / values provided: 22%distinct values known / distinct values provided: 80%
Values
[[1,2]]
=> [1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1}
[[2,2]]
=> [1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1}
[[1],[2]]
=> [2,1] => [[.,.],.]
=> ([(0,1)],2)
=> ? ∊ {1,1,1}
[[1,3]]
=> [1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1}
[[2,3]]
=> [1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1}
[[3,3]]
=> [1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1}
[[1],[3]]
=> [2,1] => [[.,.],.]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1}
[[2],[3]]
=> [2,1] => [[.,.],.]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1}
[[1,1,2]]
=> [1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2
[[1,2,2]]
=> [1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2
[[2,2,2]]
=> [1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2
[[1,1],[2]]
=> [3,1,2] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1}
[[1,2],[2]]
=> [2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1}
[[1,4]]
=> [1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1}
[[2,4]]
=> [1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1}
[[3,4]]
=> [1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1}
[[4,4]]
=> [1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1}
[[1],[4]]
=> [2,1] => [[.,.],.]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1}
[[2],[4]]
=> [2,1] => [[.,.],.]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1}
[[3],[4]]
=> [2,1] => [[.,.],.]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1}
[[1,1,3]]
=> [1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2
[[1,2,3]]
=> [1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2
[[1,3,3]]
=> [1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2
[[2,2,3]]
=> [1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2
[[2,3,3]]
=> [1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2
[[3,3,3]]
=> [1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2
[[1,1],[3]]
=> [3,1,2] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,1,1,1}
[[1,2],[3]]
=> [3,1,2] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,1,1,1}
[[1,3],[2]]
=> [2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,1,1,1}
[[1,3],[3]]
=> [2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,1,1,1}
[[2,2],[3]]
=> [3,1,2] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,1,1,1}
[[2,3],[3]]
=> [2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,1,1,1}
[[1],[2],[3]]
=> [3,2,1] => [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 2
[[1,1,1,2]]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[1,1,2,2]]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[1,2,2,2]]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[2,2,2,2]]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[1,1,1],[2]]
=> [4,1,2,3] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {1,2,3,3}
[[1,1,2],[2]]
=> [3,1,2,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {1,2,3,3}
[[1,2,2],[2]]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {1,2,3,3}
[[1,1],[2,2]]
=> [3,4,1,2] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {1,2,3,3}
[[1,5]]
=> [1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1}
[[2,5]]
=> [1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1}
[[3,5]]
=> [1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1}
[[4,5]]
=> [1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1}
[[5,5]]
=> [1,2] => [.,[.,.]]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1}
[[1],[5]]
=> [2,1] => [[.,.],.]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1}
[[2],[5]]
=> [2,1] => [[.,.],.]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1}
[[3],[5]]
=> [2,1] => [[.,.],.]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1}
[[4],[5]]
=> [2,1] => [[.,.],.]
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1}
[[1,1,4]]
=> [1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2
[[1,2,4]]
=> [1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2
[[1,3,4]]
=> [1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2
[[1,4,4]]
=> [1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2
[[2,2,4]]
=> [1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2
[[2,3,4]]
=> [1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2
[[2,4,4]]
=> [1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2
[[3,3,4]]
=> [1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2
[[3,4,4]]
=> [1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2
[[4,4,4]]
=> [1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2
[[1,1],[4]]
=> [3,1,2] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1}
[[1,2],[4]]
=> [3,1,2] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1}
[[1,4],[2]]
=> [2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1}
[[1,3],[4]]
=> [3,1,2] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1}
[[1,4],[3]]
=> [2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1}
[[1,4],[4]]
=> [2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1}
[[2,2],[4]]
=> [3,1,2] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1}
[[2,3],[4]]
=> [3,1,2] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1}
[[2,4],[3]]
=> [2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1}
[[2,4],[4]]
=> [2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1}
[[3,3],[4]]
=> [3,1,2] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1}
[[3,4],[4]]
=> [2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1}
[[1],[2],[4]]
=> [3,2,1] => [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 2
[[1],[3],[4]]
=> [3,2,1] => [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 2
[[2],[3],[4]]
=> [3,2,1] => [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 2
[[1,1,1,3]]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[1,1,2,3]]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[1,1,3,3]]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[1,2,2,3]]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[1,2,3,3]]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[1,3,3,3]]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[2,2,2,3]]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[2,2,3,3]]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[2,3,3,3]]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[3,3,3,3]]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[[1,1,1],[3]]
=> [4,1,2,3] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3}
[[1,1,2],[3]]
=> [4,1,2,3] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3}
[[1,1,1,1,2]]
=> [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[1,1,1,2,2]]
=> [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[1,1,2,2,2]]
=> [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[1,2,2,2,2]]
=> [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[2,2,2,2,2]]
=> [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[[1,1,5]]
=> [1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2
[[1,2,5]]
=> [1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2
[[1,3,5]]
=> [1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2
[[1,4,5]]
=> [1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2
[[1,5,5]]
=> [1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2
[[2,2,5]]
=> [1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2
[[2,3,5]]
=> [1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2
[[2,4,5]]
=> [1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Matching statistic: St000522
Mp00075: Semistandard tableaux reading word permutationPermutations
Mp00061: Permutations to increasing treeBinary trees
Mp00008: Binary trees to complete treeOrdered trees
St000522: Ordered trees ⟶ ℤResult quality: 19% values known / values provided: 19%distinct values known / distinct values provided: 60%
Values
[[1,2]]
=> [1,2] => [.,[.,.]]
=> [[],[[],[]]]
=> 2 = 1 + 1
[[2,2]]
=> [1,2] => [.,[.,.]]
=> [[],[[],[]]]
=> 2 = 1 + 1
[[1],[2]]
=> [2,1] => [[.,.],.]
=> [[[],[]],[]]
=> 2 = 1 + 1
[[1,3]]
=> [1,2] => [.,[.,.]]
=> [[],[[],[]]]
=> 2 = 1 + 1
[[2,3]]
=> [1,2] => [.,[.,.]]
=> [[],[[],[]]]
=> 2 = 1 + 1
[[3,3]]
=> [1,2] => [.,[.,.]]
=> [[],[[],[]]]
=> 2 = 1 + 1
[[1],[3]]
=> [2,1] => [[.,.],.]
=> [[[],[]],[]]
=> 2 = 1 + 1
[[2],[3]]
=> [2,1] => [[.,.],.]
=> [[[],[]],[]]
=> 2 = 1 + 1
[[1,1,2]]
=> [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 3 = 2 + 1
[[1,2,2]]
=> [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 3 = 2 + 1
[[2,2,2]]
=> [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 3 = 2 + 1
[[1,1],[2]]
=> [3,1,2] => [[.,.],[.,.]]
=> [[[],[]],[[],[]]]
=> 2 = 1 + 1
[[1,2],[2]]
=> [2,1,3] => [[.,.],[.,.]]
=> [[[],[]],[[],[]]]
=> 2 = 1 + 1
[[1,4]]
=> [1,2] => [.,[.,.]]
=> [[],[[],[]]]
=> 2 = 1 + 1
[[2,4]]
=> [1,2] => [.,[.,.]]
=> [[],[[],[]]]
=> 2 = 1 + 1
[[3,4]]
=> [1,2] => [.,[.,.]]
=> [[],[[],[]]]
=> 2 = 1 + 1
[[4,4]]
=> [1,2] => [.,[.,.]]
=> [[],[[],[]]]
=> 2 = 1 + 1
[[1],[4]]
=> [2,1] => [[.,.],.]
=> [[[],[]],[]]
=> 2 = 1 + 1
[[2],[4]]
=> [2,1] => [[.,.],.]
=> [[[],[]],[]]
=> 2 = 1 + 1
[[3],[4]]
=> [2,1] => [[.,.],.]
=> [[[],[]],[]]
=> 2 = 1 + 1
[[1,1,3]]
=> [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 3 = 2 + 1
[[1,2,3]]
=> [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 3 = 2 + 1
[[1,3,3]]
=> [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 3 = 2 + 1
[[2,2,3]]
=> [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 3 = 2 + 1
[[2,3,3]]
=> [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 3 = 2 + 1
[[3,3,3]]
=> [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 3 = 2 + 1
[[1,1],[3]]
=> [3,1,2] => [[.,.],[.,.]]
=> [[[],[]],[[],[]]]
=> 2 = 1 + 1
[[1,2],[3]]
=> [3,1,2] => [[.,.],[.,.]]
=> [[[],[]],[[],[]]]
=> 2 = 1 + 1
[[1,3],[2]]
=> [2,1,3] => [[.,.],[.,.]]
=> [[[],[]],[[],[]]]
=> 2 = 1 + 1
[[1,3],[3]]
=> [2,1,3] => [[.,.],[.,.]]
=> [[[],[]],[[],[]]]
=> 2 = 1 + 1
[[2,2],[3]]
=> [3,1,2] => [[.,.],[.,.]]
=> [[[],[]],[[],[]]]
=> 2 = 1 + 1
[[2,3],[3]]
=> [2,1,3] => [[.,.],[.,.]]
=> [[[],[]],[[],[]]]
=> 2 = 1 + 1
[[1],[2],[3]]
=> [3,2,1] => [[[.,.],.],.]
=> [[[[],[]],[]],[]]
=> 3 = 2 + 1
[[1,1,1,2]]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 4 = 3 + 1
[[1,1,2,2]]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 4 = 3 + 1
[[1,2,2,2]]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 4 = 3 + 1
[[2,2,2,2]]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 4 = 3 + 1
[[1,1,1],[2]]
=> [4,1,2,3] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,2,3,3} + 1
[[1,1,2],[2]]
=> [3,1,2,4] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,2,3,3} + 1
[[1,2,2],[2]]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,2,3,3} + 1
[[1,1],[2,2]]
=> [3,4,1,2] => [[.,[.,.]],[.,.]]
=> [[[],[[],[]]],[[],[]]]
=> ? ∊ {1,2,3,3} + 1
[[1,5]]
=> [1,2] => [.,[.,.]]
=> [[],[[],[]]]
=> 2 = 1 + 1
[[2,5]]
=> [1,2] => [.,[.,.]]
=> [[],[[],[]]]
=> 2 = 1 + 1
[[3,5]]
=> [1,2] => [.,[.,.]]
=> [[],[[],[]]]
=> 2 = 1 + 1
[[4,5]]
=> [1,2] => [.,[.,.]]
=> [[],[[],[]]]
=> 2 = 1 + 1
[[5,5]]
=> [1,2] => [.,[.,.]]
=> [[],[[],[]]]
=> 2 = 1 + 1
[[1],[5]]
=> [2,1] => [[.,.],.]
=> [[[],[]],[]]
=> 2 = 1 + 1
[[2],[5]]
=> [2,1] => [[.,.],.]
=> [[[],[]],[]]
=> 2 = 1 + 1
[[3],[5]]
=> [2,1] => [[.,.],.]
=> [[[],[]],[]]
=> 2 = 1 + 1
[[4],[5]]
=> [2,1] => [[.,.],.]
=> [[[],[]],[]]
=> 2 = 1 + 1
[[1,1,4]]
=> [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 3 = 2 + 1
[[1,2,4]]
=> [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 3 = 2 + 1
[[1,3,4]]
=> [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 3 = 2 + 1
[[1,4,4]]
=> [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 3 = 2 + 1
[[1,1,1],[3]]
=> [4,1,2,3] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 1
[[1,1,2],[3]]
=> [4,1,2,3] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 1
[[1,1,3],[2]]
=> [3,1,2,4] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 1
[[1,1,3],[3]]
=> [3,1,2,4] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 1
[[1,2,2],[3]]
=> [4,1,2,3] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 1
[[1,2,3],[2]]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 1
[[1,2,3],[3]]
=> [3,1,2,4] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 1
[[1,3,3],[2]]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 1
[[1,3,3],[3]]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 1
[[2,2,2],[3]]
=> [4,1,2,3] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 1
[[2,2,3],[3]]
=> [3,1,2,4] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 1
[[2,3,3],[3]]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 1
[[1,1],[2,3]]
=> [3,4,1,2] => [[.,[.,.]],[.,.]]
=> [[[],[[],[]]],[[],[]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 1
[[1,1],[3,3]]
=> [3,4,1,2] => [[.,[.,.]],[.,.]]
=> [[[],[[],[]]],[[],[]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 1
[[1,2],[2,3]]
=> [2,4,1,3] => [[.,[.,.]],[.,.]]
=> [[[],[[],[]]],[[],[]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 1
[[1,2],[3,3]]
=> [3,4,1,2] => [[.,[.,.]],[.,.]]
=> [[[],[[],[]]],[[],[]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 1
[[2,2],[3,3]]
=> [3,4,1,2] => [[.,[.,.]],[.,.]]
=> [[[],[[],[]]],[[],[]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 1
[[1,1],[2],[3]]
=> [4,3,1,2] => [[[.,.],.],[.,.]]
=> [[[[],[]],[]],[[],[]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 1
[[1,2],[2],[3]]
=> [4,2,1,3] => [[[.,.],.],[.,.]]
=> [[[[],[]],[]],[[],[]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 1
[[1,3],[2],[3]]
=> [3,2,1,4] => [[[.,.],.],[.,.]]
=> [[[[],[]],[]],[[],[]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 1
[[1,1,1,1,2]]
=> [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? ∊ {1,2,3,4,4,4,4,4,4,4,4} + 1
[[1,1,1,2,2]]
=> [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? ∊ {1,2,3,4,4,4,4,4,4,4,4} + 1
[[1,1,2,2,2]]
=> [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? ∊ {1,2,3,4,4,4,4,4,4,4,4} + 1
[[1,2,2,2,2]]
=> [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? ∊ {1,2,3,4,4,4,4,4,4,4,4} + 1
[[2,2,2,2,2]]
=> [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? ∊ {1,2,3,4,4,4,4,4,4,4,4} + 1
[[1,1,1,1],[2]]
=> [5,1,2,3,4] => [[.,.],[.,[.,[.,.]]]]
=> [[[],[]],[[],[[],[[],[]]]]]
=> ? ∊ {1,2,3,4,4,4,4,4,4,4,4} + 1
[[1,1,1,2],[2]]
=> [4,1,2,3,5] => [[.,.],[.,[.,[.,.]]]]
=> [[[],[]],[[],[[],[[],[]]]]]
=> ? ∊ {1,2,3,4,4,4,4,4,4,4,4} + 1
[[1,1,2,2],[2]]
=> [3,1,2,4,5] => [[.,.],[.,[.,[.,.]]]]
=> [[[],[]],[[],[[],[[],[]]]]]
=> ? ∊ {1,2,3,4,4,4,4,4,4,4,4} + 1
[[1,2,2,2],[2]]
=> [2,1,3,4,5] => [[.,.],[.,[.,[.,.]]]]
=> [[[],[]],[[],[[],[[],[]]]]]
=> ? ∊ {1,2,3,4,4,4,4,4,4,4,4} + 1
[[1,1,1],[2,2]]
=> [4,5,1,2,3] => [[.,[.,.]],[.,[.,.]]]
=> [[[],[[],[]]],[[],[[],[]]]]
=> ? ∊ {1,2,3,4,4,4,4,4,4,4,4} + 1
[[1,1,2],[2,2]]
=> [3,4,1,2,5] => [[.,[.,.]],[.,[.,.]]]
=> [[[],[[],[]]],[[],[[],[]]]]
=> ? ∊ {1,2,3,4,4,4,4,4,4,4,4} + 1
[[1,1,1],[4]]
=> [4,1,2,3] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[1,1,2],[4]]
=> [4,1,2,3] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[1,1,4],[2]]
=> [3,1,2,4] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[1,1,3],[4]]
=> [4,1,2,3] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[1,1,4],[3]]
=> [3,1,2,4] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[1,1,4],[4]]
=> [3,1,2,4] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[1,2,2],[4]]
=> [4,1,2,3] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[1,2,4],[2]]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[1,2,3],[4]]
=> [4,1,2,3] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[1,2,4],[3]]
=> [3,1,2,4] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[1,3,4],[2]]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[1,2,4],[4]]
=> [3,1,2,4] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[1,4,4],[2]]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[1,3,3],[4]]
=> [4,1,2,3] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[1,3,4],[3]]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
Description
The number of 1-protected nodes of a rooted tree. This is the number of nodes with minimal distance one to a leaf.
Matching statistic: St000521
Mp00075: Semistandard tableaux reading word permutationPermutations
Mp00061: Permutations to increasing treeBinary trees
Mp00008: Binary trees to complete treeOrdered trees
St000521: Ordered trees ⟶ ℤResult quality: 19% values known / values provided: 19%distinct values known / distinct values provided: 60%
Values
[[1,2]]
=> [1,2] => [.,[.,.]]
=> [[],[[],[]]]
=> 3 = 1 + 2
[[2,2]]
=> [1,2] => [.,[.,.]]
=> [[],[[],[]]]
=> 3 = 1 + 2
[[1],[2]]
=> [2,1] => [[.,.],.]
=> [[[],[]],[]]
=> 3 = 1 + 2
[[1,3]]
=> [1,2] => [.,[.,.]]
=> [[],[[],[]]]
=> 3 = 1 + 2
[[2,3]]
=> [1,2] => [.,[.,.]]
=> [[],[[],[]]]
=> 3 = 1 + 2
[[3,3]]
=> [1,2] => [.,[.,.]]
=> [[],[[],[]]]
=> 3 = 1 + 2
[[1],[3]]
=> [2,1] => [[.,.],.]
=> [[[],[]],[]]
=> 3 = 1 + 2
[[2],[3]]
=> [2,1] => [[.,.],.]
=> [[[],[]],[]]
=> 3 = 1 + 2
[[1,1,2]]
=> [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 4 = 2 + 2
[[1,2,2]]
=> [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 4 = 2 + 2
[[2,2,2]]
=> [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 4 = 2 + 2
[[1,1],[2]]
=> [3,1,2] => [[.,.],[.,.]]
=> [[[],[]],[[],[]]]
=> 3 = 1 + 2
[[1,2],[2]]
=> [2,1,3] => [[.,.],[.,.]]
=> [[[],[]],[[],[]]]
=> 3 = 1 + 2
[[1,4]]
=> [1,2] => [.,[.,.]]
=> [[],[[],[]]]
=> 3 = 1 + 2
[[2,4]]
=> [1,2] => [.,[.,.]]
=> [[],[[],[]]]
=> 3 = 1 + 2
[[3,4]]
=> [1,2] => [.,[.,.]]
=> [[],[[],[]]]
=> 3 = 1 + 2
[[4,4]]
=> [1,2] => [.,[.,.]]
=> [[],[[],[]]]
=> 3 = 1 + 2
[[1],[4]]
=> [2,1] => [[.,.],.]
=> [[[],[]],[]]
=> 3 = 1 + 2
[[2],[4]]
=> [2,1] => [[.,.],.]
=> [[[],[]],[]]
=> 3 = 1 + 2
[[3],[4]]
=> [2,1] => [[.,.],.]
=> [[[],[]],[]]
=> 3 = 1 + 2
[[1,1,3]]
=> [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 4 = 2 + 2
[[1,2,3]]
=> [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 4 = 2 + 2
[[1,3,3]]
=> [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 4 = 2 + 2
[[2,2,3]]
=> [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 4 = 2 + 2
[[2,3,3]]
=> [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 4 = 2 + 2
[[3,3,3]]
=> [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 4 = 2 + 2
[[1,1],[3]]
=> [3,1,2] => [[.,.],[.,.]]
=> [[[],[]],[[],[]]]
=> 3 = 1 + 2
[[1,2],[3]]
=> [3,1,2] => [[.,.],[.,.]]
=> [[[],[]],[[],[]]]
=> 3 = 1 + 2
[[1,3],[2]]
=> [2,1,3] => [[.,.],[.,.]]
=> [[[],[]],[[],[]]]
=> 3 = 1 + 2
[[1,3],[3]]
=> [2,1,3] => [[.,.],[.,.]]
=> [[[],[]],[[],[]]]
=> 3 = 1 + 2
[[2,2],[3]]
=> [3,1,2] => [[.,.],[.,.]]
=> [[[],[]],[[],[]]]
=> 3 = 1 + 2
[[2,3],[3]]
=> [2,1,3] => [[.,.],[.,.]]
=> [[[],[]],[[],[]]]
=> 3 = 1 + 2
[[1],[2],[3]]
=> [3,2,1] => [[[.,.],.],.]
=> [[[[],[]],[]],[]]
=> 4 = 2 + 2
[[1,1,1,2]]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 3 + 2
[[1,1,2,2]]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 3 + 2
[[1,2,2,2]]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 3 + 2
[[2,2,2,2]]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 3 + 2
[[1,1,1],[2]]
=> [4,1,2,3] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,2,3,3} + 2
[[1,1,2],[2]]
=> [3,1,2,4] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,2,3,3} + 2
[[1,2,2],[2]]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,2,3,3} + 2
[[1,1],[2,2]]
=> [3,4,1,2] => [[.,[.,.]],[.,.]]
=> [[[],[[],[]]],[[],[]]]
=> ? ∊ {1,2,3,3} + 2
[[1,5]]
=> [1,2] => [.,[.,.]]
=> [[],[[],[]]]
=> 3 = 1 + 2
[[2,5]]
=> [1,2] => [.,[.,.]]
=> [[],[[],[]]]
=> 3 = 1 + 2
[[3,5]]
=> [1,2] => [.,[.,.]]
=> [[],[[],[]]]
=> 3 = 1 + 2
[[4,5]]
=> [1,2] => [.,[.,.]]
=> [[],[[],[]]]
=> 3 = 1 + 2
[[5,5]]
=> [1,2] => [.,[.,.]]
=> [[],[[],[]]]
=> 3 = 1 + 2
[[1],[5]]
=> [2,1] => [[.,.],.]
=> [[[],[]],[]]
=> 3 = 1 + 2
[[2],[5]]
=> [2,1] => [[.,.],.]
=> [[[],[]],[]]
=> 3 = 1 + 2
[[3],[5]]
=> [2,1] => [[.,.],.]
=> [[[],[]],[]]
=> 3 = 1 + 2
[[4],[5]]
=> [2,1] => [[.,.],.]
=> [[[],[]],[]]
=> 3 = 1 + 2
[[1,1,4]]
=> [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 4 = 2 + 2
[[1,2,4]]
=> [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 4 = 2 + 2
[[1,3,4]]
=> [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 4 = 2 + 2
[[1,4,4]]
=> [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 4 = 2 + 2
[[1,1,1],[3]]
=> [4,1,2,3] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 2
[[1,1,2],[3]]
=> [4,1,2,3] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 2
[[1,1,3],[2]]
=> [3,1,2,4] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 2
[[1,1,3],[3]]
=> [3,1,2,4] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 2
[[1,2,2],[3]]
=> [4,1,2,3] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 2
[[1,2,3],[2]]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 2
[[1,2,3],[3]]
=> [3,1,2,4] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 2
[[1,3,3],[2]]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 2
[[1,3,3],[3]]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 2
[[2,2,2],[3]]
=> [4,1,2,3] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 2
[[2,2,3],[3]]
=> [3,1,2,4] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 2
[[2,3,3],[3]]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 2
[[1,1],[2,3]]
=> [3,4,1,2] => [[.,[.,.]],[.,.]]
=> [[[],[[],[]]],[[],[]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 2
[[1,1],[3,3]]
=> [3,4,1,2] => [[.,[.,.]],[.,.]]
=> [[[],[[],[]]],[[],[]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 2
[[1,2],[2,3]]
=> [2,4,1,3] => [[.,[.,.]],[.,.]]
=> [[[],[[],[]]],[[],[]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 2
[[1,2],[3,3]]
=> [3,4,1,2] => [[.,[.,.]],[.,.]]
=> [[[],[[],[]]],[[],[]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 2
[[2,2],[3,3]]
=> [3,4,1,2] => [[.,[.,.]],[.,.]]
=> [[[],[[],[]]],[[],[]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 2
[[1,1],[2],[3]]
=> [4,3,1,2] => [[[.,.],.],[.,.]]
=> [[[[],[]],[]],[[],[]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 2
[[1,2],[2],[3]]
=> [4,2,1,3] => [[[.,.],.],[.,.]]
=> [[[[],[]],[]],[[],[]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 2
[[1,3],[2],[3]]
=> [3,2,1,4] => [[[.,.],.],[.,.]]
=> [[[[],[]],[]],[[],[]]]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3} + 2
[[1,1,1,1,2]]
=> [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? ∊ {1,2,3,4,4,4,4,4,4,4,4} + 2
[[1,1,1,2,2]]
=> [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? ∊ {1,2,3,4,4,4,4,4,4,4,4} + 2
[[1,1,2,2,2]]
=> [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? ∊ {1,2,3,4,4,4,4,4,4,4,4} + 2
[[1,2,2,2,2]]
=> [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? ∊ {1,2,3,4,4,4,4,4,4,4,4} + 2
[[2,2,2,2,2]]
=> [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? ∊ {1,2,3,4,4,4,4,4,4,4,4} + 2
[[1,1,1,1],[2]]
=> [5,1,2,3,4] => [[.,.],[.,[.,[.,.]]]]
=> [[[],[]],[[],[[],[[],[]]]]]
=> ? ∊ {1,2,3,4,4,4,4,4,4,4,4} + 2
[[1,1,1,2],[2]]
=> [4,1,2,3,5] => [[.,.],[.,[.,[.,.]]]]
=> [[[],[]],[[],[[],[[],[]]]]]
=> ? ∊ {1,2,3,4,4,4,4,4,4,4,4} + 2
[[1,1,2,2],[2]]
=> [3,1,2,4,5] => [[.,.],[.,[.,[.,.]]]]
=> [[[],[]],[[],[[],[[],[]]]]]
=> ? ∊ {1,2,3,4,4,4,4,4,4,4,4} + 2
[[1,2,2,2],[2]]
=> [2,1,3,4,5] => [[.,.],[.,[.,[.,.]]]]
=> [[[],[]],[[],[[],[[],[]]]]]
=> ? ∊ {1,2,3,4,4,4,4,4,4,4,4} + 2
[[1,1,1],[2,2]]
=> [4,5,1,2,3] => [[.,[.,.]],[.,[.,.]]]
=> [[[],[[],[]]],[[],[[],[]]]]
=> ? ∊ {1,2,3,4,4,4,4,4,4,4,4} + 2
[[1,1,2],[2,2]]
=> [3,4,1,2,5] => [[.,[.,.]],[.,[.,.]]]
=> [[[],[[],[]]],[[],[[],[]]]]
=> ? ∊ {1,2,3,4,4,4,4,4,4,4,4} + 2
[[1,1,1],[4]]
=> [4,1,2,3] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 2
[[1,1,2],[4]]
=> [4,1,2,3] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 2
[[1,1,4],[2]]
=> [3,1,2,4] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 2
[[1,1,3],[4]]
=> [4,1,2,3] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 2
[[1,1,4],[3]]
=> [3,1,2,4] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 2
[[1,1,4],[4]]
=> [3,1,2,4] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 2
[[1,2,2],[4]]
=> [4,1,2,3] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 2
[[1,2,4],[2]]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 2
[[1,2,3],[4]]
=> [4,1,2,3] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 2
[[1,2,4],[3]]
=> [3,1,2,4] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 2
[[1,3,4],[2]]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 2
[[1,2,4],[4]]
=> [3,1,2,4] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 2
[[1,4,4],[2]]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 2
[[1,3,3],[4]]
=> [4,1,2,3] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 2
[[1,3,4],[3]]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 2
Description
The number of distinct subtrees of an ordered tree. A subtree is specified by a node of the tree. Thus, the tree consisting of a single path has as many subtrees as nodes, whereas the tree of height two, having all leaves attached to the root, has only two distinct subtrees. Because we consider ordered trees, the tree $[[[[]], []], [[], [[]]]]$ on nine nodes has five distinct subtrees.
Mp00077: Semistandard tableaux shapeInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00201: Dyck paths RingelPermutations
St001207: Permutations ⟶ ℤResult quality: 18% values known / values provided: 18%distinct values known / distinct values provided: 40%
Values
[[1,2]]
=> [2]
=> [1,0,1,0]
=> [3,1,2] => 2 = 1 + 1
[[2,2]]
=> [2]
=> [1,0,1,0]
=> [3,1,2] => 2 = 1 + 1
[[1],[2]]
=> [1,1]
=> [1,1,0,0]
=> [2,3,1] => 2 = 1 + 1
[[1,3]]
=> [2]
=> [1,0,1,0]
=> [3,1,2] => 2 = 1 + 1
[[2,3]]
=> [2]
=> [1,0,1,0]
=> [3,1,2] => 2 = 1 + 1
[[3,3]]
=> [2]
=> [1,0,1,0]
=> [3,1,2] => 2 = 1 + 1
[[1],[3]]
=> [1,1]
=> [1,1,0,0]
=> [2,3,1] => 2 = 1 + 1
[[2],[3]]
=> [1,1]
=> [1,1,0,0]
=> [2,3,1] => 2 = 1 + 1
[[1,1,2]]
=> [3]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => 3 = 2 + 1
[[1,2,2]]
=> [3]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => 3 = 2 + 1
[[2,2,2]]
=> [3]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => 3 = 2 + 1
[[1,1],[2]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => 2 = 1 + 1
[[1,2],[2]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => 2 = 1 + 1
[[1,4]]
=> [2]
=> [1,0,1,0]
=> [3,1,2] => 2 = 1 + 1
[[2,4]]
=> [2]
=> [1,0,1,0]
=> [3,1,2] => 2 = 1 + 1
[[3,4]]
=> [2]
=> [1,0,1,0]
=> [3,1,2] => 2 = 1 + 1
[[4,4]]
=> [2]
=> [1,0,1,0]
=> [3,1,2] => 2 = 1 + 1
[[1],[4]]
=> [1,1]
=> [1,1,0,0]
=> [2,3,1] => 2 = 1 + 1
[[2],[4]]
=> [1,1]
=> [1,1,0,0]
=> [2,3,1] => 2 = 1 + 1
[[3],[4]]
=> [1,1]
=> [1,1,0,0]
=> [2,3,1] => 2 = 1 + 1
[[1,1,3]]
=> [3]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => 3 = 2 + 1
[[1,2,3]]
=> [3]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => 3 = 2 + 1
[[1,3,3]]
=> [3]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => 3 = 2 + 1
[[2,2,3]]
=> [3]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => 3 = 2 + 1
[[2,3,3]]
=> [3]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => 3 = 2 + 1
[[3,3,3]]
=> [3]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => 3 = 2 + 1
[[1,1],[3]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => 2 = 1 + 1
[[1,2],[3]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => 2 = 1 + 1
[[1,3],[2]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => 2 = 1 + 1
[[1,3],[3]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => 2 = 1 + 1
[[2,2],[3]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => 2 = 1 + 1
[[2,3],[3]]
=> [2,1]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => 2 = 1 + 1
[[1],[2],[3]]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [4,3,1,2] => 3 = 2 + 1
[[1,1,1,2]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => ? ∊ {1,3,3,3,3,3,3} + 1
[[1,1,2,2]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => ? ∊ {1,3,3,3,3,3,3} + 1
[[1,2,2,2]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => ? ∊ {1,3,3,3,3,3,3} + 1
[[2,2,2,2]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => ? ∊ {1,3,3,3,3,3,3} + 1
[[1,1,1],[2]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => ? ∊ {1,3,3,3,3,3,3} + 1
[[1,1,2],[2]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => ? ∊ {1,3,3,3,3,3,3} + 1
[[1,2,2],[2]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => ? ∊ {1,3,3,3,3,3,3} + 1
[[1,1],[2,2]]
=> [2,2]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => 3 = 2 + 1
[[1,5]]
=> [2]
=> [1,0,1,0]
=> [3,1,2] => 2 = 1 + 1
[[2,5]]
=> [2]
=> [1,0,1,0]
=> [3,1,2] => 2 = 1 + 1
[[3,5]]
=> [2]
=> [1,0,1,0]
=> [3,1,2] => 2 = 1 + 1
[[4,5]]
=> [2]
=> [1,0,1,0]
=> [3,1,2] => 2 = 1 + 1
[[5,5]]
=> [2]
=> [1,0,1,0]
=> [3,1,2] => 2 = 1 + 1
[[1],[5]]
=> [1,1]
=> [1,1,0,0]
=> [2,3,1] => 2 = 1 + 1
[[2],[5]]
=> [1,1]
=> [1,1,0,0]
=> [2,3,1] => 2 = 1 + 1
[[3],[5]]
=> [1,1]
=> [1,1,0,0]
=> [2,3,1] => 2 = 1 + 1
[[4],[5]]
=> [1,1]
=> [1,1,0,0]
=> [2,3,1] => 2 = 1 + 1
[[1,1,4]]
=> [3]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => 3 = 2 + 1
[[1,2,4]]
=> [3]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => 3 = 2 + 1
[[1,3,4]]
=> [3]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => 3 = 2 + 1
[[1,4,4]]
=> [3]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => 3 = 2 + 1
[[2,2,4]]
=> [3]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => 3 = 2 + 1
[[2,3,4]]
=> [3]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => 3 = 2 + 1
[[2,4,4]]
=> [3]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => 3 = 2 + 1
[[1,1,1,3]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[1,1,2,3]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[1,1,3,3]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[1,2,2,3]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[1,2,3,3]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[1,3,3,3]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[2,2,2,3]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[2,2,3,3]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[2,3,3,3]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[3,3,3,3]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[1,1,1],[3]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[1,1,2],[3]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[1,1,3],[2]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[1,1,3],[3]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[1,2,2],[3]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[1,2,3],[2]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[1,2,3],[3]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[1,3,3],[2]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[1,3,3],[3]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[2,2,2],[3]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[2,2,3],[3]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[2,3,3],[3]]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[1,1],[2],[3]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[1,2],[2],[3]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[1,3],[2],[3]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => ? ∊ {1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[1,1,1,1,2]]
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => ? ∊ {1,2,3,4,4,4,4,4,4,4,4} + 1
[[1,1,1,2,2]]
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => ? ∊ {1,2,3,4,4,4,4,4,4,4,4} + 1
[[1,1,2,2,2]]
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => ? ∊ {1,2,3,4,4,4,4,4,4,4,4} + 1
[[1,2,2,2,2]]
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => ? ∊ {1,2,3,4,4,4,4,4,4,4,4} + 1
[[2,2,2,2,2]]
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => ? ∊ {1,2,3,4,4,4,4,4,4,4,4} + 1
[[1,1,1,1],[2]]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => ? ∊ {1,2,3,4,4,4,4,4,4,4,4} + 1
[[1,1,1,2],[2]]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => ? ∊ {1,2,3,4,4,4,4,4,4,4,4} + 1
[[1,1,2,2],[2]]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => ? ∊ {1,2,3,4,4,4,4,4,4,4,4} + 1
[[1,2,2,2],[2]]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => ? ∊ {1,2,3,4,4,4,4,4,4,4,4} + 1
[[1,1,1],[2,2]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => ? ∊ {1,2,3,4,4,4,4,4,4,4,4} + 1
[[1,1,2],[2,2]]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => ? ∊ {1,2,3,4,4,4,4,4,4,4,4} + 1
[[1,1,1,4]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[1,1,2,4]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[1,1,3,4]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[1,1,4,4]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[1,2,2,4]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[1,2,3,4]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
[[1,2,4,4]]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} + 1
Description
The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$.
Matching statistic: St001633
Mp00075: Semistandard tableaux reading word permutationPermutations
Mp00208: Permutations lattice of intervalsLattices
Mp00193: Lattices to posetPosets
St001633: Posets ⟶ ℤResult quality: 16% values known / values provided: 16%distinct values known / distinct values provided: 40%
Values
[[1,2]]
=> [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[2,2]]
=> [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[1],[2]]
=> [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[1,3]]
=> [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[2,3]]
=> [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[3,3]]
=> [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[1],[3]]
=> [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[2],[3]]
=> [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[1,1,2]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1,2,2]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2,2,2]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1,1],[2]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[1,2],[2]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[1,4]]
=> [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[2,4]]
=> [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[3,4]]
=> [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[4,4]]
=> [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[1],[4]]
=> [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[2],[4]]
=> [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[3],[4]]
=> [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[1,1,3]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1,2,3]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1,3,3]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2,2,3]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2,3,3]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[3,3,3]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1,1],[3]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[1,2],[3]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[1,3],[2]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[1,3],[3]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[2,2],[3]]
=> [3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[2,3],[3]]
=> [2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> 1
[[1],[2],[3]]
=> [3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1,1,1,2]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? ∊ {1,2,3,3,3,3,3,3}
[[1,1,2,2]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? ∊ {1,2,3,3,3,3,3,3}
[[1,2,2,2]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? ∊ {1,2,3,3,3,3,3,3}
[[2,2,2,2]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? ∊ {1,2,3,3,3,3,3,3}
[[1,1,1],[2]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? ∊ {1,2,3,3,3,3,3,3}
[[1,1,2],[2]]
=> [3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? ∊ {1,2,3,3,3,3,3,3}
[[1,2,2],[2]]
=> [2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? ∊ {1,2,3,3,3,3,3,3}
[[1,1],[2,2]]
=> [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? ∊ {1,2,3,3,3,3,3,3}
[[1,5]]
=> [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[2,5]]
=> [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[3,5]]
=> [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[4,5]]
=> [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[5,5]]
=> [1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[1],[5]]
=> [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[2],[5]]
=> [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[3],[5]]
=> [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[4],[5]]
=> [2,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[1,1,4]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1,2,4]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1,3,4]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1,4,4]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2,2,4]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2,3,4]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[2,4,4]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[3,3,4]]
=> [1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[[1,1,1,3]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[1,1,2,3]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[1,1,3,3]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[1,2,2,3]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[1,2,3,3]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[1,3,3,3]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[2,2,2,3]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[2,2,3,3]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[2,3,3,3]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[3,3,3,3]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[1,1,1],[3]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[1,1,2],[3]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[1,1,3],[2]]
=> [3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[1,1,3],[3]]
=> [3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[1,2,2],[3]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[1,2,3],[2]]
=> [2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[1,2,3],[3]]
=> [3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[1,3,3],[2]]
=> [2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[1,3,3],[3]]
=> [2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[2,2,2],[3]]
=> [4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[2,2,3],[3]]
=> [3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[2,3,3],[3]]
=> [2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[1,1],[2,3]]
=> [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[1,1],[3,3]]
=> [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[1,2],[3,3]]
=> [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[2,2],[3,3]]
=> [3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[1,1],[2],[3]]
=> [4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[1,2],[2],[3]]
=> [4,2,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[1,3],[2],[3]]
=> [3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[1,1,1,1,2]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? ∊ {1,2,3,4,4,4,4,4,4,4,4}
[[1,1,1,2,2]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? ∊ {1,2,3,4,4,4,4,4,4,4,4}
[[1,1,2,2,2]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? ∊ {1,2,3,4,4,4,4,4,4,4,4}
[[1,2,2,2,2]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? ∊ {1,2,3,4,4,4,4,4,4,4,4}
[[2,2,2,2,2]]
=> [1,2,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,12),(2,11),(3,11),(3,14),(4,12),(4,15),(5,14),(5,15),(7,9),(8,10),(9,6),(10,6),(11,7),(12,8),(13,9),(13,10),(14,7),(14,13),(15,8),(15,13)],16)
=> ? ∊ {1,2,3,4,4,4,4,4,4,4,4}
[[1,1,1,1],[2]]
=> [5,1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ? ∊ {1,2,3,4,4,4,4,4,4,4,4}
[[1,1,1,2],[2]]
=> [4,1,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(4,6),(5,6),(5,7),(6,10),(7,10),(8,9),(10,8)],11)
=> ? ∊ {1,2,3,4,4,4,4,4,4,4,4}
[[1,1,2,2],[2]]
=> [3,1,2,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,7),(4,7),(5,6),(5,9),(6,10),(7,8),(8,9),(9,10)],11)
=> ? ∊ {1,2,3,4,4,4,4,4,4,4,4}
[[1,2,2,2],[2]]
=> [2,1,3,4,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,11),(3,10),(4,9),(4,12),(5,10),(5,12),(7,6),(8,6),(9,7),(10,8),(11,9),(12,7),(12,8)],13)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,11),(3,10),(4,9),(4,12),(5,10),(5,12),(7,6),(8,6),(9,7),(10,8),(11,9),(12,7),(12,8)],13)
=> ? ∊ {1,2,3,4,4,4,4,4,4,4,4}
[[1,1,1],[2,2]]
=> [4,5,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> ? ∊ {1,2,3,4,4,4,4,4,4,4,4}
[[1,1,2],[2,2]]
=> [3,4,1,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,7),(4,6),(5,6),(6,9),(7,9),(9,8)],10)
=> ? ∊ {1,2,3,4,4,4,4,4,4,4,4}
[[1,1,1,4]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[[1,1,2,4]]
=> [1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
Description
The number of simple modules with projective dimension two in the incidence algebra of the poset.
The following 44 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001095The number of non-isomorphic posets with precisely one further covering relation. St000906The length of the shortest maximal chain in a poset. St000550The number of modular elements of a lattice. St000259The diameter of a connected graph. St000166The depth minus 1 of an ordered tree. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000080The rank of the poset. St000782The indicator function of whether a given perfect matching is an L & P matching. St001722The number of minimal chains with small intervals between a binary word and the top element. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St001171The vector space dimension of $Ext_A^1(I_o,A)$ when $I_o$ is the tilting module corresponding to the permutation $o$ in the Auslander algebra $A$ of $K[x]/(x^n)$. St000260The radius of a connected graph. St000264The girth of a graph, which is not a tree. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000454The largest eigenvalue of a graph if it is integral. St000668The least common multiple of the parts of the partition. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000933The number of multipartitions of sizes given by an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St000993The multiplicity of the largest part of an integer partition. St001568The smallest positive integer that does not appear twice in the partition. St000422The energy of a graph, if it is integral. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000101The cocharge of a semistandard tableau. St000181The number of connected components of the Hasse diagram for the poset. St001408The number of maximal entries in a semistandard tableau. St001410The minimal entry of a semistandard tableau. St001890The maximum magnitude of the Möbius function of a poset. St000102The charge of a semistandard tableau. St000739The first entry in the last row of a semistandard tableau. St001401The number of distinct entries in a semistandard tableau. St001409The maximal entry of a semistandard tableau. St001637The number of (upper) dissectors of a poset. St001668The number of points of the poset minus the width of the poset. St001964The interval resolution global dimension of a poset. St000327The number of cover relations in a poset. St000635The number of strictly order preserving maps of a poset into itself. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition.