Your data matches 27 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00080: Set partitions to permutationPermutations
St000141: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => 0
{{1,2}}
=> [2,1] => 1
{{1},{2}}
=> [1,2] => 0
{{1,2,3}}
=> [2,3,1] => 1
{{1,2},{3}}
=> [2,1,3] => 1
{{1,3},{2}}
=> [3,2,1] => 2
{{1},{2,3}}
=> [1,3,2] => 1
{{1},{2},{3}}
=> [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => 1
{{1,2,3},{4}}
=> [2,3,1,4] => 1
{{1,2,4},{3}}
=> [2,4,3,1] => 2
{{1,2},{3,4}}
=> [2,1,4,3] => 1
{{1,2},{3},{4}}
=> [2,1,3,4] => 1
{{1,3,4},{2}}
=> [3,2,4,1] => 2
{{1,3},{2,4}}
=> [3,4,1,2] => 2
{{1,3},{2},{4}}
=> [3,2,1,4] => 2
{{1,4},{2,3}}
=> [4,3,2,1] => 3
{{1},{2,3,4}}
=> [1,3,4,2] => 1
{{1},{2,3},{4}}
=> [1,3,2,4] => 1
{{1,4},{2},{3}}
=> [4,2,3,1] => 3
{{1},{2,4},{3}}
=> [1,4,3,2] => 2
{{1},{2},{3,4}}
=> [1,2,4,3] => 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => 1
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => 1
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => 2
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => 1
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => 1
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => 2
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => 2
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => 2
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => 3
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => 1
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => 1
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => 3
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => 2
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => 1
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => 1
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => 2
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => 3
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => 2
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => 2
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => 2
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => 2
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => 2
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => 3
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => 2
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => 2
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => 3
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => 3
Description
The maximum drop size of a permutation. The maximum drop size of a permutation $\pi$ of $[n]=\{1,2,\ldots, n\}$ is defined to be the maximum value of $i-\pi(i)$.
Mp00080: Set partitions to permutationPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
St000013: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1,0]
=> 1 = 0 + 1
{{1,2}}
=> [2,1] => [1,1,0,0]
=> 2 = 1 + 1
{{1},{2}}
=> [1,2] => [1,0,1,0]
=> 1 = 0 + 1
{{1,2,3}}
=> [2,3,1] => [1,1,0,1,0,0]
=> 2 = 1 + 1
{{1,2},{3}}
=> [2,1,3] => [1,1,0,0,1,0]
=> 2 = 1 + 1
{{1,3},{2}}
=> [3,2,1] => [1,1,1,0,0,0]
=> 3 = 2 + 1
{{1},{2,3}}
=> [1,3,2] => [1,0,1,1,0,0]
=> 2 = 1 + 1
{{1},{2},{3}}
=> [1,2,3] => [1,0,1,0,1,0]
=> 1 = 0 + 1
{{1,2,3,4}}
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
{{1,2,3},{4}}
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> 2 = 1 + 1
{{1,2,4},{3}}
=> [2,4,3,1] => [1,1,0,1,1,0,0,0]
=> 3 = 2 + 1
{{1,2},{3,4}}
=> [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
{{1,3,4},{2}}
=> [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> 3 = 2 + 1
{{1,3},{2,4}}
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
{{1,4},{2,3}}
=> [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
{{1},{2,3,4}}
=> [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> 2 = 1 + 1
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> 2 = 1 + 1
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> 2 = 1 + 1
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,1,0,1,1,0,0,1,0,0]
=> 3 = 2 + 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,1,0,1,1,0,1,0,0,0]
=> 3 = 2 + 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0]
=> 3 = 2 + 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,1,0,1,1,1,0,0,0,0]
=> 4 = 3 + 1
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> 2 = 1 + 1
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> 2 = 1 + 1
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,1,0,1,1,1,0,0,0,0]
=> 4 = 3 + 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> 2 = 1 + 1
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> 2 = 1 + 1
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,1,1,0,0,1,0,1,0,0]
=> 3 = 2 + 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,1,1,0,1,1,0,0,0,0]
=> 4 = 3 + 1
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,1,1,0,0,1,0,0,1,0]
=> 3 = 2 + 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,1,1,0,1,0,1,0,0,0]
=> 3 = 2 + 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,1,1,0,1,0,0,1,0,0]
=> 3 = 2 + 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> 3 = 2 + 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,1,1,0,0,1,1,0,0,0]
=> 3 = 2 + 1
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> 4 = 3 + 1
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 3 = 2 + 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 3 = 2 + 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> 4 = 3 + 1
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> 4 = 3 + 1
Description
The height of a Dyck path. The height of a Dyck path $D$ of semilength $n$ is defined as the maximal height of a peak of $D$. The height of $D$ at position $i$ is the number of up-steps minus the number of down-steps before position $i$.
Matching statistic: St000306
Mp00080: Set partitions to permutationPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00030: Dyck paths zeta mapDyck paths
St000306: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1,0]
=> [1,0]
=> 0
{{1,2}}
=> [2,1] => [1,1,0,0]
=> [1,0,1,0]
=> 1
{{1},{2}}
=> [1,2] => [1,0,1,0]
=> [1,1,0,0]
=> 0
{{1,2,3}}
=> [2,3,1] => [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 1
{{1,2},{3}}
=> [2,1,3] => [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 1
{{1,3},{2}}
=> [3,2,1] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2
{{1},{2,3}}
=> [1,3,2] => [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
{{1},{2},{3}}
=> [1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
{{1,2,3,4}}
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
{{1,2,3},{4}}
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
{{1,2,4},{3}}
=> [2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2
{{1,2},{3,4}}
=> [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1
{{1,3,4},{2}}
=> [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
{{1,3},{2,4}}
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 2
{{1,4},{2,3}}
=> [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3
{{1},{2,3,4}}
=> [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 1
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 2
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 3
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 3
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 2
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 2
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 3
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 3
Description
The bounce count of a Dyck path. For a Dyck path $D$ of length $2n$, this is the number of points $(i,i)$ for $1 \leq i < n$ that are touching points of the [[Mp00099|bounce path]] of $D$.
Matching statistic: St000662
Mp00080: Set partitions to permutationPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00031: Dyck paths to 312-avoiding permutationPermutations
St000662: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1,0]
=> [1] => 0
{{1,2}}
=> [2,1] => [1,1,0,0]
=> [2,1] => 1
{{1},{2}}
=> [1,2] => [1,0,1,0]
=> [1,2] => 0
{{1,2,3}}
=> [2,3,1] => [1,1,0,1,0,0]
=> [2,3,1] => 1
{{1,2},{3}}
=> [2,1,3] => [1,1,0,0,1,0]
=> [2,1,3] => 1
{{1,3},{2}}
=> [3,2,1] => [1,1,1,0,0,0]
=> [3,2,1] => 2
{{1},{2,3}}
=> [1,3,2] => [1,0,1,1,0,0]
=> [1,3,2] => 1
{{1},{2},{3}}
=> [1,2,3] => [1,0,1,0,1,0]
=> [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 1
{{1,2,3},{4}}
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1
{{1,2,4},{3}}
=> [2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 2
{{1,2},{3,4}}
=> [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 1
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
{{1,3,4},{2}}
=> [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 2
{{1,3},{2,4}}
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 2
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 2
{{1,4},{2,3}}
=> [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3
{{1},{2,3,4}}
=> [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 3
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 2
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 1
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 1
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 2
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 1
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 1
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 2
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => 2
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 2
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 3
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 1
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 1
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 3
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 2
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 1
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => 2
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,1,1,0,1,1,0,0,0,0]
=> [3,5,4,2,1] => 3
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => 2
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,2,1] => 2
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,1,1,0,1,0,0,1,0,0]
=> [3,4,2,5,1] => 2
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> [3,4,2,1,5] => 2
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => 2
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> [3,5,4,2,1] => 3
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => 2
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => 2
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => 3
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> [4,3,5,2,1] => 3
Description
The staircase size of the code of a permutation. The code $c(\pi)$ of a permutation $\pi$ of length $n$ is given by the sequence $(c_1,\ldots,c_{n})$ with $c_i = |\{j > i : \pi(j) < \pi(i)\}|$. This is a bijection between permutations and all sequences $(c_1,\ldots,c_n)$ with $0 \leq c_i \leq n-i$. The staircase size of the code is the maximal $k$ such that there exists a subsequence $(c_{i_k},\ldots,c_{i_1})$ of $c(\pi)$ with $c_{i_j} \geq j$. This statistic is mapped through [[Mp00062]] to the number of descents, showing that together with the number of inversions [[St000018]] it is Euler-Mahonian.
Matching statistic: St001046
Mp00080: Set partitions to permutationPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00146: Dyck paths to tunnel matchingPerfect matchings
St001046: Perfect matchings ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1,0]
=> [(1,2)]
=> 0
{{1,2}}
=> [2,1] => [1,1,0,0]
=> [(1,4),(2,3)]
=> 1
{{1},{2}}
=> [1,2] => [1,0,1,0]
=> [(1,2),(3,4)]
=> 0
{{1,2,3}}
=> [2,3,1] => [1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5)]
=> 1
{{1,2},{3}}
=> [2,1,3] => [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 1
{{1,3},{2}}
=> [3,2,1] => [1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> 2
{{1},{2,3}}
=> [1,3,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 1
{{1},{2},{3}}
=> [1,2,3] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 0
{{1,2,3,4}}
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7)]
=> 1
{{1,2,3},{4}}
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> 1
{{1,2,4},{3}}
=> [2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [(1,8),(2,3),(4,7),(5,6)]
=> 2
{{1,2},{3,4}}
=> [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> 1
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> 1
{{1,3,4},{2}}
=> [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7)]
=> 2
{{1,3},{2,4}}
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [(1,8),(2,7),(3,4),(5,6)]
=> 2
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> 2
{{1,4},{2,3}}
=> [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> 3
{{1},{2,3,4}}
=> [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> 1
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> 1
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> 3
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> 2
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> 1
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [(1,8),(2,3),(4,5),(6,7),(9,10)]
=> 1
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,1,0,1,0,1,1,0,0,0]
=> [(1,10),(2,3),(4,5),(6,9),(7,8)]
=> 2
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [(1,6),(2,3),(4,5),(7,10),(8,9)]
=> 1
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8),(9,10)]
=> 1
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,1,0,1,1,0,0,1,0,0]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> 2
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,1,0,1,1,0,1,0,0,0]
=> [(1,10),(2,3),(4,9),(5,6),(7,8)]
=> 2
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0]
=> [(1,8),(2,3),(4,7),(5,6),(9,10)]
=> 2
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,1,0,1,1,1,0,0,0,0]
=> [(1,10),(2,3),(4,9),(5,8),(6,7)]
=> 3
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9)]
=> 1
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [(1,4),(2,3),(5,8),(6,7),(9,10)]
=> 1
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,1,0,1,1,1,0,0,0,0]
=> [(1,10),(2,3),(4,9),(5,8),(6,7)]
=> 3
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [(1,4),(2,3),(5,10),(6,9),(7,8)]
=> 2
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9)]
=> 1
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10)]
=> 1
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,1,1,0,0,1,0,1,0,0]
=> [(1,10),(2,5),(3,4),(6,7),(8,9)]
=> 2
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,1,1,0,1,1,0,0,0,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7)]
=> 3
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,1,1,0,0,1,0,0,1,0]
=> [(1,8),(2,5),(3,4),(6,7),(9,10)]
=> 2
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,1,1,0,1,0,1,0,0,0]
=> [(1,10),(2,9),(3,4),(5,6),(7,8)]
=> 2
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,1,1,0,1,0,0,1,0,0]
=> [(1,10),(2,7),(3,4),(5,6),(8,9)]
=> 2
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> [(1,8),(2,7),(3,4),(5,6),(9,10)]
=> 2
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,1,1,0,0,1,1,0,0,0]
=> [(1,10),(2,5),(3,4),(6,9),(7,8)]
=> 2
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7)]
=> 3
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,10),(8,9)]
=> 2
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> 2
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> [(1,10),(2,7),(3,6),(4,5),(8,9)]
=> 3
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> [(1,10),(2,9),(3,6),(4,5),(7,8)]
=> 3
Description
The maximal number of arcs nesting a given arc of a perfect matching. This is also the largest weight of a down step in the histoire d'Hermite corresponding to the perfect matching.
Matching statistic: St000062
Mp00080: Set partitions to permutationPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00025: Dyck paths to 132-avoiding permutationPermutations
St000062: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1,0]
=> [1] => 1 = 0 + 1
{{1,2}}
=> [2,1] => [1,1,0,0]
=> [1,2] => 2 = 1 + 1
{{1},{2}}
=> [1,2] => [1,0,1,0]
=> [2,1] => 1 = 0 + 1
{{1,2,3}}
=> [2,3,1] => [1,1,0,1,0,0]
=> [2,1,3] => 2 = 1 + 1
{{1,2},{3}}
=> [2,1,3] => [1,1,0,0,1,0]
=> [3,1,2] => 2 = 1 + 1
{{1,3},{2}}
=> [3,2,1] => [1,1,1,0,0,0]
=> [1,2,3] => 3 = 2 + 1
{{1},{2,3}}
=> [1,3,2] => [1,0,1,1,0,0]
=> [2,3,1] => 2 = 1 + 1
{{1},{2},{3}}
=> [1,2,3] => [1,0,1,0,1,0]
=> [3,2,1] => 1 = 0 + 1
{{1,2,3,4}}
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 2 = 1 + 1
{{1,2,3},{4}}
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 2 = 1 + 1
{{1,2,4},{3}}
=> [2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 3 = 2 + 1
{{1,2},{3,4}}
=> [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 2 = 1 + 1
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 2 = 1 + 1
{{1,3,4},{2}}
=> [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 3 = 2 + 1
{{1,3},{2,4}}
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 3 = 2 + 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 3 = 2 + 1
{{1,4},{2,3}}
=> [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 4 = 3 + 1
{{1},{2,3,4}}
=> [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 2 = 1 + 1
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 2 = 1 + 1
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 4 = 3 + 1
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 3 = 2 + 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 2 = 1 + 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 1 = 0 + 1
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => 2 = 1 + 1
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => 2 = 1 + 1
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => 3 = 2 + 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => 2 = 1 + 1
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => 2 = 1 + 1
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => 3 = 2 + 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => 3 = 2 + 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => 3 = 2 + 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => 4 = 3 + 1
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => 2 = 1 + 1
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => 2 = 1 + 1
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => 4 = 3 + 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => 3 = 2 + 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => 2 = 1 + 1
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => 2 = 1 + 1
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => 3 = 2 + 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => 4 = 3 + 1
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => 3 = 2 + 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => 3 = 2 + 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => 3 = 2 + 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => 3 = 2 + 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => 3 = 2 + 1
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => 4 = 3 + 1
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => 3 = 2 + 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => 3 = 2 + 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,3,5] => 4 = 3 + 1
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => 4 = 3 + 1
Description
The length of the longest increasing subsequence of the permutation.
Matching statistic: St000166
Mp00080: Set partitions to permutationPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00026: Dyck paths to ordered treeOrdered trees
St000166: Ordered trees ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1,0]
=> [[]]
=> 1 = 0 + 1
{{1,2}}
=> [2,1] => [1,1,0,0]
=> [[[]]]
=> 2 = 1 + 1
{{1},{2}}
=> [1,2] => [1,0,1,0]
=> [[],[]]
=> 1 = 0 + 1
{{1,2,3}}
=> [2,3,1] => [1,1,0,1,0,0]
=> [[[],[]]]
=> 2 = 1 + 1
{{1,2},{3}}
=> [2,1,3] => [1,1,0,0,1,0]
=> [[[]],[]]
=> 2 = 1 + 1
{{1,3},{2}}
=> [3,2,1] => [1,1,1,0,0,0]
=> [[[[]]]]
=> 3 = 2 + 1
{{1},{2,3}}
=> [1,3,2] => [1,0,1,1,0,0]
=> [[],[[]]]
=> 2 = 1 + 1
{{1},{2},{3}}
=> [1,2,3] => [1,0,1,0,1,0]
=> [[],[],[]]
=> 1 = 0 + 1
{{1,2,3,4}}
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [[[],[],[]]]
=> 2 = 1 + 1
{{1,2,3},{4}}
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [[[],[]],[]]
=> 2 = 1 + 1
{{1,2,4},{3}}
=> [2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [[[],[[]]]]
=> 3 = 2 + 1
{{1,2},{3,4}}
=> [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [[[]],[[]]]
=> 2 = 1 + 1
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [[[]],[],[]]
=> 2 = 1 + 1
{{1,3,4},{2}}
=> [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [[[[]],[]]]
=> 3 = 2 + 1
{{1,3},{2,4}}
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [[[[],[]]]]
=> 3 = 2 + 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [[[[]]],[]]
=> 3 = 2 + 1
{{1,4},{2,3}}
=> [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [[[[[]]]]]
=> 4 = 3 + 1
{{1},{2,3,4}}
=> [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [[],[[],[]]]
=> 2 = 1 + 1
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [[],[[]],[]]
=> 2 = 1 + 1
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [[[[[]]]]]
=> 4 = 3 + 1
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [[],[[[]]]]
=> 3 = 2 + 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [[],[],[[]]]
=> 2 = 1 + 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [[],[],[],[]]
=> 1 = 0 + 1
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [[[],[],[],[]]]
=> 2 = 1 + 1
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [[[],[],[]],[]]
=> 2 = 1 + 1
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,1,0,1,0,1,1,0,0,0]
=> [[[],[],[[]]]]
=> 3 = 2 + 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [[[],[]],[[]]]
=> 2 = 1 + 1
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [[[],[]],[],[]]
=> 2 = 1 + 1
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,1,0,1,1,0,0,1,0,0]
=> [[[],[[]],[]]]
=> 3 = 2 + 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,1,0,1,1,0,1,0,0,0]
=> [[[],[[],[]]]]
=> 3 = 2 + 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0]
=> [[[],[[]]],[]]
=> 3 = 2 + 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,1,0,1,1,1,0,0,0,0]
=> [[[],[[[]]]]]
=> 4 = 3 + 1
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> [[[]],[[],[]]]
=> 2 = 1 + 1
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [[[]],[[]],[]]
=> 2 = 1 + 1
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,1,0,1,1,1,0,0,0,0]
=> [[[],[[[]]]]]
=> 4 = 3 + 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [[[]],[[[]]]]
=> 3 = 2 + 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [[[]],[],[[]]]
=> 2 = 1 + 1
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [[[]],[],[],[]]
=> 2 = 1 + 1
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,1,1,0,0,1,0,1,0,0]
=> [[[[]],[],[]]]
=> 3 = 2 + 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,1,1,0,1,1,0,0,0,0]
=> [[[[],[[]]]]]
=> 4 = 3 + 1
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,1,1,0,0,1,0,0,1,0]
=> [[[[]],[]],[]]
=> 3 = 2 + 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,1,1,0,1,0,1,0,0,0]
=> [[[[],[],[]]]]
=> 3 = 2 + 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,1,1,0,1,0,0,1,0,0]
=> [[[[],[]],[]]]
=> 3 = 2 + 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> [[[[],[]]],[]]
=> 3 = 2 + 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,1,1,0,0,1,1,0,0,0]
=> [[[[]],[[]]]]
=> 3 = 2 + 1
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> [[[[],[[]]]]]
=> 4 = 3 + 1
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> [[[[]]],[[]]]
=> 3 = 2 + 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [[[[]]],[],[]]
=> 3 = 2 + 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> [[[[[]]],[]]]
=> 4 = 3 + 1
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> [[[[[]],[]]]]
=> 4 = 3 + 1
Description
The depth minus 1 of an ordered tree. The ordered trees of size $n$ are bijection with the Dyck paths of size $n-1$, and this statistic then corresponds to [[St000013]].
Mp00080: Set partitions to permutationPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
St000442: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
{{1,2}}
=> [2,1] => [1,1,0,0]
=> [1,1,1,0,0,0]
=> 2 = 1 + 1
{{1},{2}}
=> [1,2] => [1,0,1,0]
=> [1,1,0,1,0,0]
=> 1 = 0 + 1
{{1,2,3}}
=> [2,3,1] => [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
{{1,2},{3}}
=> [2,1,3] => [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
{{1,3},{2}}
=> [3,2,1] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 3 = 2 + 1
{{1},{2,3}}
=> [1,3,2] => [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
{{1},{2},{3}}
=> [1,2,3] => [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
{{1,2,3,4}}
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 2 = 1 + 1
{{1,2,3},{4}}
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 2 = 1 + 1
{{1,2,4},{3}}
=> [2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 3 = 2 + 1
{{1,2},{3,4}}
=> [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2 = 1 + 1
{{1,3,4},{2}}
=> [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3 = 2 + 1
{{1,3},{2,4}}
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 3 = 2 + 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 3 = 2 + 1
{{1,4},{2,3}}
=> [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4 = 3 + 1
{{1},{2,3,4}}
=> [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2 = 1 + 1
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 2 = 1 + 1
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4 = 3 + 1
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 3 = 2 + 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 2 = 1 + 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1 = 0 + 1
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> 2 = 1 + 1
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> 2 = 1 + 1
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 3 = 2 + 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 2 = 1 + 1
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> 3 = 2 + 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> 3 = 2 + 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 3 = 2 + 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 4 = 3 + 1
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 2 = 1 + 1
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 2 = 1 + 1
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 4 = 3 + 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 3 = 2 + 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 2 = 1 + 1
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 3 = 2 + 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 4 = 3 + 1
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> 3 = 2 + 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 3 = 2 + 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> 3 = 2 + 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> 3 = 2 + 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> 3 = 2 + 1
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 4 = 3 + 1
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 3 = 2 + 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 3 = 2 + 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 4 = 3 + 1
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 4 = 3 + 1
Description
The maximal area to the right of an up step of a Dyck path.
Matching statistic: St000684
Mp00080: Set partitions to permutationPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
St000684: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1,0]
=> [1,0]
=> 1 = 0 + 1
{{1,2}}
=> [2,1] => [1,1,0,0]
=> [1,0,1,0]
=> 2 = 1 + 1
{{1},{2}}
=> [1,2] => [1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
{{1,2,3}}
=> [2,3,1] => [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 2 = 1 + 1
{{1,2},{3}}
=> [2,1,3] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 2 = 1 + 1
{{1,3},{2}}
=> [3,2,1] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3 = 2 + 1
{{1},{2,3}}
=> [1,3,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2 = 1 + 1
{{1},{2},{3}}
=> [1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
{{1,2,3,4}}
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
{{1,2,3},{4}}
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
{{1,2,4},{3}}
=> [2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> 3 = 2 + 1
{{1,2},{3,4}}
=> [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
{{1,3,4},{2}}
=> [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 3 = 2 + 1
{{1,3},{2,4}}
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 3 = 2 + 1
{{1,4},{2,3}}
=> [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
{{1},{2,3,4}}
=> [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2 = 1 + 1
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 3 = 2 + 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 2 = 1 + 1
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2 = 1 + 1
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 3 = 2 + 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 2 + 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 3 = 2 + 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 4 = 3 + 1
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 4 = 3 + 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 4 = 3 + 1
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 3 = 2 + 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3 = 2 + 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 3 = 2 + 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 4 = 3 + 1
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 4 = 3 + 1
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 4 = 3 + 1
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 4 = 3 + 1
Description
The global dimension of the LNakayama algebra associated to a Dyck path. An n-LNakayama algebra is a quiver algebra with a directed line as a connected quiver with $n$ points for $n \geq 2$. Number those points from the left to the right by $0,1,\ldots,n-1$. The algebra is then uniquely determined by the dimension $c_i$ of the projective indecomposable modules at point $i$. Such algebras are then uniquely determined by lists of the form $[c_0,c_1,...,c_{n-1}]$ with the conditions: $c_{n-1}=1$ and $c_i -1 \leq c_{i+1}$ for all $i$. The number of such algebras is then the $n-1$-st Catalan number $C_{n-1}$. One can get also an interpretation with Dyck paths by associating the top boundary of the Auslander-Reiten quiver (which is a Dyck path) to those algebras. Example: [3,4,3,3,2,1] corresponds to the Dyck path [1,1,0,1,1,0,0,1,0,0]. Conjecture: that there is an explicit bijection between $n$-LNakayama algebras with global dimension bounded by $m$ and Dyck paths with height at most $m$. Examples: * For $m=2$, the number of Dyck paths with global dimension at most $m$ starts for $n \geq 2$ with 1,2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192. * For $m=3$, the number of Dyck paths with global dimension at most $m$ starts for $n \geq 2$ with 1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181, 10946, 28657, 75025, 196418.
Matching statistic: St000720
Mp00080: Set partitions to permutationPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00146: Dyck paths to tunnel matchingPerfect matchings
St000720: Perfect matchings ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1,0]
=> [(1,2)]
=> 1 = 0 + 1
{{1,2}}
=> [2,1] => [1,1,0,0]
=> [(1,4),(2,3)]
=> 2 = 1 + 1
{{1},{2}}
=> [1,2] => [1,0,1,0]
=> [(1,2),(3,4)]
=> 1 = 0 + 1
{{1,2,3}}
=> [2,3,1] => [1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5)]
=> 2 = 1 + 1
{{1,2},{3}}
=> [2,1,3] => [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> 2 = 1 + 1
{{1,3},{2}}
=> [3,2,1] => [1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> 3 = 2 + 1
{{1},{2,3}}
=> [1,3,2] => [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> 2 = 1 + 1
{{1},{2},{3}}
=> [1,2,3] => [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> 1 = 0 + 1
{{1,2,3,4}}
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7)]
=> 2 = 1 + 1
{{1,2,3},{4}}
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> 2 = 1 + 1
{{1,2,4},{3}}
=> [2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [(1,8),(2,3),(4,7),(5,6)]
=> 3 = 2 + 1
{{1,2},{3,4}}
=> [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> 2 = 1 + 1
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> 2 = 1 + 1
{{1,3,4},{2}}
=> [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7)]
=> 3 = 2 + 1
{{1,3},{2,4}}
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [(1,8),(2,7),(3,4),(5,6)]
=> 3 = 2 + 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> 3 = 2 + 1
{{1,4},{2,3}}
=> [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> 4 = 3 + 1
{{1},{2,3,4}}
=> [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> 2 = 1 + 1
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> 2 = 1 + 1
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> 4 = 3 + 1
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> 3 = 2 + 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> 2 = 1 + 1
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> 1 = 0 + 1
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [(1,10),(2,3),(4,5),(6,7),(8,9)]
=> 2 = 1 + 1
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [(1,8),(2,3),(4,5),(6,7),(9,10)]
=> 2 = 1 + 1
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,1,0,1,0,1,1,0,0,0]
=> [(1,10),(2,3),(4,5),(6,9),(7,8)]
=> 3 = 2 + 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [(1,6),(2,3),(4,5),(7,10),(8,9)]
=> 2 = 1 + 1
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8),(9,10)]
=> 2 = 1 + 1
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,1,0,1,1,0,0,1,0,0]
=> [(1,10),(2,3),(4,7),(5,6),(8,9)]
=> 3 = 2 + 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,1,0,1,1,0,1,0,0,0]
=> [(1,10),(2,3),(4,9),(5,6),(7,8)]
=> 3 = 2 + 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0]
=> [(1,8),(2,3),(4,7),(5,6),(9,10)]
=> 3 = 2 + 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,1,0,1,1,1,0,0,0,0]
=> [(1,10),(2,3),(4,9),(5,8),(6,7)]
=> 4 = 3 + 1
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9)]
=> 2 = 1 + 1
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [(1,4),(2,3),(5,8),(6,7),(9,10)]
=> 2 = 1 + 1
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,1,0,1,1,1,0,0,0,0]
=> [(1,10),(2,3),(4,9),(5,8),(6,7)]
=> 4 = 3 + 1
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [(1,4),(2,3),(5,10),(6,9),(7,8)]
=> 3 = 2 + 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9)]
=> 2 = 1 + 1
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10)]
=> 2 = 1 + 1
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,1,1,0,0,1,0,1,0,0]
=> [(1,10),(2,5),(3,4),(6,7),(8,9)]
=> 3 = 2 + 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,1,1,0,1,1,0,0,0,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7)]
=> 4 = 3 + 1
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,1,1,0,0,1,0,0,1,0]
=> [(1,8),(2,5),(3,4),(6,7),(9,10)]
=> 3 = 2 + 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,1,1,0,1,0,1,0,0,0]
=> [(1,10),(2,9),(3,4),(5,6),(7,8)]
=> 3 = 2 + 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,1,1,0,1,0,0,1,0,0]
=> [(1,10),(2,7),(3,4),(5,6),(8,9)]
=> 3 = 2 + 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> [(1,8),(2,7),(3,4),(5,6),(9,10)]
=> 3 = 2 + 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,1,1,0,0,1,1,0,0,0]
=> [(1,10),(2,5),(3,4),(6,9),(7,8)]
=> 3 = 2 + 1
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7)]
=> 4 = 3 + 1
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,10),(8,9)]
=> 3 = 2 + 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> 3 = 2 + 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> [(1,10),(2,7),(3,6),(4,5),(8,9)]
=> 4 = 3 + 1
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> [(1,10),(2,9),(3,6),(4,5),(7,8)]
=> 4 = 3 + 1
Description
The size of the largest partition in the oscillating tableau corresponding to the perfect matching. Equivalently, this is the maximal number of crosses in the corresponding triangular rook filling that can be covered by a rectangle.
The following 17 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001203We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n-1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a Dyck path as follows: St000094The depth of an ordered tree. St000730The maximal arc length of a set partition. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St000454The largest eigenvalue of a graph if it is integral. St001330The hat guessing number of a graph. St000259The diameter of a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001589The nesting number of a perfect matching. St001645The pebbling number of a connected graph. St000264The girth of a graph, which is not a tree. St000455The second largest eigenvalue of a graph if it is integral. St001060The distinguishing index of a graph. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001624The breadth of a lattice.