searching the database
Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000163
St000163: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
{{1}}
=> 1
{{1,2}}
=> 1
{{1},{2}}
=> 1
{{1,2,3}}
=> 1
{{1,2},{3}}
=> 3
{{1,3},{2}}
=> 3
{{1},{2,3}}
=> 3
{{1},{2},{3}}
=> 1
{{1,2,3,4}}
=> 1
{{1,2,3},{4}}
=> 4
{{1,2,4},{3}}
=> 4
{{1,2},{3,4}}
=> 2
{{1,2},{3},{4}}
=> 4
{{1,3,4},{2}}
=> 4
{{1,3},{2,4}}
=> 1
{{1,3},{2},{4}}
=> 2
{{1,4},{2,3}}
=> 2
{{1},{2,3,4}}
=> 4
{{1},{2,3},{4}}
=> 4
{{1,4},{2},{3}}
=> 4
{{1},{2,4},{3}}
=> 2
{{1},{2},{3,4}}
=> 4
{{1},{2},{3},{4}}
=> 1
{{1,2,3,4,5}}
=> 1
{{1,2,3,4},{5}}
=> 5
{{1,2,3,5},{4}}
=> 5
{{1,2,3},{4,5}}
=> 5
{{1,2,3},{4},{5}}
=> 5
{{1,2,4,5},{3}}
=> 5
{{1,2,4},{3,5}}
=> 5
{{1,2,4},{3},{5}}
=> 5
{{1,2,5},{3,4}}
=> 5
{{1,2},{3,4,5}}
=> 5
{{1,2},{3,4},{5}}
=> 5
{{1,2,5},{3},{4}}
=> 5
{{1,2},{3,5},{4}}
=> 5
{{1,2},{3},{4,5}}
=> 5
{{1,2},{3},{4},{5}}
=> 5
{{1,3,4,5},{2}}
=> 5
{{1,3,4},{2,5}}
=> 5
{{1,3,4},{2},{5}}
=> 5
{{1,3,5},{2,4}}
=> 5
{{1,3},{2,4,5}}
=> 5
{{1,3},{2,4},{5}}
=> 5
{{1,3,5},{2},{4}}
=> 5
{{1,3},{2,5},{4}}
=> 5
{{1,3},{2},{4,5}}
=> 5
{{1,3},{2},{4},{5}}
=> 5
{{1,4,5},{2,3}}
=> 5
{{1,4},{2,3,5}}
=> 5
Description
The size of the orbit of the set partition under rotation.
Matching statistic: St001880
Mp00079: Set partitions —shape⟶ Integer partitions
Mp00179: Integer partitions —to skew partition⟶ Skew partitions
Mp00185: Skew partitions —cell poset⟶ Posets
St001880: Posets ⟶ ℤResult quality: 13% ●values known / values provided: 13%●distinct values known / distinct values provided: 67%
Mp00179: Integer partitions —to skew partition⟶ Skew partitions
Mp00185: Skew partitions —cell poset⟶ Posets
St001880: Posets ⟶ ℤResult quality: 13% ●values known / values provided: 13%●distinct values known / distinct values provided: 67%
Values
{{1}}
=> [1]
=> [[1],[]]
=> ([],1)
=> ? = 1
{{1,2}}
=> [2]
=> [[2],[]]
=> ([(0,1)],2)
=> ? ∊ {1,1}
{{1},{2}}
=> [1,1]
=> [[1,1],[]]
=> ([(0,1)],2)
=> ? ∊ {1,1}
{{1,2,3}}
=> [3]
=> [[3],[]]
=> ([(0,2),(2,1)],3)
=> 3
{{1,2},{3}}
=> [2,1]
=> [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ? ∊ {1,1,3}
{{1,3},{2}}
=> [2,1]
=> [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ? ∊ {1,1,3}
{{1},{2,3}}
=> [2,1]
=> [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ? ∊ {1,1,3}
{{1},{2},{3}}
=> [1,1,1]
=> [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 3
{{1,2,3,4}}
=> [4]
=> [[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
{{1,2,3},{4}}
=> [3,1]
=> [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {1,1,1,2,2,2,2,4,4,4}
{{1,2,4},{3}}
=> [3,1]
=> [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {1,1,1,2,2,2,2,4,4,4}
{{1,2},{3,4}}
=> [2,2]
=> [[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
{{1,2},{3},{4}}
=> [2,1,1]
=> [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {1,1,1,2,2,2,2,4,4,4}
{{1,3,4},{2}}
=> [3,1]
=> [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {1,1,1,2,2,2,2,4,4,4}
{{1,3},{2,4}}
=> [2,2]
=> [[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
{{1,3},{2},{4}}
=> [2,1,1]
=> [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {1,1,1,2,2,2,2,4,4,4}
{{1,4},{2,3}}
=> [2,2]
=> [[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
{{1},{2,3,4}}
=> [3,1]
=> [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {1,1,1,2,2,2,2,4,4,4}
{{1},{2,3},{4}}
=> [2,1,1]
=> [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {1,1,1,2,2,2,2,4,4,4}
{{1,4},{2},{3}}
=> [2,1,1]
=> [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {1,1,1,2,2,2,2,4,4,4}
{{1},{2,4},{3}}
=> [2,1,1]
=> [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {1,1,1,2,2,2,2,4,4,4}
{{1},{2},{3,4}}
=> [2,1,1]
=> [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ? ∊ {1,1,1,2,2,2,2,4,4,4}
{{1},{2},{3},{4}}
=> [1,1,1,1]
=> [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4
{{1,2,3,4,5}}
=> [5]
=> [[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
{{1,2,3,4},{5}}
=> [4,1]
=> [[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {1,1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,2,3,5},{4}}
=> [4,1]
=> [[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {1,1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,2,3},{4,5}}
=> [3,2]
=> [[3,2],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ? ∊ {1,1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,2,3},{4},{5}}
=> [3,1,1]
=> [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ? ∊ {1,1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,2,4,5},{3}}
=> [4,1]
=> [[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {1,1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,2,4},{3,5}}
=> [3,2]
=> [[3,2],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ? ∊ {1,1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,2,4},{3},{5}}
=> [3,1,1]
=> [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ? ∊ {1,1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,2,5},{3,4}}
=> [3,2]
=> [[3,2],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ? ∊ {1,1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,2},{3,4,5}}
=> [3,2]
=> [[3,2],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ? ∊ {1,1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,2},{3,4},{5}}
=> [2,2,1]
=> [[2,2,1],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ? ∊ {1,1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,2,5},{3},{4}}
=> [3,1,1]
=> [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ? ∊ {1,1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,2},{3,5},{4}}
=> [2,2,1]
=> [[2,2,1],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ? ∊ {1,1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,2},{3},{4,5}}
=> [2,2,1]
=> [[2,2,1],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ? ∊ {1,1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,2},{3},{4},{5}}
=> [2,1,1,1]
=> [[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {1,1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,3,4,5},{2}}
=> [4,1]
=> [[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {1,1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,3,4},{2,5}}
=> [3,2]
=> [[3,2],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ? ∊ {1,1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,3,4},{2},{5}}
=> [3,1,1]
=> [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ? ∊ {1,1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,3,5},{2,4}}
=> [3,2]
=> [[3,2],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ? ∊ {1,1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,3},{2,4,5}}
=> [3,2]
=> [[3,2],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ? ∊ {1,1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,3},{2,4},{5}}
=> [2,2,1]
=> [[2,2,1],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ? ∊ {1,1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,3,5},{2},{4}}
=> [3,1,1]
=> [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ? ∊ {1,1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,3},{2,5},{4}}
=> [2,2,1]
=> [[2,2,1],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ? ∊ {1,1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,3},{2},{4,5}}
=> [2,2,1]
=> [[2,2,1],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ? ∊ {1,1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,3},{2},{4},{5}}
=> [2,1,1,1]
=> [[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {1,1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,4,5},{2,3}}
=> [3,2]
=> [[3,2],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ? ∊ {1,1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,4},{2,3,5}}
=> [3,2]
=> [[3,2],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ? ∊ {1,1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,4},{2,3},{5}}
=> [2,2,1]
=> [[2,2,1],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ? ∊ {1,1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,5},{2,3,4}}
=> [3,2]
=> [[3,2],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ? ∊ {1,1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1},{2,3,4,5}}
=> [4,1]
=> [[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {1,1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1},{2,3,4},{5}}
=> [3,1,1]
=> [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ? ∊ {1,1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1,5},{2,3},{4}}
=> [2,2,1]
=> [[2,2,1],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ? ∊ {1,1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1},{2,3,5},{4}}
=> [3,1,1]
=> [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ? ∊ {1,1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1},{2,3},{4,5}}
=> [2,2,1]
=> [[2,2,1],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ? ∊ {1,1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1},{2,3},{4},{5}}
=> [2,1,1,1]
=> [[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ? ∊ {1,1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}
{{1},{2},{3},{4},{5}}
=> [1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
{{1,2,3,4,5,6}}
=> [6]
=> [[6],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
{{1,2,3},{4,5,6}}
=> [3,3]
=> [[3,3],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
{{1,2,4},{3,5,6}}
=> [3,3]
=> [[3,3],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
{{1,2,5},{3,4,6}}
=> [3,3]
=> [[3,3],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
{{1,2,6},{3,4,5}}
=> [3,3]
=> [[3,3],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
{{1,2},{3,4},{5,6}}
=> [2,2,2]
=> [[2,2,2],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
{{1,2},{3,5},{4,6}}
=> [2,2,2]
=> [[2,2,2],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
{{1,2},{3,6},{4,5}}
=> [2,2,2]
=> [[2,2,2],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
{{1,3,4},{2,5,6}}
=> [3,3]
=> [[3,3],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
{{1,3,5},{2,4,6}}
=> [3,3]
=> [[3,3],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
{{1,3,6},{2,4,5}}
=> [3,3]
=> [[3,3],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
{{1,3},{2,4},{5,6}}
=> [2,2,2]
=> [[2,2,2],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
{{1,3},{2,5},{4,6}}
=> [2,2,2]
=> [[2,2,2],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
{{1,3},{2,6},{4,5}}
=> [2,2,2]
=> [[2,2,2],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
{{1,4,5},{2,3,6}}
=> [3,3]
=> [[3,3],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
{{1,4,6},{2,3,5}}
=> [3,3]
=> [[3,3],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
{{1,4},{2,3},{5,6}}
=> [2,2,2]
=> [[2,2,2],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
{{1,5,6},{2,3,4}}
=> [3,3]
=> [[3,3],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
{{1,5},{2,3},{4,6}}
=> [2,2,2]
=> [[2,2,2],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
{{1,6},{2,3},{4,5}}
=> [2,2,2]
=> [[2,2,2],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
{{1,4},{2,5},{3,6}}
=> [2,2,2]
=> [[2,2,2],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
{{1,4},{2,6},{3,5}}
=> [2,2,2]
=> [[2,2,2],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
{{1,5},{2,4},{3,6}}
=> [2,2,2]
=> [[2,2,2],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
{{1,6},{2,4},{3,5}}
=> [2,2,2]
=> [[2,2,2],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
{{1,5},{2,6},{3,4}}
=> [2,2,2]
=> [[2,2,2],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
{{1,6},{2,5},{3,4}}
=> [2,2,2]
=> [[2,2,2],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 6
{{1},{2},{3},{4},{5},{6}}
=> [1,1,1,1,1,1]
=> [[1,1,1,1,1,1],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!