Your data matches 105 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000008
Mp00071: Permutations descent compositionInteger compositions
St000008: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1] => 0
[1,2] => [2] => 0
[2,1] => [1,1] => 1
[1,2,3] => [3] => 0
[1,3,2] => [2,1] => 2
[2,1,3] => [1,2] => 1
[2,3,1] => [2,1] => 2
[3,1,2] => [1,2] => 1
[3,2,1] => [1,1,1] => 3
[1,2,3,4] => [4] => 0
[1,2,4,3] => [3,1] => 3
[1,3,2,4] => [2,2] => 2
[1,3,4,2] => [3,1] => 3
[1,4,2,3] => [2,2] => 2
[1,4,3,2] => [2,1,1] => 5
[2,1,3,4] => [1,3] => 1
[2,1,4,3] => [1,2,1] => 4
[2,3,1,4] => [2,2] => 2
[2,3,4,1] => [3,1] => 3
[2,4,1,3] => [2,2] => 2
[2,4,3,1] => [2,1,1] => 5
[3,1,2,4] => [1,3] => 1
[3,1,4,2] => [1,2,1] => 4
[3,2,1,4] => [1,1,2] => 3
[3,2,4,1] => [1,2,1] => 4
[3,4,1,2] => [2,2] => 2
[3,4,2,1] => [2,1,1] => 5
[4,1,2,3] => [1,3] => 1
[4,1,3,2] => [1,2,1] => 4
[4,2,1,3] => [1,1,2] => 3
[4,2,3,1] => [1,2,1] => 4
[4,3,1,2] => [1,1,2] => 3
[4,3,2,1] => [1,1,1,1] => 6
[1,2,3,4,5] => [5] => 0
[1,2,3,5,4] => [4,1] => 4
[1,2,4,3,5] => [3,2] => 3
[1,2,4,5,3] => [4,1] => 4
[1,2,5,3,4] => [3,2] => 3
[1,2,5,4,3] => [3,1,1] => 7
[1,3,2,4,5] => [2,3] => 2
[1,3,2,5,4] => [2,2,1] => 6
[1,3,4,2,5] => [3,2] => 3
[1,3,4,5,2] => [4,1] => 4
[1,3,5,2,4] => [3,2] => 3
[1,3,5,4,2] => [3,1,1] => 7
[1,4,2,3,5] => [2,3] => 2
[1,4,2,5,3] => [2,2,1] => 6
[1,4,3,2,5] => [2,1,2] => 5
[1,4,3,5,2] => [2,2,1] => 6
[1,4,5,2,3] => [3,2] => 3
Description
The major index of the composition. The descents of a composition $[c_1,c_2,\dots,c_k]$ are the partial sums $c_1, c_1+c_2,\dots, c_1+\dots+c_{k-1}$, excluding the sum of all parts. The major index of a composition is the sum of its descents. For details about the major index see [[Permutations/Descents-Major]].
Mp00070: Permutations Robinson-Schensted recording tableauStandard tableaux
St000009: Standard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [[1]]
=> 0
[1,2] => [[1,2]]
=> 1
[2,1] => [[1],[2]]
=> 0
[1,2,3] => [[1,2,3]]
=> 3
[1,3,2] => [[1,2],[3]]
=> 2
[2,1,3] => [[1,3],[2]]
=> 1
[2,3,1] => [[1,2],[3]]
=> 2
[3,1,2] => [[1,3],[2]]
=> 1
[3,2,1] => [[1],[2],[3]]
=> 0
[1,2,3,4] => [[1,2,3,4]]
=> 6
[1,2,4,3] => [[1,2,3],[4]]
=> 5
[1,3,2,4] => [[1,2,4],[3]]
=> 4
[1,3,4,2] => [[1,2,3],[4]]
=> 5
[1,4,2,3] => [[1,2,4],[3]]
=> 4
[1,4,3,2] => [[1,2],[3],[4]]
=> 3
[2,1,3,4] => [[1,3,4],[2]]
=> 3
[2,1,4,3] => [[1,3],[2,4]]
=> 2
[2,3,1,4] => [[1,2,4],[3]]
=> 4
[2,3,4,1] => [[1,2,3],[4]]
=> 5
[2,4,1,3] => [[1,2],[3,4]]
=> 4
[2,4,3,1] => [[1,2],[3],[4]]
=> 3
[3,1,2,4] => [[1,3,4],[2]]
=> 3
[3,1,4,2] => [[1,3],[2,4]]
=> 2
[3,2,1,4] => [[1,4],[2],[3]]
=> 1
[3,2,4,1] => [[1,3],[2],[4]]
=> 2
[3,4,1,2] => [[1,2],[3,4]]
=> 4
[3,4,2,1] => [[1,2],[3],[4]]
=> 3
[4,1,2,3] => [[1,3,4],[2]]
=> 3
[4,1,3,2] => [[1,3],[2],[4]]
=> 2
[4,2,1,3] => [[1,4],[2],[3]]
=> 1
[4,2,3,1] => [[1,3],[2],[4]]
=> 2
[4,3,1,2] => [[1,4],[2],[3]]
=> 1
[4,3,2,1] => [[1],[2],[3],[4]]
=> 0
[1,2,3,4,5] => [[1,2,3,4,5]]
=> 10
[1,2,3,5,4] => [[1,2,3,4],[5]]
=> 9
[1,2,4,3,5] => [[1,2,3,5],[4]]
=> 8
[1,2,4,5,3] => [[1,2,3,4],[5]]
=> 9
[1,2,5,3,4] => [[1,2,3,5],[4]]
=> 8
[1,2,5,4,3] => [[1,2,3],[4],[5]]
=> 7
[1,3,2,4,5] => [[1,2,4,5],[3]]
=> 7
[1,3,2,5,4] => [[1,2,4],[3,5]]
=> 6
[1,3,4,2,5] => [[1,2,3,5],[4]]
=> 8
[1,3,4,5,2] => [[1,2,3,4],[5]]
=> 9
[1,3,5,2,4] => [[1,2,3],[4,5]]
=> 8
[1,3,5,4,2] => [[1,2,3],[4],[5]]
=> 7
[1,4,2,3,5] => [[1,2,4,5],[3]]
=> 7
[1,4,2,5,3] => [[1,2,4],[3,5]]
=> 6
[1,4,3,2,5] => [[1,2,5],[3],[4]]
=> 5
[1,4,3,5,2] => [[1,2,4],[3],[5]]
=> 6
[1,4,5,2,3] => [[1,2,3],[4,5]]
=> 8
Description
The charge of a standard tableau.
Mp00070: Permutations Robinson-Schensted recording tableauStandard tableaux
St000169: Standard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [[1]]
=> 0
[1,2] => [[1,2]]
=> 0
[2,1] => [[1],[2]]
=> 1
[1,2,3] => [[1,2,3]]
=> 0
[1,3,2] => [[1,2],[3]]
=> 1
[2,1,3] => [[1,3],[2]]
=> 2
[2,3,1] => [[1,2],[3]]
=> 1
[3,1,2] => [[1,3],[2]]
=> 2
[3,2,1] => [[1],[2],[3]]
=> 3
[1,2,3,4] => [[1,2,3,4]]
=> 0
[1,2,4,3] => [[1,2,3],[4]]
=> 1
[1,3,2,4] => [[1,2,4],[3]]
=> 2
[1,3,4,2] => [[1,2,3],[4]]
=> 1
[1,4,2,3] => [[1,2,4],[3]]
=> 2
[1,4,3,2] => [[1,2],[3],[4]]
=> 3
[2,1,3,4] => [[1,3,4],[2]]
=> 3
[2,1,4,3] => [[1,3],[2,4]]
=> 4
[2,3,1,4] => [[1,2,4],[3]]
=> 2
[2,3,4,1] => [[1,2,3],[4]]
=> 1
[2,4,1,3] => [[1,2],[3,4]]
=> 2
[2,4,3,1] => [[1,2],[3],[4]]
=> 3
[3,1,2,4] => [[1,3,4],[2]]
=> 3
[3,1,4,2] => [[1,3],[2,4]]
=> 4
[3,2,1,4] => [[1,4],[2],[3]]
=> 5
[3,2,4,1] => [[1,3],[2],[4]]
=> 4
[3,4,1,2] => [[1,2],[3,4]]
=> 2
[3,4,2,1] => [[1,2],[3],[4]]
=> 3
[4,1,2,3] => [[1,3,4],[2]]
=> 3
[4,1,3,2] => [[1,3],[2],[4]]
=> 4
[4,2,1,3] => [[1,4],[2],[3]]
=> 5
[4,2,3,1] => [[1,3],[2],[4]]
=> 4
[4,3,1,2] => [[1,4],[2],[3]]
=> 5
[4,3,2,1] => [[1],[2],[3],[4]]
=> 6
[1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[1,2,3,5,4] => [[1,2,3,4],[5]]
=> 1
[1,2,4,3,5] => [[1,2,3,5],[4]]
=> 2
[1,2,4,5,3] => [[1,2,3,4],[5]]
=> 1
[1,2,5,3,4] => [[1,2,3,5],[4]]
=> 2
[1,2,5,4,3] => [[1,2,3],[4],[5]]
=> 3
[1,3,2,4,5] => [[1,2,4,5],[3]]
=> 3
[1,3,2,5,4] => [[1,2,4],[3,5]]
=> 4
[1,3,4,2,5] => [[1,2,3,5],[4]]
=> 2
[1,3,4,5,2] => [[1,2,3,4],[5]]
=> 1
[1,3,5,2,4] => [[1,2,3],[4,5]]
=> 2
[1,3,5,4,2] => [[1,2,3],[4],[5]]
=> 3
[1,4,2,3,5] => [[1,2,4,5],[3]]
=> 3
[1,4,2,5,3] => [[1,2,4],[3,5]]
=> 4
[1,4,3,2,5] => [[1,2,5],[3],[4]]
=> 5
[1,4,3,5,2] => [[1,2,4],[3],[5]]
=> 4
[1,4,5,2,3] => [[1,2,3],[4,5]]
=> 2
Description
The cocharge of a standard tableau. The '''cocharge''' of a standard tableau $T$, denoted $\mathrm{cc}(T)$, is defined to be the cocharge of the reading word of the tableau. The cocharge of a permutation $w_1 w_2\cdots w_n$ can be computed by the following algorithm: 1) Starting from $w_n$, scan the entries right-to-left until finding the entry $1$ with a superscript $0$. 2) Continue scanning until the $2$ is found, and label this with a superscript $1$. Then scan until the $3$ is found, labeling with a $2$, and so on, incrementing the label each time, until the beginning of the word is reached. Then go back to the end and scan again from right to left, and *do not* increment the superscript label for the first number found in the next scan. Then continue scanning and labeling, each time incrementing the superscript only if we have not cycled around the word since the last labeling. 3) The cocharge is defined as the sum of the superscript labels on the letters.
Mp00070: Permutations Robinson-Schensted recording tableauStandard tableaux
St000330: Standard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [[1]]
=> 0
[1,2] => [[1,2]]
=> 0
[2,1] => [[1],[2]]
=> 1
[1,2,3] => [[1,2,3]]
=> 0
[1,3,2] => [[1,2],[3]]
=> 2
[2,1,3] => [[1,3],[2]]
=> 1
[2,3,1] => [[1,2],[3]]
=> 2
[3,1,2] => [[1,3],[2]]
=> 1
[3,2,1] => [[1],[2],[3]]
=> 3
[1,2,3,4] => [[1,2,3,4]]
=> 0
[1,2,4,3] => [[1,2,3],[4]]
=> 3
[1,3,2,4] => [[1,2,4],[3]]
=> 2
[1,3,4,2] => [[1,2,3],[4]]
=> 3
[1,4,2,3] => [[1,2,4],[3]]
=> 2
[1,4,3,2] => [[1,2],[3],[4]]
=> 5
[2,1,3,4] => [[1,3,4],[2]]
=> 1
[2,1,4,3] => [[1,3],[2,4]]
=> 4
[2,3,1,4] => [[1,2,4],[3]]
=> 2
[2,3,4,1] => [[1,2,3],[4]]
=> 3
[2,4,1,3] => [[1,2],[3,4]]
=> 2
[2,4,3,1] => [[1,2],[3],[4]]
=> 5
[3,1,2,4] => [[1,3,4],[2]]
=> 1
[3,1,4,2] => [[1,3],[2,4]]
=> 4
[3,2,1,4] => [[1,4],[2],[3]]
=> 3
[3,2,4,1] => [[1,3],[2],[4]]
=> 4
[3,4,1,2] => [[1,2],[3,4]]
=> 2
[3,4,2,1] => [[1,2],[3],[4]]
=> 5
[4,1,2,3] => [[1,3,4],[2]]
=> 1
[4,1,3,2] => [[1,3],[2],[4]]
=> 4
[4,2,1,3] => [[1,4],[2],[3]]
=> 3
[4,2,3,1] => [[1,3],[2],[4]]
=> 4
[4,3,1,2] => [[1,4],[2],[3]]
=> 3
[4,3,2,1] => [[1],[2],[3],[4]]
=> 6
[1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[1,2,3,5,4] => [[1,2,3,4],[5]]
=> 4
[1,2,4,3,5] => [[1,2,3,5],[4]]
=> 3
[1,2,4,5,3] => [[1,2,3,4],[5]]
=> 4
[1,2,5,3,4] => [[1,2,3,5],[4]]
=> 3
[1,2,5,4,3] => [[1,2,3],[4],[5]]
=> 7
[1,3,2,4,5] => [[1,2,4,5],[3]]
=> 2
[1,3,2,5,4] => [[1,2,4],[3,5]]
=> 6
[1,3,4,2,5] => [[1,2,3,5],[4]]
=> 3
[1,3,4,5,2] => [[1,2,3,4],[5]]
=> 4
[1,3,5,2,4] => [[1,2,3],[4,5]]
=> 3
[1,3,5,4,2] => [[1,2,3],[4],[5]]
=> 7
[1,4,2,3,5] => [[1,2,4,5],[3]]
=> 2
[1,4,2,5,3] => [[1,2,4],[3,5]]
=> 6
[1,4,3,2,5] => [[1,2,5],[3],[4]]
=> 5
[1,4,3,5,2] => [[1,2,4],[3],[5]]
=> 6
[1,4,5,2,3] => [[1,2,3],[4,5]]
=> 3
Description
The (standard) major index of a standard tableau. A descent of a standard tableau $T$ is an index $i$ such that $i+1$ appears in a row strictly below the row of $i$. The (standard) major index is the the sum of the descents.
Matching statistic: St001697
Mp00070: Permutations Robinson-Schensted recording tableauStandard tableaux
St001697: Standard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [[1]]
=> 0
[1,2] => [[1,2]]
=> 0
[2,1] => [[1],[2]]
=> 1
[1,2,3] => [[1,2,3]]
=> 0
[1,3,2] => [[1,2],[3]]
=> 1
[2,1,3] => [[1,3],[2]]
=> 2
[2,3,1] => [[1,2],[3]]
=> 1
[3,1,2] => [[1,3],[2]]
=> 2
[3,2,1] => [[1],[2],[3]]
=> 3
[1,2,3,4] => [[1,2,3,4]]
=> 0
[1,2,4,3] => [[1,2,3],[4]]
=> 1
[1,3,2,4] => [[1,2,4],[3]]
=> 2
[1,3,4,2] => [[1,2,3],[4]]
=> 1
[1,4,2,3] => [[1,2,4],[3]]
=> 2
[1,4,3,2] => [[1,2],[3],[4]]
=> 3
[2,1,3,4] => [[1,3,4],[2]]
=> 3
[2,1,4,3] => [[1,3],[2,4]]
=> 4
[2,3,1,4] => [[1,2,4],[3]]
=> 2
[2,3,4,1] => [[1,2,3],[4]]
=> 1
[2,4,1,3] => [[1,2],[3,4]]
=> 2
[2,4,3,1] => [[1,2],[3],[4]]
=> 3
[3,1,2,4] => [[1,3,4],[2]]
=> 3
[3,1,4,2] => [[1,3],[2,4]]
=> 4
[3,2,1,4] => [[1,4],[2],[3]]
=> 4
[3,2,4,1] => [[1,3],[2],[4]]
=> 5
[3,4,1,2] => [[1,2],[3,4]]
=> 2
[3,4,2,1] => [[1,2],[3],[4]]
=> 3
[4,1,2,3] => [[1,3,4],[2]]
=> 3
[4,1,3,2] => [[1,3],[2],[4]]
=> 5
[4,2,1,3] => [[1,4],[2],[3]]
=> 4
[4,2,3,1] => [[1,3],[2],[4]]
=> 5
[4,3,1,2] => [[1,4],[2],[3]]
=> 4
[4,3,2,1] => [[1],[2],[3],[4]]
=> 6
[1,2,3,4,5] => [[1,2,3,4,5]]
=> 0
[1,2,3,5,4] => [[1,2,3,4],[5]]
=> 1
[1,2,4,3,5] => [[1,2,3,5],[4]]
=> 2
[1,2,4,5,3] => [[1,2,3,4],[5]]
=> 1
[1,2,5,3,4] => [[1,2,3,5],[4]]
=> 2
[1,2,5,4,3] => [[1,2,3],[4],[5]]
=> 3
[1,3,2,4,5] => [[1,2,4,5],[3]]
=> 3
[1,3,2,5,4] => [[1,2,4],[3,5]]
=> 4
[1,3,4,2,5] => [[1,2,3,5],[4]]
=> 2
[1,3,4,5,2] => [[1,2,3,4],[5]]
=> 1
[1,3,5,2,4] => [[1,2,3],[4,5]]
=> 2
[1,3,5,4,2] => [[1,2,3],[4],[5]]
=> 3
[1,4,2,3,5] => [[1,2,4,5],[3]]
=> 3
[1,4,2,5,3] => [[1,2,4],[3,5]]
=> 4
[1,4,3,2,5] => [[1,2,5],[3],[4]]
=> 4
[1,4,3,5,2] => [[1,2,4],[3],[5]]
=> 5
[1,4,5,2,3] => [[1,2,3],[4,5]]
=> 2
Description
The shifted natural comajor index of a standard Young tableau. A natural descent of a standard tableau $T$ is an entry $i$ such that $i+1$ appears in a higher row than $i$ in English notation. The natural comajor index of a tableau of shape $\lambda$, size $n$ with natural descent set $D$ is then $b(\lambda)+\sum_{d\in D} n-d$, where $b(\lambda) = \sum_i (i-1)\lambda_i$.
Mp00071: Permutations descent compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000081: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1] => ([],1)
=> 0
[1,2] => [2] => ([],2)
=> 0
[2,1] => [1,1] => ([(0,1)],2)
=> 1
[1,2,3] => [3] => ([],3)
=> 0
[1,3,2] => [2,1] => ([(0,2),(1,2)],3)
=> 2
[2,1,3] => [1,2] => ([(1,2)],3)
=> 1
[2,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> 2
[3,1,2] => [1,2] => ([(1,2)],3)
=> 1
[3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[1,2,3,4] => [4] => ([],4)
=> 0
[1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
=> 2
[1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
=> 2
[1,4,3,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 5
[2,1,3,4] => [1,3] => ([(2,3)],4)
=> 1
[2,1,4,3] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[2,3,1,4] => [2,2] => ([(1,3),(2,3)],4)
=> 2
[2,3,4,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[2,4,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> 2
[2,4,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 5
[3,1,2,4] => [1,3] => ([(2,3)],4)
=> 1
[3,1,4,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[3,2,1,4] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
[3,2,4,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[3,4,1,2] => [2,2] => ([(1,3),(2,3)],4)
=> 2
[3,4,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 5
[4,1,2,3] => [1,3] => ([(2,3)],4)
=> 1
[4,1,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[4,2,1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
[4,2,3,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[4,3,1,2] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
[4,3,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,2,3,4,5] => [5] => ([],5)
=> 0
[1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
[1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
[1,2,5,4,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
[1,3,2,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> 2
[1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
[1,3,4,2,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
[1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,3,5,2,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
[1,3,5,4,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
[1,4,2,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> 2
[1,4,2,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
[1,4,3,2,5] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,4,3,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
[1,4,5,2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
Description
The number of edges of a graph.
Mp00072: Permutations binary search tree: left to rightBinary trees
Mp00020: Binary trees to Tamari-corresponding Dyck pathDyck paths
St001161: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [.,.]
=> [1,0]
=> 0
[1,2] => [.,[.,.]]
=> [1,1,0,0]
=> 0
[2,1] => [[.,.],.]
=> [1,0,1,0]
=> 1
[1,2,3] => [.,[.,[.,.]]]
=> [1,1,1,0,0,0]
=> 0
[1,3,2] => [.,[[.,.],.]]
=> [1,1,0,1,0,0]
=> 2
[2,1,3] => [[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> 1
[2,3,1] => [[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> 1
[3,1,2] => [[.,[.,.]],.]
=> [1,1,0,0,1,0]
=> 2
[3,2,1] => [[[.,.],.],.]
=> [1,0,1,0,1,0]
=> 3
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,2,4,3] => [.,[.,[[.,.],.]]]
=> [1,1,1,0,1,0,0,0]
=> 3
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> 2
[1,3,4,2] => [.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> 2
[1,4,2,3] => [.,[[.,[.,.]],.]]
=> [1,1,1,0,0,1,0,0]
=> 3
[1,4,3,2] => [.,[[[.,.],.],.]]
=> [1,1,0,1,0,1,0,0]
=> 5
[2,1,3,4] => [[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> 1
[2,1,4,3] => [[.,.],[[.,.],.]]
=> [1,0,1,1,0,1,0,0]
=> 4
[2,3,1,4] => [[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> 1
[2,3,4,1] => [[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> 1
[2,4,1,3] => [[.,.],[[.,.],.]]
=> [1,0,1,1,0,1,0,0]
=> 4
[2,4,3,1] => [[.,.],[[.,.],.]]
=> [1,0,1,1,0,1,0,0]
=> 4
[3,1,2,4] => [[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> 2
[3,1,4,2] => [[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> 2
[3,2,1,4] => [[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> 3
[3,2,4,1] => [[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> 3
[3,4,1,2] => [[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> 2
[3,4,2,1] => [[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> 3
[4,1,2,3] => [[.,[.,[.,.]]],.]
=> [1,1,1,0,0,0,1,0]
=> 3
[4,1,3,2] => [[.,[[.,.],.]],.]
=> [1,1,0,1,0,0,1,0]
=> 5
[4,2,1,3] => [[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> 4
[4,2,3,1] => [[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> 4
[4,3,1,2] => [[[.,[.,.]],.],.]
=> [1,1,0,0,1,0,1,0]
=> 5
[4,3,2,1] => [[[[.,.],.],.],.]
=> [1,0,1,0,1,0,1,0]
=> 6
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 3
[1,2,4,5,3] => [.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 3
[1,2,5,3,4] => [.,[.,[[.,[.,.]],.]]]
=> [1,1,1,1,0,0,1,0,0,0]
=> 4
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> [1,1,1,0,1,0,1,0,0,0]
=> 7
[1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
[1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> 6
[1,3,4,2,5] => [.,[[.,.],[.,[.,.]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
[1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
[1,3,5,2,4] => [.,[[.,.],[[.,.],.]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> 6
[1,3,5,4,2] => [.,[[.,.],[[.,.],.]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> 6
[1,4,2,3,5] => [.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> 3
[1,4,2,5,3] => [.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> 3
[1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> [1,1,0,1,0,1,1,0,0,0]
=> 5
[1,4,3,5,2] => [.,[[[.,.],.],[.,.]]]
=> [1,1,0,1,0,1,1,0,0,0]
=> 5
[1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> 3
Description
The major index north count of a Dyck path. The descent set $\operatorname{des}(D)$ of a Dyck path $D = D_1 \cdots D_{2n}$ with $D_i \in \{N,E\}$ is given by all indices $i$ such that $D_i = E$ and $D_{i+1} = N$. This is, the positions of the valleys of $D$. The '''major index''' of a Dyck path is then the sum of the positions of the valleys, $\sum_{i \in \operatorname{des}(D)} i$, see [[St000027]]. The '''major index north count''' is given by $\sum_{i \in \operatorname{des}(D)} \#\{ j \leq i \mid D_j = N\}$.
Mp00071: Permutations descent compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00132: Dyck paths switch returns and last double riseDyck paths
St000012: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1,0]
=> [1,0]
=> 0
[1,2] => [2] => [1,1,0,0]
=> [1,1,0,0]
=> 1
[2,1] => [1,1] => [1,0,1,0]
=> [1,0,1,0]
=> 0
[1,2,3] => [3] => [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 3
[1,3,2] => [2,1] => [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 1
[2,1,3] => [1,2] => [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[2,3,1] => [2,1] => [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 1
[3,1,2] => [1,2] => [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 0
[1,2,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 6
[1,2,4,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 3
[1,3,2,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 4
[1,3,4,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 3
[1,4,2,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 4
[1,4,3,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[2,1,3,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 5
[2,1,4,3] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[2,3,1,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 4
[2,3,4,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 3
[2,4,1,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 4
[2,4,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[3,1,2,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 5
[3,1,4,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[3,2,1,4] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[3,2,4,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[3,4,1,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 4
[3,4,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[4,1,2,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 5
[4,1,3,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[4,2,1,3] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[4,2,3,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[4,3,1,2] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[4,3,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,2,3,4,5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 10
[1,2,3,5,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 6
[1,2,4,3,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 7
[1,2,4,5,3] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 6
[1,2,5,3,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 7
[1,2,5,4,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3
[1,3,2,4,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 8
[1,3,2,5,4] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 4
[1,3,4,2,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 7
[1,3,4,5,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 6
[1,3,5,2,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 7
[1,3,5,4,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3
[1,4,2,3,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 8
[1,4,2,5,3] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 4
[1,4,3,2,5] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 5
[1,4,3,5,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 4
[1,4,5,2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 7
Description
The area of a Dyck path. This is the number of complete squares in the integer lattice which are below the path and above the x-axis. The 'half-squares' directly above the axis do not contribute to this statistic. 1. Dyck paths are bijection with '''area sequences''' $(a_1,\ldots,a_n)$ such that $a_1 = 0, a_{k+1} \leq a_k + 1$. 2. The generating function $\mathbf{D}_n(q) = \sum_{D \in \mathfrak{D}_n} q^{\operatorname{area}(D)}$ satisfy the recurrence $$\mathbf{D}_{n+1}(q) = \sum q^k \mathbf{D}_k(q) \mathbf{D}_{n-k}(q).$$ 3. The area is equidistributed with [[St000005]] and [[St000006]]. Pairs of these statistics play an important role in the theory of $q,t$-Catalan numbers.
Matching statistic: St001814
Mp00071: Permutations descent compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
Mp00275: Graphs to edge-partition of connected componentsInteger partitions
St001814: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1] => ([],1)
=> []
=> 1 = 0 + 1
[1,2] => [2] => ([],2)
=> []
=> 1 = 0 + 1
[2,1] => [1,1] => ([(0,1)],2)
=> [1]
=> 2 = 1 + 1
[1,2,3] => [3] => ([],3)
=> []
=> 1 = 0 + 1
[1,3,2] => [2,1] => ([(0,2),(1,2)],3)
=> [2]
=> 3 = 2 + 1
[2,1,3] => [1,2] => ([(1,2)],3)
=> [1]
=> 2 = 1 + 1
[2,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> [2]
=> 3 = 2 + 1
[3,1,2] => [1,2] => ([(1,2)],3)
=> [1]
=> 2 = 1 + 1
[3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 4 = 3 + 1
[1,2,3,4] => [4] => ([],4)
=> []
=> 1 = 0 + 1
[1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> [3]
=> 4 = 3 + 1
[1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
=> [2]
=> 3 = 2 + 1
[1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> [3]
=> 4 = 3 + 1
[1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
=> [2]
=> 3 = 2 + 1
[1,4,3,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> 6 = 5 + 1
[2,1,3,4] => [1,3] => ([(2,3)],4)
=> [1]
=> 2 = 1 + 1
[2,1,4,3] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 5 = 4 + 1
[2,3,1,4] => [2,2] => ([(1,3),(2,3)],4)
=> [2]
=> 3 = 2 + 1
[2,3,4,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> [3]
=> 4 = 3 + 1
[2,4,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> [2]
=> 3 = 2 + 1
[2,4,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> 6 = 5 + 1
[3,1,2,4] => [1,3] => ([(2,3)],4)
=> [1]
=> 2 = 1 + 1
[3,1,4,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 5 = 4 + 1
[3,2,1,4] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3]
=> 4 = 3 + 1
[3,2,4,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 5 = 4 + 1
[3,4,1,2] => [2,2] => ([(1,3),(2,3)],4)
=> [2]
=> 3 = 2 + 1
[3,4,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> 6 = 5 + 1
[4,1,2,3] => [1,3] => ([(2,3)],4)
=> [1]
=> 2 = 1 + 1
[4,1,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 5 = 4 + 1
[4,2,1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3]
=> 4 = 3 + 1
[4,2,3,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 5 = 4 + 1
[4,3,1,2] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3]
=> 4 = 3 + 1
[4,3,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> 7 = 6 + 1
[1,2,3,4,5] => [5] => ([],5)
=> []
=> 1 = 0 + 1
[1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4]
=> 5 = 4 + 1
[1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [3]
=> 4 = 3 + 1
[1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4]
=> 5 = 4 + 1
[1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [3]
=> 4 = 3 + 1
[1,2,5,4,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> 8 = 7 + 1
[1,3,2,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> [2]
=> 3 = 2 + 1
[1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> 7 = 6 + 1
[1,3,4,2,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [3]
=> 4 = 3 + 1
[1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4]
=> 5 = 4 + 1
[1,3,5,2,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [3]
=> 4 = 3 + 1
[1,3,5,4,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> 8 = 7 + 1
[1,4,2,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> [2]
=> 3 = 2 + 1
[1,4,2,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> 7 = 6 + 1
[1,4,3,2,5] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 6 = 5 + 1
[1,4,3,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> 7 = 6 + 1
[1,4,5,2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [3]
=> 4 = 3 + 1
Description
The number of partitions interlacing the given partition.
Matching statistic: St000391
Mp00109: Permutations descent wordBinary words
St000391: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => => ? = 0
[1,2] => 0 => 0
[2,1] => 1 => 1
[1,2,3] => 00 => 0
[1,3,2] => 01 => 2
[2,1,3] => 10 => 1
[2,3,1] => 01 => 2
[3,1,2] => 10 => 1
[3,2,1] => 11 => 3
[1,2,3,4] => 000 => 0
[1,2,4,3] => 001 => 3
[1,3,2,4] => 010 => 2
[1,3,4,2] => 001 => 3
[1,4,2,3] => 010 => 2
[1,4,3,2] => 011 => 5
[2,1,3,4] => 100 => 1
[2,1,4,3] => 101 => 4
[2,3,1,4] => 010 => 2
[2,3,4,1] => 001 => 3
[2,4,1,3] => 010 => 2
[2,4,3,1] => 011 => 5
[3,1,2,4] => 100 => 1
[3,1,4,2] => 101 => 4
[3,2,1,4] => 110 => 3
[3,2,4,1] => 101 => 4
[3,4,1,2] => 010 => 2
[3,4,2,1] => 011 => 5
[4,1,2,3] => 100 => 1
[4,1,3,2] => 101 => 4
[4,2,1,3] => 110 => 3
[4,2,3,1] => 101 => 4
[4,3,1,2] => 110 => 3
[4,3,2,1] => 111 => 6
[1,2,3,4,5] => 0000 => 0
[1,2,3,5,4] => 0001 => 4
[1,2,4,3,5] => 0010 => 3
[1,2,4,5,3] => 0001 => 4
[1,2,5,3,4] => 0010 => 3
[1,2,5,4,3] => 0011 => 7
[1,3,2,4,5] => 0100 => 2
[1,3,2,5,4] => 0101 => 6
[1,3,4,2,5] => 0010 => 3
[1,3,4,5,2] => 0001 => 4
[1,3,5,2,4] => 0010 => 3
[1,3,5,4,2] => 0011 => 7
[1,4,2,3,5] => 0100 => 2
[1,4,2,5,3] => 0101 => 6
[1,4,3,2,5] => 0110 => 5
[1,4,3,5,2] => 0101 => 6
[1,4,5,2,3] => 0010 => 3
[1,4,5,3,2] => 0011 => 7
Description
The sum of the positions of the ones in a binary word.
The following 95 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000947The major index east count of a Dyck path. St000492The rob statistic of a set partition. St000493The los statistic of a set partition. St000498The lcs statistic of a set partition. St000499The rcb statistic of a set partition. St000577The number of occurrences of the pattern {{1},{2}} such that 1 is a maximal element. St000579The number of occurrences of the pattern {{1},{2}} such that 2 is a maximal element. St001759The Rajchgot index of a permutation. St000147The largest part of an integer partition. St000459The hook length of the base cell of a partition. St001360The number of covering relations in Young's lattice below a partition. St001389The number of partitions of the same length below the given integer partition. St001527The cyclic permutation representation number of an integer partition. St001400The total number of Littlewood-Richardson tableaux of given shape. St000384The maximal part of the shifted composition of an integer partition. St000784The maximum of the length and the largest part of the integer partition. St000835The minimal difference in size when partitioning the integer partition into two subpartitions. St000992The alternating sum of the parts of an integer partition. St001055The Grundy value for the game of removing cells of a row in an integer partition. St000063The number of linear extensions of a certain poset defined for an integer partition. St000532The total number of rook placements on a Ferrers board. St000460The hook length of the last cell along the main diagonal of an integer partition. St000667The greatest common divisor of the parts of the partition. St000870The product of the hook lengths of the diagonal cells in an integer partition. St000477The weight of a partition according to Alladi. St000668The least common multiple of the parts of the partition. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St001571The Cartan determinant of the integer partition. St001397Number of pairs of incomparable elements in a finite poset. St001671Haglund's hag of a permutation. St000228The size of a partition. St000108The number of partitions contained in the given partition. St000446The disorder of a permutation. St000794The mak of a permutation. St000797The stat`` of a permutation. St000798The makl of a permutation. St000833The comajor index of a permutation. St000246The number of non-inversions of a permutation. St000161The sum of the sizes of the right subtrees of a binary tree. St000018The number of inversions of a permutation. St001707The length of a longest path in a graph such that the remaining vertices can be partitioned into two sets of the same size without edges between them. St001746The coalition number of a graph. St000692Babson and Steingrímsson's statistic of a permutation. St000868The aid statistic in the sense of Shareshian-Wachs. St000795The mad of a permutation. St000796The stat' of a permutation. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000472The sum of the ascent bottoms of a permutation. St001645The pebbling number of a connected graph. St001725The harmonious chromatic number of a graph. St000004The major index of a permutation. St000156The Denert index of a permutation. St000224The sorting index of a permutation. St000304The load of a permutation. St000305The inverse major index of a permutation. St000334The maz index, the major index of a permutation after replacing fixed points by zeros. St000339The maf index of a permutation. St000005The bounce statistic of a Dyck path. St000154The sum of the descent bottoms of a permutation. St000133The "bounce" of a permutation. St001295Gives the vector space dimension of the homomorphism space between J^2 and J^2. St001341The number of edges in the center of a graph. St000448The number of pairs of vertices of a graph with distance 2. St001646The number of edges that can be added without increasing the maximal degree of a graph. St001311The cyclomatic number of a graph. St001428The number of B-inversions of a signed permutation. St000067The inversion number of the alternating sign matrix. St000332The positive inversions of an alternating sign matrix. St001622The number of join-irreducible elements of a lattice. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001330The hat guessing number of a graph. St000454The largest eigenvalue of a graph if it is integral. St000450The number of edges minus the number of vertices plus 2 of a graph. St000101The cocharge of a semistandard tableau. St000102The charge of a semistandard tableau. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001621The number of atoms of a lattice. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001772The number of occurrences of the signed pattern 12 in a signed permutation. St001866The nesting alignments of a signed permutation. St001862The number of crossings of a signed permutation. St000422The energy of a graph, if it is integral. St000136The dinv of a parking function. St000194The number of primary dinversion pairs of a labelled dyck path corresponding to a parking function. St001209The pmaj statistic of a parking function. St001821The sorting index of a signed permutation. St001433The flag major index of a signed permutation. St001822The number of alignments of a signed permutation. St001931The weak major index of an integer composition regarded as a word. St000152The number of boxed plus the number of special entries. St000441The number of successions of a permutation. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St001877Number of indecomposable injective modules with projective dimension 2.