searching the database
Your data matches 93 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000175
Mp00060: Permutations —Robinson-Schensted tableau shape⟶ Integer partitions
St000175: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000175: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1]
=> 0
[1,2] => [2]
=> 0
[2,1] => [1,1]
=> 0
[1,2,3] => [3]
=> 0
[1,3,2] => [2,1]
=> 1
[2,1,3] => [2,1]
=> 1
[2,3,1] => [2,1]
=> 1
[3,1,2] => [2,1]
=> 1
[3,2,1] => [1,1,1]
=> 0
[1,2,3,4] => [4]
=> 0
[1,2,4,3] => [3,1]
=> 1
[1,3,2,4] => [3,1]
=> 1
[1,3,4,2] => [3,1]
=> 1
[1,4,2,3] => [3,1]
=> 1
[1,4,3,2] => [2,1,1]
=> 2
[2,1,3,4] => [3,1]
=> 1
[2,1,4,3] => [2,2]
=> 0
[2,3,1,4] => [3,1]
=> 1
[2,3,4,1] => [3,1]
=> 1
[2,4,1,3] => [2,2]
=> 0
[2,4,3,1] => [2,1,1]
=> 2
[3,1,2,4] => [3,1]
=> 1
[3,1,4,2] => [2,2]
=> 0
[3,2,1,4] => [2,1,1]
=> 2
[3,2,4,1] => [2,1,1]
=> 2
[3,4,1,2] => [2,2]
=> 0
[3,4,2,1] => [2,1,1]
=> 2
[4,1,2,3] => [3,1]
=> 1
[4,1,3,2] => [2,1,1]
=> 2
[4,2,1,3] => [2,1,1]
=> 2
[4,2,3,1] => [2,1,1]
=> 2
[4,3,1,2] => [2,1,1]
=> 2
[4,3,2,1] => [1,1,1,1]
=> 0
[1,2,3,4,5] => [5]
=> 0
[1,2,3,5,4] => [4,1]
=> 1
[1,2,4,3,5] => [4,1]
=> 1
[1,2,4,5,3] => [4,1]
=> 1
[1,2,5,3,4] => [4,1]
=> 1
[1,2,5,4,3] => [3,1,1]
=> 2
[1,3,2,4,5] => [4,1]
=> 1
[1,3,2,5,4] => [3,2]
=> 1
[1,3,4,2,5] => [4,1]
=> 1
[1,3,4,5,2] => [4,1]
=> 1
[1,3,5,2,4] => [3,2]
=> 1
[1,3,5,4,2] => [3,1,1]
=> 2
[1,4,2,3,5] => [4,1]
=> 1
[1,4,2,5,3] => [3,2]
=> 1
[1,4,3,2,5] => [3,1,1]
=> 2
[1,4,3,5,2] => [3,1,1]
=> 2
[1,4,5,2,3] => [3,2]
=> 1
Description
Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape.
Given a partition $\lambda$ with $r$ parts, the number of semi-standard Young-tableaux of shape $k\lambda$ and boxes with values in $[r]$ grows as a polynomial in $k$. This follows by setting $q=1$ in (7.105) on page 375 of [1], which yields the polynomial
$$p(k) = \prod_{i < j}\frac{k(\lambda_j-\lambda_i)+j-i}{j-i}.$$
The statistic of the degree of this polynomial.
For example, the partition $(3, 2, 1, 1, 1)$ gives
$$p(k) = \frac{-1}{36} (k - 3) (2k - 3) (k - 2)^2 (k - 1)^3$$
which has degree 7 in $k$. Thus, $[3, 2, 1, 1, 1] \mapsto 7$.
This is the same as the number of unordered pairs of different parts, which follows from:
$$\deg p(k)=\sum_{i < j}\begin{cases}1& \lambda_j \neq \lambda_i\\0&\lambda_i=\lambda_j\end{cases}=\sum_{\stackrel{i < j}{\lambda_j \neq \lambda_i}} 1$$
Matching statistic: St000766
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00324: Graphs —chromatic difference sequence⟶ Integer compositions
St000766: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00324: Graphs —chromatic difference sequence⟶ Integer compositions
St000766: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => ([],1)
=> [1] => 0
[1,2] => ([],2)
=> [2] => 0
[2,1] => ([(0,1)],2)
=> [1,1] => 0
[1,2,3] => ([],3)
=> [3] => 0
[1,3,2] => ([(1,2)],3)
=> [2,1] => 1
[2,1,3] => ([(1,2)],3)
=> [2,1] => 1
[2,3,1] => ([(0,2),(1,2)],3)
=> [2,1] => 1
[3,1,2] => ([(0,2),(1,2)],3)
=> [2,1] => 1
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => 0
[1,2,3,4] => ([],4)
=> [4] => 0
[1,2,4,3] => ([(2,3)],4)
=> [3,1] => 1
[1,3,2,4] => ([(2,3)],4)
=> [3,1] => 1
[1,3,4,2] => ([(1,3),(2,3)],4)
=> [3,1] => 1
[1,4,2,3] => ([(1,3),(2,3)],4)
=> [3,1] => 1
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> [2,1,1] => 2
[2,1,3,4] => ([(2,3)],4)
=> [3,1] => 1
[2,1,4,3] => ([(0,3),(1,2)],4)
=> [2,2] => 0
[2,3,1,4] => ([(1,3),(2,3)],4)
=> [3,1] => 1
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> [3,1] => 1
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> [2,2] => 0
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => 2
[3,1,2,4] => ([(1,3),(2,3)],4)
=> [3,1] => 1
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> [2,2] => 0
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> [2,1,1] => 2
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => 2
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => 0
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => 2
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> [3,1] => 1
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => 2
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => 2
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => 2
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => 2
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => 0
[1,2,3,4,5] => ([],5)
=> [5] => 0
[1,2,3,5,4] => ([(3,4)],5)
=> [4,1] => 1
[1,2,4,3,5] => ([(3,4)],5)
=> [4,1] => 1
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> [4,1] => 1
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> [4,1] => 1
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1] => 2
[1,3,2,4,5] => ([(3,4)],5)
=> [4,1] => 1
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> [3,2] => 1
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> [4,1] => 1
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1] => 1
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> [3,2] => 1
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => 2
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> [4,1] => 1
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> [3,2] => 1
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1] => 2
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => 2
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => 1
Description
The number of inversions of an integer composition.
This is the number of pairs $(i,j)$ such that $i < j$ and $c_i > c_j$.
Matching statistic: St000769
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00324: Graphs —chromatic difference sequence⟶ Integer compositions
Mp00315: Integer compositions —inverse Foata bijection⟶ Integer compositions
St000769: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00324: Graphs —chromatic difference sequence⟶ Integer compositions
Mp00315: Integer compositions —inverse Foata bijection⟶ Integer compositions
St000769: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => ([],1)
=> [1] => [1] => 0
[1,2] => ([],2)
=> [2] => [2] => 0
[2,1] => ([(0,1)],2)
=> [1,1] => [1,1] => 0
[1,2,3] => ([],3)
=> [3] => [3] => 0
[1,3,2] => ([(1,2)],3)
=> [2,1] => [2,1] => 1
[2,1,3] => ([(1,2)],3)
=> [2,1] => [2,1] => 1
[2,3,1] => ([(0,2),(1,2)],3)
=> [2,1] => [2,1] => 1
[3,1,2] => ([(0,2),(1,2)],3)
=> [2,1] => [2,1] => 1
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> [1,1,1] => [1,1,1] => 0
[1,2,3,4] => ([],4)
=> [4] => [4] => 0
[1,2,4,3] => ([(2,3)],4)
=> [3,1] => [3,1] => 1
[1,3,2,4] => ([(2,3)],4)
=> [3,1] => [3,1] => 1
[1,3,4,2] => ([(1,3),(2,3)],4)
=> [3,1] => [3,1] => 1
[1,4,2,3] => ([(1,3),(2,3)],4)
=> [3,1] => [3,1] => 1
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,2,1] => 2
[2,1,3,4] => ([(2,3)],4)
=> [3,1] => [3,1] => 1
[2,1,4,3] => ([(0,3),(1,2)],4)
=> [2,2] => [2,2] => 0
[2,3,1,4] => ([(1,3),(2,3)],4)
=> [3,1] => [3,1] => 1
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> [3,1] => [3,1] => 1
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> [2,2] => [2,2] => 0
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,2,1] => 2
[3,1,2,4] => ([(1,3),(2,3)],4)
=> [3,1] => [3,1] => 1
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> [2,2] => [2,2] => 0
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,2,1] => 2
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,2,1] => 2
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => [2,2] => 0
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,2,1] => 2
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> [3,1] => [3,1] => 1
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,2,1] => 2
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,2,1] => 2
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,2,1] => 2
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,2,1] => 2
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => [1,1,1,1] => 0
[1,2,3,4,5] => ([],5)
=> [5] => [5] => 0
[1,2,3,5,4] => ([(3,4)],5)
=> [4,1] => [4,1] => 1
[1,2,4,3,5] => ([(3,4)],5)
=> [4,1] => [4,1] => 1
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> [4,1] => [4,1] => 1
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> [4,1] => [4,1] => 1
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,3,1] => 2
[1,3,2,4,5] => ([(3,4)],5)
=> [4,1] => [4,1] => 1
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> [3,2] => [3,2] => 1
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> [4,1] => [4,1] => 1
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1] => [4,1] => 1
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> [3,2] => [3,2] => 1
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,3,1] => 2
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> [4,1] => [4,1] => 1
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> [3,2] => [3,2] => 1
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,3,1] => 2
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,3,1] => 2
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => [3,2] => 1
Description
The major index of a composition regarded as a word.
This is the sum of the positions of the descents of the composition.
For the statistic which interprets the composition as a descent set, see [[St000008]].
Matching statistic: St001781
Mp00060: Permutations —Robinson-Schensted tableau shape⟶ Integer partitions
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
Mp00284: Standard tableaux —rows⟶ Set partitions
St001781: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
Mp00284: Standard tableaux —rows⟶ Set partitions
St001781: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1]
=> [[1]]
=> {{1}}
=> 0
[1,2] => [2]
=> [[1,2]]
=> {{1,2}}
=> 0
[2,1] => [1,1]
=> [[1],[2]]
=> {{1},{2}}
=> 0
[1,2,3] => [3]
=> [[1,2,3]]
=> {{1,2,3}}
=> 0
[1,3,2] => [2,1]
=> [[1,3],[2]]
=> {{1,3},{2}}
=> 1
[2,1,3] => [2,1]
=> [[1,3],[2]]
=> {{1,3},{2}}
=> 1
[2,3,1] => [2,1]
=> [[1,3],[2]]
=> {{1,3},{2}}
=> 1
[3,1,2] => [2,1]
=> [[1,3],[2]]
=> {{1,3},{2}}
=> 1
[3,2,1] => [1,1,1]
=> [[1],[2],[3]]
=> {{1},{2},{3}}
=> 0
[1,2,3,4] => [4]
=> [[1,2,3,4]]
=> {{1,2,3,4}}
=> 0
[1,2,4,3] => [3,1]
=> [[1,3,4],[2]]
=> {{1,3,4},{2}}
=> 1
[1,3,2,4] => [3,1]
=> [[1,3,4],[2]]
=> {{1,3,4},{2}}
=> 1
[1,3,4,2] => [3,1]
=> [[1,3,4],[2]]
=> {{1,3,4},{2}}
=> 1
[1,4,2,3] => [3,1]
=> [[1,3,4],[2]]
=> {{1,3,4},{2}}
=> 1
[1,4,3,2] => [2,1,1]
=> [[1,4],[2],[3]]
=> {{1,4},{2},{3}}
=> 2
[2,1,3,4] => [3,1]
=> [[1,3,4],[2]]
=> {{1,3,4},{2}}
=> 1
[2,1,4,3] => [2,2]
=> [[1,2],[3,4]]
=> {{1,2},{3,4}}
=> 0
[2,3,1,4] => [3,1]
=> [[1,3,4],[2]]
=> {{1,3,4},{2}}
=> 1
[2,3,4,1] => [3,1]
=> [[1,3,4],[2]]
=> {{1,3,4},{2}}
=> 1
[2,4,1,3] => [2,2]
=> [[1,2],[3,4]]
=> {{1,2},{3,4}}
=> 0
[2,4,3,1] => [2,1,1]
=> [[1,4],[2],[3]]
=> {{1,4},{2},{3}}
=> 2
[3,1,2,4] => [3,1]
=> [[1,3,4],[2]]
=> {{1,3,4},{2}}
=> 1
[3,1,4,2] => [2,2]
=> [[1,2],[3,4]]
=> {{1,2},{3,4}}
=> 0
[3,2,1,4] => [2,1,1]
=> [[1,4],[2],[3]]
=> {{1,4},{2},{3}}
=> 2
[3,2,4,1] => [2,1,1]
=> [[1,4],[2],[3]]
=> {{1,4},{2},{3}}
=> 2
[3,4,1,2] => [2,2]
=> [[1,2],[3,4]]
=> {{1,2},{3,4}}
=> 0
[3,4,2,1] => [2,1,1]
=> [[1,4],[2],[3]]
=> {{1,4},{2},{3}}
=> 2
[4,1,2,3] => [3,1]
=> [[1,3,4],[2]]
=> {{1,3,4},{2}}
=> 1
[4,1,3,2] => [2,1,1]
=> [[1,4],[2],[3]]
=> {{1,4},{2},{3}}
=> 2
[4,2,1,3] => [2,1,1]
=> [[1,4],[2],[3]]
=> {{1,4},{2},{3}}
=> 2
[4,2,3,1] => [2,1,1]
=> [[1,4],[2],[3]]
=> {{1,4},{2},{3}}
=> 2
[4,3,1,2] => [2,1,1]
=> [[1,4],[2],[3]]
=> {{1,4},{2},{3}}
=> 2
[4,3,2,1] => [1,1,1,1]
=> [[1],[2],[3],[4]]
=> {{1},{2},{3},{4}}
=> 0
[1,2,3,4,5] => [5]
=> [[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> 0
[1,2,3,5,4] => [4,1]
=> [[1,3,4,5],[2]]
=> {{1,3,4,5},{2}}
=> 1
[1,2,4,3,5] => [4,1]
=> [[1,3,4,5],[2]]
=> {{1,3,4,5},{2}}
=> 1
[1,2,4,5,3] => [4,1]
=> [[1,3,4,5],[2]]
=> {{1,3,4,5},{2}}
=> 1
[1,2,5,3,4] => [4,1]
=> [[1,3,4,5],[2]]
=> {{1,3,4,5},{2}}
=> 1
[1,2,5,4,3] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> {{1,4,5},{2},{3}}
=> 2
[1,3,2,4,5] => [4,1]
=> [[1,3,4,5],[2]]
=> {{1,3,4,5},{2}}
=> 1
[1,3,2,5,4] => [3,2]
=> [[1,2,5],[3,4]]
=> {{1,2,5},{3,4}}
=> 1
[1,3,4,2,5] => [4,1]
=> [[1,3,4,5],[2]]
=> {{1,3,4,5},{2}}
=> 1
[1,3,4,5,2] => [4,1]
=> [[1,3,4,5],[2]]
=> {{1,3,4,5},{2}}
=> 1
[1,3,5,2,4] => [3,2]
=> [[1,2,5],[3,4]]
=> {{1,2,5},{3,4}}
=> 1
[1,3,5,4,2] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> {{1,4,5},{2},{3}}
=> 2
[1,4,2,3,5] => [4,1]
=> [[1,3,4,5],[2]]
=> {{1,3,4,5},{2}}
=> 1
[1,4,2,5,3] => [3,2]
=> [[1,2,5],[3,4]]
=> {{1,2,5},{3,4}}
=> 1
[1,4,3,2,5] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> {{1,4,5},{2},{3}}
=> 2
[1,4,3,5,2] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> {{1,4,5},{2},{3}}
=> 2
[1,4,5,2,3] => [3,2]
=> [[1,2,5],[3,4]]
=> {{1,2,5},{3,4}}
=> 1
Description
The interlacing number of a set partition.
Let $\pi$ be a set partition of $\{1,\dots,n\}$ with $k$ blocks. To each block of $\pi$ we add the element $\infty$, which is larger than $n$. Then, an interlacing of $\pi$ is a pair of blocks $B=(B_1 < \dots < B_b < B_{b+1} = \infty)$ and $C=(C_1 < \dots < C_c < C_{c+1} = \infty)$ together with an index $1\leq i\leq \min(b, c)$, such that $B_i < C_i < B_{i+1} < C_{i+1}$.
Matching statistic: St000585
Mp00060: Permutations —Robinson-Schensted tableau shape⟶ Integer partitions
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
Mp00284: Standard tableaux —rows⟶ Set partitions
St000585: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
Mp00284: Standard tableaux —rows⟶ Set partitions
St000585: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1]
=> [[1]]
=> {{1}}
=> ? = 0
[1,2] => [2]
=> [[1,2]]
=> {{1,2}}
=> 0
[2,1] => [1,1]
=> [[1],[2]]
=> {{1},{2}}
=> 0
[1,2,3] => [3]
=> [[1,2,3]]
=> {{1,2,3}}
=> 0
[1,3,2] => [2,1]
=> [[1,3],[2]]
=> {{1,3},{2}}
=> 1
[2,1,3] => [2,1]
=> [[1,3],[2]]
=> {{1,3},{2}}
=> 1
[2,3,1] => [2,1]
=> [[1,3],[2]]
=> {{1,3},{2}}
=> 1
[3,1,2] => [2,1]
=> [[1,3],[2]]
=> {{1,3},{2}}
=> 1
[3,2,1] => [1,1,1]
=> [[1],[2],[3]]
=> {{1},{2},{3}}
=> 0
[1,2,3,4] => [4]
=> [[1,2,3,4]]
=> {{1,2,3,4}}
=> 0
[1,2,4,3] => [3,1]
=> [[1,3,4],[2]]
=> {{1,3,4},{2}}
=> 1
[1,3,2,4] => [3,1]
=> [[1,3,4],[2]]
=> {{1,3,4},{2}}
=> 1
[1,3,4,2] => [3,1]
=> [[1,3,4],[2]]
=> {{1,3,4},{2}}
=> 1
[1,4,2,3] => [3,1]
=> [[1,3,4],[2]]
=> {{1,3,4},{2}}
=> 1
[1,4,3,2] => [2,1,1]
=> [[1,4],[2],[3]]
=> {{1,4},{2},{3}}
=> 2
[2,1,3,4] => [3,1]
=> [[1,3,4],[2]]
=> {{1,3,4},{2}}
=> 1
[2,1,4,3] => [2,2]
=> [[1,2],[3,4]]
=> {{1,2},{3,4}}
=> 0
[2,3,1,4] => [3,1]
=> [[1,3,4],[2]]
=> {{1,3,4},{2}}
=> 1
[2,3,4,1] => [3,1]
=> [[1,3,4],[2]]
=> {{1,3,4},{2}}
=> 1
[2,4,1,3] => [2,2]
=> [[1,2],[3,4]]
=> {{1,2},{3,4}}
=> 0
[2,4,3,1] => [2,1,1]
=> [[1,4],[2],[3]]
=> {{1,4},{2},{3}}
=> 2
[3,1,2,4] => [3,1]
=> [[1,3,4],[2]]
=> {{1,3,4},{2}}
=> 1
[3,1,4,2] => [2,2]
=> [[1,2],[3,4]]
=> {{1,2},{3,4}}
=> 0
[3,2,1,4] => [2,1,1]
=> [[1,4],[2],[3]]
=> {{1,4},{2},{3}}
=> 2
[3,2,4,1] => [2,1,1]
=> [[1,4],[2],[3]]
=> {{1,4},{2},{3}}
=> 2
[3,4,1,2] => [2,2]
=> [[1,2],[3,4]]
=> {{1,2},{3,4}}
=> 0
[3,4,2,1] => [2,1,1]
=> [[1,4],[2],[3]]
=> {{1,4},{2},{3}}
=> 2
[4,1,2,3] => [3,1]
=> [[1,3,4],[2]]
=> {{1,3,4},{2}}
=> 1
[4,1,3,2] => [2,1,1]
=> [[1,4],[2],[3]]
=> {{1,4},{2},{3}}
=> 2
[4,2,1,3] => [2,1,1]
=> [[1,4],[2],[3]]
=> {{1,4},{2},{3}}
=> 2
[4,2,3,1] => [2,1,1]
=> [[1,4],[2],[3]]
=> {{1,4},{2},{3}}
=> 2
[4,3,1,2] => [2,1,1]
=> [[1,4],[2],[3]]
=> {{1,4},{2},{3}}
=> 2
[4,3,2,1] => [1,1,1,1]
=> [[1],[2],[3],[4]]
=> {{1},{2},{3},{4}}
=> 0
[1,2,3,4,5] => [5]
=> [[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> 0
[1,2,3,5,4] => [4,1]
=> [[1,3,4,5],[2]]
=> {{1,3,4,5},{2}}
=> 1
[1,2,4,3,5] => [4,1]
=> [[1,3,4,5],[2]]
=> {{1,3,4,5},{2}}
=> 1
[1,2,4,5,3] => [4,1]
=> [[1,3,4,5],[2]]
=> {{1,3,4,5},{2}}
=> 1
[1,2,5,3,4] => [4,1]
=> [[1,3,4,5],[2]]
=> {{1,3,4,5},{2}}
=> 1
[1,2,5,4,3] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> {{1,4,5},{2},{3}}
=> 2
[1,3,2,4,5] => [4,1]
=> [[1,3,4,5],[2]]
=> {{1,3,4,5},{2}}
=> 1
[1,3,2,5,4] => [3,2]
=> [[1,2,5],[3,4]]
=> {{1,2,5},{3,4}}
=> 1
[1,3,4,2,5] => [4,1]
=> [[1,3,4,5],[2]]
=> {{1,3,4,5},{2}}
=> 1
[1,3,4,5,2] => [4,1]
=> [[1,3,4,5],[2]]
=> {{1,3,4,5},{2}}
=> 1
[1,3,5,2,4] => [3,2]
=> [[1,2,5],[3,4]]
=> {{1,2,5},{3,4}}
=> 1
[1,3,5,4,2] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> {{1,4,5},{2},{3}}
=> 2
[1,4,2,3,5] => [4,1]
=> [[1,3,4,5],[2]]
=> {{1,3,4,5},{2}}
=> 1
[1,4,2,5,3] => [3,2]
=> [[1,2,5],[3,4]]
=> {{1,2,5},{3,4}}
=> 1
[1,4,3,2,5] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> {{1,4,5},{2},{3}}
=> 2
[1,4,3,5,2] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> {{1,4,5},{2},{3}}
=> 2
[1,4,5,2,3] => [3,2]
=> [[1,2,5],[3,4]]
=> {{1,2,5},{3,4}}
=> 1
[1,4,5,3,2] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> {{1,4,5},{2},{3}}
=> 2
Description
The number of occurrences of the pattern {{1,3},{2}} such that 2 is maximal, (1,3) are consecutive in a block.
Matching statistic: St000260
Mp00223: Permutations —runsort⟶ Permutations
Mp00126: Permutations —cactus evacuation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 26% ●values known / values provided: 26%●distinct values known / distinct values provided: 57%
Mp00126: Permutations —cactus evacuation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 26% ●values known / values provided: 26%●distinct values known / distinct values provided: 57%
Values
[1] => [1] => [1] => ([],1)
=> 0
[1,2] => [1,2] => [1,2] => ([],2)
=> ? ∊ {0,0}
[2,1] => [1,2] => [1,2] => ([],2)
=> ? ∊ {0,0}
[1,2,3] => [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {0,0,1,1}
[1,3,2] => [1,3,2] => [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[2,1,3] => [1,3,2] => [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[2,3,1] => [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {0,0,1,1}
[3,1,2] => [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {0,0,1,1}
[3,2,1] => [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {0,0,1,1}
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
[1,2,4,3] => [1,2,4,3] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,3,2,4] => [1,3,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
[1,3,4,2] => [1,3,4,2] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
[1,4,2,3] => [1,4,2,3] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
[1,4,3,2] => [1,4,2,3] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
[2,1,3,4] => [1,3,4,2] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
[2,1,4,3] => [1,4,2,3] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
[2,3,1,4] => [1,4,2,3] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
[2,3,4,1] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
[2,4,1,3] => [1,3,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
[2,4,3,1] => [1,2,4,3] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[3,1,2,4] => [1,2,4,3] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[3,1,4,2] => [1,4,2,3] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
[3,2,1,4] => [1,4,2,3] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
[3,2,4,1] => [1,2,4,3] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[3,4,1,2] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
[3,4,2,1] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
[4,1,2,3] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
[4,1,3,2] => [1,3,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
[4,2,1,3] => [1,3,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
[4,2,3,1] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
[4,3,1,2] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
[4,3,2,1] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,2,2,2,2}
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,3,5,4] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,2,4,3,5] => [1,2,4,3,5] => [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,4,5,3] => [1,2,4,5,3] => [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,5,3,4] => [1,2,5,3,4] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,5,4,3] => [1,2,5,3,4] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,3,2,4,5] => [1,3,2,4,5] => [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,3,2,5,4] => [1,3,2,5,4] => [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
[1,3,4,2,5] => [1,3,4,2,5] => [1,3,2,4,5] => ([(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,3,4,5,2] => [1,3,4,5,2] => [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,3,5,2,4] => [1,3,5,2,4] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[1,3,5,4,2] => [1,3,5,2,4] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[1,4,2,3,5] => [1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,4,2,5,3] => [1,4,2,5,3] => [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[1,4,3,2,5] => [1,4,2,5,3] => [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[1,4,3,5,2] => [1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,4,5,2,3] => [1,4,5,2,3] => [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[1,4,5,3,2] => [1,4,5,2,3] => [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[1,5,2,3,4] => [1,5,2,3,4] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,5,2,4,3] => [1,5,2,4,3] => [5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,5,3,2,4] => [1,5,2,4,3] => [5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,5,3,4,2] => [1,5,2,3,4] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,5,4,2,3] => [1,5,2,3,4] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,5,4,3,2] => [1,5,2,3,4] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[2,1,3,4,5] => [1,3,4,5,2] => [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[2,1,3,5,4] => [1,3,5,2,4] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[2,1,4,3,5] => [1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[2,1,4,5,3] => [1,4,5,2,3] => [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[2,1,5,3,4] => [1,5,2,3,4] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[2,1,5,4,3] => [1,5,2,3,4] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[2,3,1,4,5] => [1,4,5,2,3] => [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[2,3,1,5,4] => [1,5,2,3,4] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[2,3,4,1,5] => [1,5,2,3,4] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[2,3,4,5,1] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[2,3,5,1,4] => [1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[2,3,5,4,1] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,4,1,3,5] => [1,3,5,2,4] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[2,4,1,5,3] => [1,5,2,4,3] => [5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,4,3,1,5] => [1,5,2,4,3] => [5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,4,3,5,1] => [1,2,4,3,5] => [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[2,4,5,1,3] => [1,3,2,4,5] => [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[2,5,1,4,3] => [1,4,2,5,3] => [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[2,5,3,1,4] => [1,4,2,5,3] => [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[2,5,4,1,3] => [1,3,2,5,4] => [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
[3,1,4,2,5] => [1,4,2,5,3] => [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[3,1,4,5,2] => [1,4,5,2,3] => [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[3,1,5,2,4] => [1,5,2,4,3] => [5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,2,1,4,5] => [1,4,5,2,3] => [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[3,2,4,1,5] => [1,5,2,4,3] => [5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,2,5,1,4] => [1,4,2,5,3] => [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[3,5,4,1,2] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[3,5,4,2,1] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[4,1,2,3,5] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[4,1,3,2,5] => [1,3,2,5,4] => [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
[4,1,3,5,2] => [1,3,5,2,4] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[4,2,1,3,5] => [1,3,5,2,4] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[4,2,3,5,1] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[4,2,5,1,3] => [1,3,2,5,4] => [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
[4,3,5,1,2] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[4,3,5,2,1] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,2,3,4,6,5] => [1,2,3,4,6,5] => [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[1,2,4,3,6,5] => [1,2,4,3,6,5] => [4,1,6,2,3,5] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[1,2,4,6,3,5] => [1,2,4,6,3,5] => [4,6,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[1,2,4,6,5,3] => [1,2,4,6,3,5] => [4,6,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[1,2,5,3,6,4] => [1,2,5,3,6,4] => [5,1,6,2,3,4] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[1,2,5,4,3,6] => [1,2,5,3,6,4] => [5,1,6,2,3,4] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[1,2,5,6,3,4] => [1,2,5,6,3,4] => [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
Description
The radius of a connected graph.
This is the minimum eccentricity of any vertex.
Matching statistic: St000299
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
[1] => ([],1)
=> ([],1)
=> ([],0)
=> ? = 0
[1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0}
[2,1] => ([],2)
=> ([],1)
=> ([],0)
=> ? ∊ {0,0}
[1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1}
[1,3,2] => ([(0,1),(0,2)],3)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1}
[2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1}
[2,3,1] => ([(1,2)],3)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1}
[3,1,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1}
[3,2,1] => ([],3)
=> ([],1)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1}
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[2,4,3,1] => ([(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[3,2,4,1] => ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[3,4,2,1] => ([(2,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[4,1,3,2] => ([(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[4,2,1,3] => ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[4,2,3,1] => ([(2,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[4,3,1,2] => ([(2,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[4,3,2,1] => ([],4)
=> ([],1)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,4,5,3] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,4,1,5,2] => ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,4,5,1,2] => ([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 3
[3,5,1,2,4] => ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,5,1,4,2] => ([(0,3),(0,4),(1,2),(1,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[3,5,4,1,2] => ([(0,4),(1,2),(1,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[4,2,5,1,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[4,5,1,2,3] => ([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 3
[4,5,1,3,2] => ([(0,4),(1,2),(1,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[4,5,2,1,3] => ([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[4,5,2,3,1] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[4,5,3,1,2] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[5,3,4,1,2] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[3,4,1,2,5,6] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,1)],2)
=> 2
[3,4,1,2,6,5] => ([(0,3),(1,2),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,4,1,5,2,6] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,1)],2)
=> 2
[3,4,1,5,6,2] => ([(0,4),(1,3),(1,5),(4,5),(5,2)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,1)],2)
=> 2
[3,4,1,6,2,5] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,1)],2)
=> 2
[3,4,1,6,5,2] => ([(0,3),(1,2),(1,4),(1,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,4,5,1,2,6] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(1,2)],3)
=> 3
[3,4,5,1,6,2] => ([(0,4),(1,3),(1,5),(2,5),(4,2)],6)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(1,2)],3)
=> 3
[3,4,5,6,1,2] => ([(0,5),(1,3),(4,2),(5,4)],6)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(1,3),(2,3)],4)
=> 4
[3,4,6,1,2,5] => ([(0,3),(1,4),(3,5),(4,2),(4,5)],6)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(1,2)],3)
=> 3
[3,4,6,1,5,2] => ([(0,4),(1,3),(1,5),(4,2),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 3
[3,4,6,5,1,2] => ([(0,4),(1,5),(5,2),(5,3)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 3
[3,5,1,2,4,6] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,1)],2)
=> 2
[3,5,1,2,6,4] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,1)],2)
=> 2
[3,5,1,4,2,6] => ([(0,3),(0,4),(1,2),(1,4),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,5,1,4,6,2] => ([(0,2),(0,4),(1,3),(1,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,5,1,6,2,4] => ([(0,3),(0,5),(1,2),(1,4),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,1)],2)
=> 2
[3,5,1,6,4,2] => ([(0,3),(0,4),(1,2),(1,4),(1,5),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,5,4,1,2,6] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,5,4,1,6,2] => ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,5,4,6,1,2] => ([(0,4),(1,2),(1,3),(2,5),(3,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 3
[3,5,6,1,2,4] => ([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,2),(1,2)],3)
=> 3
[3,5,6,1,4,2] => ([(0,3),(0,5),(1,4),(1,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 3
[3,5,6,4,1,2] => ([(0,4),(1,3),(1,5),(5,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 3
[3,6,1,2,4,5] => ([(0,4),(1,3),(1,5),(4,5),(5,2)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,1)],2)
=> 2
[3,6,1,2,5,4] => ([(0,3),(1,2),(1,4),(1,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,6,1,4,2,5] => ([(0,2),(0,4),(1,3),(1,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,6,1,4,5,2] => ([(0,4),(0,5),(1,3),(1,5),(5,2)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,6,1,5,2,4] => ([(0,3),(0,4),(1,2),(1,4),(1,5),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,6,1,5,4,2] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[3,6,4,1,2,5] => ([(0,4),(1,2),(1,3),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,6,4,1,5,2] => ([(0,4),(0,5),(1,2),(1,3),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,6,4,5,1,2] => ([(0,4),(1,3),(1,5),(5,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 3
[3,6,5,1,2,4] => ([(0,4),(1,2),(1,3),(1,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,6,5,1,4,2] => ([(0,4),(0,5),(1,2),(1,3),(1,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
Description
The number of nonisomorphic vertex-induced subtrees.
Matching statistic: St000452
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
[1] => ([],1)
=> ([],1)
=> ([],0)
=> ? = 0
[1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0}
[2,1] => ([],2)
=> ([],1)
=> ([],0)
=> ? ∊ {0,0}
[1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1}
[1,3,2] => ([(0,1),(0,2)],3)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1}
[2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1}
[2,3,1] => ([(1,2)],3)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1}
[3,1,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1}
[3,2,1] => ([],3)
=> ([],1)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1}
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[2,4,3,1] => ([(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[3,2,4,1] => ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[3,4,2,1] => ([(2,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[4,1,3,2] => ([(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[4,2,1,3] => ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[4,2,3,1] => ([(2,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[4,3,1,2] => ([(2,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[4,3,2,1] => ([],4)
=> ([],1)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,4,5,3] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,4,1,5,2] => ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,4,5,1,2] => ([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 3
[3,5,1,2,4] => ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,5,1,4,2] => ([(0,3),(0,4),(1,2),(1,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[3,5,4,1,2] => ([(0,4),(1,2),(1,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[4,2,5,1,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[4,5,1,2,3] => ([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 3
[4,5,1,3,2] => ([(0,4),(1,2),(1,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[4,5,2,1,3] => ([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[4,5,2,3,1] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[4,5,3,1,2] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[5,3,4,1,2] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[3,4,1,2,5,6] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,1)],2)
=> 2
[3,4,1,2,6,5] => ([(0,3),(1,2),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,4,1,5,2,6] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,1)],2)
=> 2
[3,4,1,5,6,2] => ([(0,4),(1,3),(1,5),(4,5),(5,2)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,1)],2)
=> 2
[3,4,1,6,2,5] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,1)],2)
=> 2
[3,4,1,6,5,2] => ([(0,3),(1,2),(1,4),(1,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,4,5,1,2,6] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(1,2)],3)
=> 3
[3,4,5,1,6,2] => ([(0,4),(1,3),(1,5),(2,5),(4,2)],6)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(1,2)],3)
=> 3
[3,4,5,6,1,2] => ([(0,5),(1,3),(4,2),(5,4)],6)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
[3,4,6,1,2,5] => ([(0,3),(1,4),(3,5),(4,2),(4,5)],6)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(1,2)],3)
=> 3
[3,4,6,1,5,2] => ([(0,4),(1,3),(1,5),(4,2),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 3
[3,4,6,5,1,2] => ([(0,4),(1,5),(5,2),(5,3)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 3
[3,5,1,2,4,6] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,1)],2)
=> 2
[3,5,1,2,6,4] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,1)],2)
=> 2
[3,5,1,4,2,6] => ([(0,3),(0,4),(1,2),(1,4),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,5,1,4,6,2] => ([(0,2),(0,4),(1,3),(1,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,5,1,6,2,4] => ([(0,3),(0,5),(1,2),(1,4),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,1)],2)
=> 2
[3,5,1,6,4,2] => ([(0,3),(0,4),(1,2),(1,4),(1,5),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,5,4,1,2,6] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,5,4,1,6,2] => ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,5,4,6,1,2] => ([(0,4),(1,2),(1,3),(2,5),(3,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 3
[3,5,6,1,2,4] => ([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,2),(1,2)],3)
=> 3
[3,5,6,1,4,2] => ([(0,3),(0,5),(1,4),(1,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 3
[3,5,6,4,1,2] => ([(0,4),(1,3),(1,5),(5,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 3
[3,6,1,2,4,5] => ([(0,4),(1,3),(1,5),(4,5),(5,2)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,1)],2)
=> 2
[3,6,1,2,5,4] => ([(0,3),(1,2),(1,4),(1,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,6,1,4,2,5] => ([(0,2),(0,4),(1,3),(1,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,6,1,4,5,2] => ([(0,4),(0,5),(1,3),(1,5),(5,2)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,6,1,5,2,4] => ([(0,3),(0,4),(1,2),(1,4),(1,5),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,6,1,5,4,2] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[3,6,4,1,2,5] => ([(0,4),(1,2),(1,3),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,6,4,1,5,2] => ([(0,4),(0,5),(1,2),(1,3),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,6,4,5,1,2] => ([(0,4),(1,3),(1,5),(5,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 3
[3,6,5,1,2,4] => ([(0,4),(1,2),(1,3),(1,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,6,5,1,4,2] => ([(0,4),(0,5),(1,2),(1,3),(1,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
Description
The number of distinct eigenvalues of a graph.
Matching statistic: St000453
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
[1] => ([],1)
=> ([],1)
=> ([],0)
=> ? = 0
[1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0}
[2,1] => ([],2)
=> ([],1)
=> ([],0)
=> ? ∊ {0,0}
[1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1}
[1,3,2] => ([(0,1),(0,2)],3)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1}
[2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1}
[2,3,1] => ([(1,2)],3)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1}
[3,1,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1}
[3,2,1] => ([],3)
=> ([],1)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1}
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[2,4,3,1] => ([(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[3,2,4,1] => ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[3,4,2,1] => ([(2,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[4,1,3,2] => ([(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[4,2,1,3] => ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[4,2,3,1] => ([(2,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[4,3,1,2] => ([(2,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[4,3,2,1] => ([],4)
=> ([],1)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,4,5,3] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,4,1,5,2] => ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,4,5,1,2] => ([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 3
[3,5,1,2,4] => ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,5,1,4,2] => ([(0,3),(0,4),(1,2),(1,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[3,5,4,1,2] => ([(0,4),(1,2),(1,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[4,2,5,1,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[4,5,1,2,3] => ([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 3
[4,5,1,3,2] => ([(0,4),(1,2),(1,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[4,5,2,1,3] => ([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[4,5,2,3,1] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[4,5,3,1,2] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[5,3,4,1,2] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[3,4,1,2,5,6] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,1)],2)
=> 2
[3,4,1,2,6,5] => ([(0,3),(1,2),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,4,1,5,2,6] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,1)],2)
=> 2
[3,4,1,5,6,2] => ([(0,4),(1,3),(1,5),(4,5),(5,2)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,1)],2)
=> 2
[3,4,1,6,2,5] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,1)],2)
=> 2
[3,4,1,6,5,2] => ([(0,3),(1,2),(1,4),(1,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,4,5,1,2,6] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(1,2)],3)
=> 3
[3,4,5,1,6,2] => ([(0,4),(1,3),(1,5),(2,5),(4,2)],6)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(1,2)],3)
=> 3
[3,4,5,6,1,2] => ([(0,5),(1,3),(4,2),(5,4)],6)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
[3,4,6,1,2,5] => ([(0,3),(1,4),(3,5),(4,2),(4,5)],6)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(1,2)],3)
=> 3
[3,4,6,1,5,2] => ([(0,4),(1,3),(1,5),(4,2),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 3
[3,4,6,5,1,2] => ([(0,4),(1,5),(5,2),(5,3)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 3
[3,5,1,2,4,6] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,1)],2)
=> 2
[3,5,1,2,6,4] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,1)],2)
=> 2
[3,5,1,4,2,6] => ([(0,3),(0,4),(1,2),(1,4),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,5,1,4,6,2] => ([(0,2),(0,4),(1,3),(1,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,5,1,6,2,4] => ([(0,3),(0,5),(1,2),(1,4),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,1)],2)
=> 2
[3,5,1,6,4,2] => ([(0,3),(0,4),(1,2),(1,4),(1,5),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,5,4,1,2,6] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,5,4,1,6,2] => ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,5,4,6,1,2] => ([(0,4),(1,2),(1,3),(2,5),(3,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 3
[3,5,6,1,2,4] => ([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,2),(1,2)],3)
=> 3
[3,5,6,1,4,2] => ([(0,3),(0,5),(1,4),(1,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 3
[3,5,6,4,1,2] => ([(0,4),(1,3),(1,5),(5,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 3
[3,6,1,2,4,5] => ([(0,4),(1,3),(1,5),(4,5),(5,2)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,1)],2)
=> 2
[3,6,1,2,5,4] => ([(0,3),(1,2),(1,4),(1,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,6,1,4,2,5] => ([(0,2),(0,4),(1,3),(1,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,6,1,4,5,2] => ([(0,4),(0,5),(1,3),(1,5),(5,2)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,6,1,5,2,4] => ([(0,3),(0,4),(1,2),(1,4),(1,5),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,6,1,5,4,2] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[3,6,4,1,2,5] => ([(0,4),(1,2),(1,3),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,6,4,1,5,2] => ([(0,4),(0,5),(1,2),(1,3),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,6,4,5,1,2] => ([(0,4),(1,3),(1,5),(5,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 3
[3,6,5,1,2,4] => ([(0,4),(1,2),(1,3),(1,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,6,5,1,4,2] => ([(0,4),(0,5),(1,2),(1,3),(1,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
Description
The number of distinct Laplacian eigenvalues of a graph.
Matching statistic: St000777
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
[1] => ([],1)
=> ([],1)
=> ([],0)
=> ? = 0
[1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0}
[2,1] => ([],2)
=> ([],1)
=> ([],0)
=> ? ∊ {0,0}
[1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1}
[1,3,2] => ([(0,1),(0,2)],3)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1}
[2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1}
[2,3,1] => ([(1,2)],3)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1}
[3,1,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1}
[3,2,1] => ([],3)
=> ([],1)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1}
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[2,4,3,1] => ([(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[3,2,4,1] => ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[3,4,2,1] => ([(2,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[4,1,3,2] => ([(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[4,2,1,3] => ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[4,2,3,1] => ([(2,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[4,3,1,2] => ([(2,3)],4)
=> ([(0,1)],2)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[4,3,2,1] => ([],4)
=> ([],1)
=> ([],0)
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2}
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,4,5,3] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> ([],0)
=> ? ∊ {0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
[3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,4,1,5,2] => ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,4,5,1,2] => ([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 3
[3,5,1,2,4] => ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,5,1,4,2] => ([(0,3),(0,4),(1,2),(1,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[3,5,4,1,2] => ([(0,4),(1,2),(1,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[4,2,5,1,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[4,5,1,2,3] => ([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 3
[4,5,1,3,2] => ([(0,4),(1,2),(1,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[4,5,2,1,3] => ([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[4,5,2,3,1] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[4,5,3,1,2] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[5,3,4,1,2] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[3,4,1,2,5,6] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,1)],2)
=> 2
[3,4,1,2,6,5] => ([(0,3),(1,2),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,4,1,5,2,6] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,1)],2)
=> 2
[3,4,1,5,6,2] => ([(0,4),(1,3),(1,5),(4,5),(5,2)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,1)],2)
=> 2
[3,4,1,6,2,5] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,1)],2)
=> 2
[3,4,1,6,5,2] => ([(0,3),(1,2),(1,4),(1,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,4,5,1,2,6] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(1,2)],3)
=> 3
[3,4,5,1,6,2] => ([(0,4),(1,3),(1,5),(2,5),(4,2)],6)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(1,2)],3)
=> 3
[3,4,5,6,1,2] => ([(0,5),(1,3),(4,2),(5,4)],6)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(1,3),(2,3)],4)
=> 3
[3,4,6,1,2,5] => ([(0,3),(1,4),(3,5),(4,2),(4,5)],6)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,2),(1,2)],3)
=> 3
[3,4,6,1,5,2] => ([(0,4),(1,3),(1,5),(4,2),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 3
[3,4,6,5,1,2] => ([(0,4),(1,5),(5,2),(5,3)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 3
[3,5,1,2,4,6] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,1)],2)
=> 2
[3,5,1,2,6,4] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,1)],2)
=> 2
[3,5,1,4,2,6] => ([(0,3),(0,4),(1,2),(1,4),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,5,1,4,6,2] => ([(0,2),(0,4),(1,3),(1,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,5,1,6,2,4] => ([(0,3),(0,5),(1,2),(1,4),(2,5),(3,4)],6)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,1)],2)
=> 2
[3,5,1,6,4,2] => ([(0,3),(0,4),(1,2),(1,4),(1,5),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,5,4,1,2,6] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,5,4,1,6,2] => ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,5,4,6,1,2] => ([(0,4),(1,2),(1,3),(2,5),(3,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 3
[3,5,6,1,2,4] => ([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,2),(1,2)],3)
=> 3
[3,5,6,1,4,2] => ([(0,3),(0,5),(1,4),(1,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 3
[3,5,6,4,1,2] => ([(0,4),(1,3),(1,5),(5,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 3
[3,6,1,2,4,5] => ([(0,4),(1,3),(1,5),(4,5),(5,2)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,1)],2)
=> 2
[3,6,1,2,5,4] => ([(0,3),(1,2),(1,4),(1,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,6,1,4,2,5] => ([(0,2),(0,4),(1,3),(1,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,6,1,4,5,2] => ([(0,4),(0,5),(1,3),(1,5),(5,2)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,6,1,5,2,4] => ([(0,3),(0,4),(1,2),(1,4),(1,5),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,6,1,5,4,2] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[3,6,4,1,2,5] => ([(0,4),(1,2),(1,3),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,6,4,1,5,2] => ([(0,4),(0,5),(1,2),(1,3),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,6,4,5,1,2] => ([(0,4),(1,3),(1,5),(5,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 3
[3,6,5,1,2,4] => ([(0,4),(1,2),(1,3),(1,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,1)],2)
=> 2
[3,6,5,1,4,2] => ([(0,4),(0,5),(1,2),(1,3),(1,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
The following 83 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001093The detour number of a graph. St001108The 2-dynamic chromatic number of a graph. St001110The 3-dynamic chromatic number of a graph. St001318The number of vertices of the largest induced subforest with the same number of connected components of a graph. St001672The restrained domination number of a graph. St001674The number of vertices of the largest induced star graph in the graph. St001707The length of a longest path in a graph such that the remaining vertices can be partitioned into two sets of the same size without edges between them. St001725The harmonious chromatic number of a graph. St001746The coalition number of a graph. St000718The largest Laplacian eigenvalue of a graph if it is integral. St000993The multiplicity of the largest part of an integer partition. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000668The least common multiple of the parts of the partition. St000708The product of the parts of an integer partition. St000933The number of multipartitions of sizes given by an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St000422The energy of a graph, if it is integral. St001060The distinguishing index of a graph. St000171The degree of the graph. St000172The Grundy number of a graph. St000258The burning number of a graph. St000259The diameter of a connected graph. St000286The number of connected components of the complement of a graph. St000363The number of minimal vertex covers of a graph. St000469The distinguishing number of a graph. St000636The hull number of a graph. St000786The maximal number of occurrences of a colour in a proper colouring of a graph. St000822The Hadwiger number of the graph. St000917The open packing number of a graph. St000918The 2-limited packing number of a graph. St001029The size of the core of a graph. St001111The weak 2-dynamic chromatic number of a graph. St001112The 3-weak dynamic number of a graph. St001116The game chromatic number of a graph. St001117The game chromatic index of a graph. St001118The acyclic chromatic index of a graph. St001119The length of a shortest maximal path in a graph. St001120The length of a longest path in a graph. St001261The Castelnuovo-Mumford regularity of a graph. St001286The annihilation number of a graph. St001304The number of maximally independent sets of vertices of a graph. St001315The dissociation number of a graph. St001316The domatic number of a graph. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St001342The number of vertices in the center of a graph. St001366The maximal multiplicity of a degree of a vertex of a graph. St001368The number of vertices of maximal degree in a graph. St001391The disjunction number of a graph. St001494The Alon-Tarsi number of a graph. St001512The minimum rank of a graph. St001580The acyclic chromatic number of a graph. St001581The achromatic number of a graph. St001642The Prague dimension of a graph. St001654The monophonic hull number of a graph. St001655The general position number of a graph. St001656The monophonic position number of a graph. St001670The connected partition number of a graph. St001704The size of the largest multi-subset-intersection of the deck of a graph with the deck of another graph. St001716The 1-improper chromatic number of a graph. St001734The lettericity of a graph. St001844The maximal degree of a generator of the invariant ring of the automorphism group of a graph. St001883The mutual visibility number of a graph. St001963The tree-depth of a graph. St000741The Colin de Verdière graph invariant. St001330The hat guessing number of a graph. St000454The largest eigenvalue of a graph if it is integral. St001875The number of simple modules with projective dimension at most 1. St001811The Castelnuovo-Mumford regularity of a permutation. St000264The girth of a graph, which is not a tree. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001520The number of strict 3-descents. St000307The number of rowmotion orbits of a poset. St000632The jump number of the poset. St001574The minimal number of edges to add or remove to make a graph regular. St001576The minimal number of edges to add or remove to make a graph vertex transitive. St001742The difference of the maximal and the minimal degree in a graph. St000077The number of boxed and circled entries. St001575The minimal number of edges to add or remove to make a graph edge transitive.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!