searching the database
Your data matches 197 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000177
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
St000177: Gelfand-Tsetlin patterns ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[2,0],[0]]
=> 0
[[2,0],[1]]
=> 0
[[2,0],[2]]
=> 0
[[1,1],[1]]
=> 0
[[3,0,0],[0,0],[0]]
=> 0
[[3,0,0],[1,0],[0]]
=> 1
[[3,0,0],[1,0],[1]]
=> 0
[[3,0,0],[2,0],[0]]
=> 1
[[3,0,0],[2,0],[1]]
=> 1
[[3,0,0],[2,0],[2]]
=> 0
[[3,0,0],[3,0],[0]]
=> 0
[[3,0,0],[3,0],[1]]
=> 0
[[3,0,0],[3,0],[2]]
=> 0
[[3,0,0],[3,0],[3]]
=> 0
[[2,1,0],[1,0],[0]]
=> 0
[[2,1,0],[1,0],[1]]
=> 0
[[2,1,0],[1,1],[1]]
=> 0
[[2,1,0],[2,0],[0]]
=> 0
[[2,1,0],[2,0],[1]]
=> 0
[[2,1,0],[2,0],[2]]
=> 0
[[2,1,0],[2,1],[1]]
=> 0
[[2,1,0],[2,1],[2]]
=> 0
[[1,1,1],[1,1],[1]]
=> 0
[[4,0,0,0],[0,0,0],[0,0],[0]]
=> 0
[[4,0,0,0],[1,0,0],[0,0],[0]]
=> 1
[[4,0,0,0],[1,0,0],[1,0],[0]]
=> 1
[[4,0,0,0],[1,0,0],[1,0],[1]]
=> 0
[[4,0,0,0],[2,0,0],[0,0],[0]]
=> 1
[[4,0,0,0],[2,0,0],[1,0],[0]]
=> 2
[[4,0,0,0],[2,0,0],[1,0],[1]]
=> 1
[[4,0,0,0],[2,0,0],[2,0],[0]]
=> 1
[[4,0,0,0],[2,0,0],[2,0],[1]]
=> 1
[[4,0,0,0],[2,0,0],[2,0],[2]]
=> 0
[[4,0,0,0],[3,0,0],[0,0],[0]]
=> 1
[[4,0,0,0],[3,0,0],[1,0],[0]]
=> 2
[[4,0,0,0],[3,0,0],[1,0],[1]]
=> 1
[[4,0,0,0],[3,0,0],[2,0],[0]]
=> 2
[[4,0,0,0],[3,0,0],[2,0],[1]]
=> 2
[[4,0,0,0],[3,0,0],[2,0],[2]]
=> 1
[[4,0,0,0],[3,0,0],[3,0],[0]]
=> 1
[[4,0,0,0],[3,0,0],[3,0],[1]]
=> 1
[[4,0,0,0],[3,0,0],[3,0],[2]]
=> 1
[[4,0,0,0],[3,0,0],[3,0],[3]]
=> 0
[[4,0,0,0],[4,0,0],[0,0],[0]]
=> 0
[[4,0,0,0],[4,0,0],[1,0],[0]]
=> 1
[[4,0,0,0],[4,0,0],[1,0],[1]]
=> 0
[[4,0,0,0],[4,0,0],[2,0],[0]]
=> 1
[[4,0,0,0],[4,0,0],[2,0],[1]]
=> 1
[[4,0,0,0],[4,0,0],[2,0],[2]]
=> 0
[[4,0,0,0],[4,0,0],[3,0],[0]]
=> 1
Description
The number of free tiles in the pattern.
The ''tiling'' of a pattern is the finest partition of the entries in the pattern, such that adjacent (NW,NE,SW,SE) entries that are equal belong to the same part. These parts are called ''tiles'', and each entry in a pattern belong to exactly one tile.
A tile is ''free'' if it does not intersect any of the first and the last row.
Matching statistic: St000478
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00036: Gelfand-Tsetlin patterns —to semistandard tableau⟶ Semistandard tableaux
Mp00225: Semistandard tableaux —weight⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000478: Integer partitions ⟶ ℤResult quality: 66% ●values known / values provided: 66%●distinct values known / distinct values provided: 67%
Mp00225: Semistandard tableaux —weight⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000478: Integer partitions ⟶ ℤResult quality: 66% ●values known / values provided: 66%●distinct values known / distinct values provided: 67%
Values
[[2,0],[0]]
=> [[2,2]]
=> [2]
=> []
=> ? ∊ {0,0,0,0}
[[2,0],[1]]
=> [[1,2]]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0}
[[2,0],[2]]
=> [[1,1]]
=> [2]
=> []
=> ? ∊ {0,0,0,0}
[[1,1],[1]]
=> [[1],[2]]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0}
[[3,0,0],[0,0],[0]]
=> [[3,3,3]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[1,0],[0]]
=> [[2,3,3]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[1,0],[1]]
=> [[1,3,3]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[2,0],[0]]
=> [[2,2,3]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[2,0],[1]]
=> [[1,2,3]]
=> [1,1,1]
=> [1,1]
=> 0
[[3,0,0],[2,0],[2]]
=> [[1,1,3]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[3,0],[0]]
=> [[2,2,2]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[3,0],[1]]
=> [[1,2,2]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[3,0],[2]]
=> [[1,1,2]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[3,0],[3]]
=> [[1,1,1]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[2,1,0],[1,0],[0]]
=> [[2,3],[3]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[2,1,0],[1,0],[1]]
=> [[1,3],[3]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[2,1,0],[1,1],[1]]
=> [[1,3],[2]]
=> [1,1,1]
=> [1,1]
=> 0
[[2,1,0],[2,0],[0]]
=> [[2,2],[3]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[2,1,0],[2,0],[1]]
=> [[1,2],[3]]
=> [1,1,1]
=> [1,1]
=> 0
[[2,1,0],[2,0],[2]]
=> [[1,1],[3]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[2,1,0],[2,1],[1]]
=> [[1,2],[2]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[2,1,0],[2,1],[2]]
=> [[1,1],[2]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[1,1,1],[1,1],[1]]
=> [[1],[2],[3]]
=> [1,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[0,0,0],[0,0],[0]]
=> [[4,4,4,4]]
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[1,0,0],[0,0],[0]]
=> [[3,4,4,4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[1,0,0],[1,0],[0]]
=> [[2,4,4,4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[1,0,0],[1,0],[1]]
=> [[1,4,4,4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[2,0,0],[0,0],[0]]
=> [[3,3,4,4]]
=> [2,2]
=> [2]
=> 1
[[4,0,0,0],[2,0,0],[1,0],[0]]
=> [[2,3,4,4]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[2,0,0],[1,0],[1]]
=> [[1,3,4,4]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[2,0,0],[2,0],[0]]
=> [[2,2,4,4]]
=> [2,2]
=> [2]
=> 1
[[4,0,0,0],[2,0,0],[2,0],[1]]
=> [[1,2,4,4]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[2,0,0],[2,0],[2]]
=> [[1,1,4,4]]
=> [2,2]
=> [2]
=> 1
[[4,0,0,0],[3,0,0],[0,0],[0]]
=> [[3,3,3,4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[1,0],[0]]
=> [[2,3,3,4]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[3,0,0],[1,0],[1]]
=> [[1,3,3,4]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[3,0,0],[2,0],[0]]
=> [[2,2,3,4]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3,4]]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[[4,0,0,0],[3,0,0],[2,0],[2]]
=> [[1,1,3,4]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[3,0,0],[3,0],[0]]
=> [[2,2,2,4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[3,0],[1]]
=> [[1,2,2,4]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[3,0,0],[3,0],[2]]
=> [[1,1,2,4]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[3,0,0],[3,0],[3]]
=> [[1,1,1,4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[0,0],[0]]
=> [[3,3,3,3]]
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[1,0],[0]]
=> [[2,3,3,3]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[1,0],[1]]
=> [[1,3,3,3]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[2,0],[0]]
=> [[2,2,3,3]]
=> [2,2]
=> [2]
=> 1
[[4,0,0,0],[4,0,0],[2,0],[1]]
=> [[1,2,3,3]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[4,0,0],[2,0],[2]]
=> [[1,1,3,3]]
=> [2,2]
=> [2]
=> 1
[[4,0,0,0],[4,0,0],[3,0],[0]]
=> [[2,2,2,3]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[3,0],[1]]
=> [[1,2,2,3]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[4,0,0],[3,0],[2]]
=> [[1,1,2,3]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[4,0,0],[3,0],[3]]
=> [[1,1,1,3]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[0]]
=> [[2,2,2,2]]
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[1]]
=> [[1,2,2,2]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[2]]
=> [[1,1,2,2]]
=> [2,2]
=> [2]
=> 1
[[4,0,0,0],[4,0,0],[4,0],[3]]
=> [[1,1,1,2]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[4]]
=> [[1,1,1,1]]
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[1,0,0],[0,0],[0]]
=> [[3,4,4],[4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[1,0,0],[1,0],[0]]
=> [[2,4,4],[4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[1,0,0],[1,0],[1]]
=> [[1,4,4],[4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[1,1,0],[1,0],[0]]
=> [[2,4,4],[3]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[1,1,0],[1,0],[1]]
=> [[1,4,4],[3]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[1,1,0],[1,1],[1]]
=> [[1,4,4],[2]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[2,0,0],[0,0],[0]]
=> [[3,3,4],[4]]
=> [2,2]
=> [2]
=> 1
[[3,1,0,0],[2,0,0],[1,0],[0]]
=> [[2,3,4],[4]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[2,0,0],[1,0],[1]]
=> [[1,3,4],[4]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[2,0,0],[2,0],[0]]
=> [[2,2,4],[4]]
=> [2,2]
=> [2]
=> 1
[[3,1,0,0],[2,0,0],[2,0],[1]]
=> [[1,2,4],[4]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[2,0,0],[2,0],[2]]
=> [[1,1,4],[4]]
=> [2,2]
=> [2]
=> 1
[[3,1,0,0],[2,1,0],[1,0],[0]]
=> [[2,3,4],[3]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[2,1,0],[1,0],[1]]
=> [[1,3,4],[3]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[2,1,0],[1,1],[1]]
=> [[1,3,4],[2]]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[[3,1,0,0],[2,1,0],[2,0],[0]]
=> [[2,2,4],[3]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[2,1,0],[2,0],[1]]
=> [[1,2,4],[3]]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[[3,1,0,0],[2,1,0],[2,0],[2]]
=> [[1,1,4],[3]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[2,1,0],[2,1],[1]]
=> [[1,2,4],[2]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[2,1,0],[2,1],[2]]
=> [[1,1,4],[2]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[3,0,0],[0,0],[0]]
=> [[3,3,3],[4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[3,0,0],[1,0],[0]]
=> [[2,3,3],[4]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[3,0,0],[1,0],[1]]
=> [[1,3,3],[4]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[3,0,0],[2,0],[0]]
=> [[2,2,3],[4]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3],[4]]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[[3,1,0,0],[3,0,0],[2,0],[2]]
=> [[1,1,3],[4]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[3,0,0],[3,0],[0]]
=> [[2,2,2],[4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[3,0,0],[3,0],[1]]
=> [[1,2,2],[4]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[3,0,0],[3,0],[2]]
=> [[1,1,2],[4]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[3,0,0],[3,0],[3]]
=> [[1,1,1],[4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[3,1,0],[1,0],[0]]
=> [[2,3,3],[3]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[3,1,0],[1,0],[1]]
=> [[1,3,3],[3]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[3,1,0],[1,1],[1]]
=> [[1,3,3],[2]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[3,1,0],[2,0],[0]]
=> [[2,2,3],[3]]
=> [2,2]
=> [2]
=> 1
[[3,1,0,0],[3,1,0],[2,0],[1]]
=> [[1,2,3],[3]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[3,1,0],[3,0],[0]]
=> [[2,2,2],[3]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[3,1,0],[3,0],[3]]
=> [[1,1,1],[3]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[3,1,0],[3,1],[1]]
=> [[1,2,2],[2]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[3,1,0],[3,1],[3]]
=> [[1,1,1],[2]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
Description
Another weight of a partition according to Alladi.
According to Theorem 3.4 (Alladi 2012) in [1]
$$
\sum_{\pi\in GG_1(r)} w_1(\pi)
$$
equals the number of partitions of $r$ whose odd parts are all distinct. $GG_1(r)$ is the set of partitions of $r$ where consecutive entries differ by at least $2$, and consecutive even entries differ by at least $4$.
Matching statistic: St000566
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00036: Gelfand-Tsetlin patterns —to semistandard tableau⟶ Semistandard tableaux
Mp00225: Semistandard tableaux —weight⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000566: Integer partitions ⟶ ℤResult quality: 66% ●values known / values provided: 66%●distinct values known / distinct values provided: 67%
Mp00225: Semistandard tableaux —weight⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000566: Integer partitions ⟶ ℤResult quality: 66% ●values known / values provided: 66%●distinct values known / distinct values provided: 67%
Values
[[2,0],[0]]
=> [[2,2]]
=> [2]
=> []
=> ? ∊ {0,0,0,0}
[[2,0],[1]]
=> [[1,2]]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0}
[[2,0],[2]]
=> [[1,1]]
=> [2]
=> []
=> ? ∊ {0,0,0,0}
[[1,1],[1]]
=> [[1],[2]]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0}
[[3,0,0],[0,0],[0]]
=> [[3,3,3]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[1,0],[0]]
=> [[2,3,3]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[1,0],[1]]
=> [[1,3,3]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[2,0],[0]]
=> [[2,2,3]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[2,0],[1]]
=> [[1,2,3]]
=> [1,1,1]
=> [1,1]
=> 0
[[3,0,0],[2,0],[2]]
=> [[1,1,3]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[3,0],[0]]
=> [[2,2,2]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[3,0],[1]]
=> [[1,2,2]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[3,0],[2]]
=> [[1,1,2]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[3,0],[3]]
=> [[1,1,1]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[2,1,0],[1,0],[0]]
=> [[2,3],[3]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[2,1,0],[1,0],[1]]
=> [[1,3],[3]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[2,1,0],[1,1],[1]]
=> [[1,3],[2]]
=> [1,1,1]
=> [1,1]
=> 0
[[2,1,0],[2,0],[0]]
=> [[2,2],[3]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[2,1,0],[2,0],[1]]
=> [[1,2],[3]]
=> [1,1,1]
=> [1,1]
=> 0
[[2,1,0],[2,0],[2]]
=> [[1,1],[3]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[2,1,0],[2,1],[1]]
=> [[1,2],[2]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[2,1,0],[2,1],[2]]
=> [[1,1],[2]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[1,1,1],[1,1],[1]]
=> [[1],[2],[3]]
=> [1,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[0,0,0],[0,0],[0]]
=> [[4,4,4,4]]
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[1,0,0],[0,0],[0]]
=> [[3,4,4,4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[1,0,0],[1,0],[0]]
=> [[2,4,4,4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[1,0,0],[1,0],[1]]
=> [[1,4,4,4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[2,0,0],[0,0],[0]]
=> [[3,3,4,4]]
=> [2,2]
=> [2]
=> 1
[[4,0,0,0],[2,0,0],[1,0],[0]]
=> [[2,3,4,4]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[2,0,0],[1,0],[1]]
=> [[1,3,4,4]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[2,0,0],[2,0],[0]]
=> [[2,2,4,4]]
=> [2,2]
=> [2]
=> 1
[[4,0,0,0],[2,0,0],[2,0],[1]]
=> [[1,2,4,4]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[2,0,0],[2,0],[2]]
=> [[1,1,4,4]]
=> [2,2]
=> [2]
=> 1
[[4,0,0,0],[3,0,0],[0,0],[0]]
=> [[3,3,3,4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[1,0],[0]]
=> [[2,3,3,4]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[3,0,0],[1,0],[1]]
=> [[1,3,3,4]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[3,0,0],[2,0],[0]]
=> [[2,2,3,4]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3,4]]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[[4,0,0,0],[3,0,0],[2,0],[2]]
=> [[1,1,3,4]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[3,0,0],[3,0],[0]]
=> [[2,2,2,4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[3,0],[1]]
=> [[1,2,2,4]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[3,0,0],[3,0],[2]]
=> [[1,1,2,4]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[3,0,0],[3,0],[3]]
=> [[1,1,1,4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[0,0],[0]]
=> [[3,3,3,3]]
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[1,0],[0]]
=> [[2,3,3,3]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[1,0],[1]]
=> [[1,3,3,3]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[2,0],[0]]
=> [[2,2,3,3]]
=> [2,2]
=> [2]
=> 1
[[4,0,0,0],[4,0,0],[2,0],[1]]
=> [[1,2,3,3]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[4,0,0],[2,0],[2]]
=> [[1,1,3,3]]
=> [2,2]
=> [2]
=> 1
[[4,0,0,0],[4,0,0],[3,0],[0]]
=> [[2,2,2,3]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[3,0],[1]]
=> [[1,2,2,3]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[4,0,0],[3,0],[2]]
=> [[1,1,2,3]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[4,0,0],[3,0],[3]]
=> [[1,1,1,3]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[0]]
=> [[2,2,2,2]]
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[1]]
=> [[1,2,2,2]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[2]]
=> [[1,1,2,2]]
=> [2,2]
=> [2]
=> 1
[[4,0,0,0],[4,0,0],[4,0],[3]]
=> [[1,1,1,2]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[4]]
=> [[1,1,1,1]]
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[1,0,0],[0,0],[0]]
=> [[3,4,4],[4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[1,0,0],[1,0],[0]]
=> [[2,4,4],[4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[1,0,0],[1,0],[1]]
=> [[1,4,4],[4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[1,1,0],[1,0],[0]]
=> [[2,4,4],[3]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[1,1,0],[1,0],[1]]
=> [[1,4,4],[3]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[1,1,0],[1,1],[1]]
=> [[1,4,4],[2]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[2,0,0],[0,0],[0]]
=> [[3,3,4],[4]]
=> [2,2]
=> [2]
=> 1
[[3,1,0,0],[2,0,0],[1,0],[0]]
=> [[2,3,4],[4]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[2,0,0],[1,0],[1]]
=> [[1,3,4],[4]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[2,0,0],[2,0],[0]]
=> [[2,2,4],[4]]
=> [2,2]
=> [2]
=> 1
[[3,1,0,0],[2,0,0],[2,0],[1]]
=> [[1,2,4],[4]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[2,0,0],[2,0],[2]]
=> [[1,1,4],[4]]
=> [2,2]
=> [2]
=> 1
[[3,1,0,0],[2,1,0],[1,0],[0]]
=> [[2,3,4],[3]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[2,1,0],[1,0],[1]]
=> [[1,3,4],[3]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[2,1,0],[1,1],[1]]
=> [[1,3,4],[2]]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[[3,1,0,0],[2,1,0],[2,0],[0]]
=> [[2,2,4],[3]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[2,1,0],[2,0],[1]]
=> [[1,2,4],[3]]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[[3,1,0,0],[2,1,0],[2,0],[2]]
=> [[1,1,4],[3]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[2,1,0],[2,1],[1]]
=> [[1,2,4],[2]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[2,1,0],[2,1],[2]]
=> [[1,1,4],[2]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[3,0,0],[0,0],[0]]
=> [[3,3,3],[4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[3,0,0],[1,0],[0]]
=> [[2,3,3],[4]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[3,0,0],[1,0],[1]]
=> [[1,3,3],[4]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[3,0,0],[2,0],[0]]
=> [[2,2,3],[4]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3],[4]]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[[3,1,0,0],[3,0,0],[2,0],[2]]
=> [[1,1,3],[4]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[3,0,0],[3,0],[0]]
=> [[2,2,2],[4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[3,0,0],[3,0],[1]]
=> [[1,2,2],[4]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[3,0,0],[3,0],[2]]
=> [[1,1,2],[4]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[3,0,0],[3,0],[3]]
=> [[1,1,1],[4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[3,1,0],[1,0],[0]]
=> [[2,3,3],[3]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[3,1,0],[1,0],[1]]
=> [[1,3,3],[3]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[3,1,0],[1,1],[1]]
=> [[1,3,3],[2]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[3,1,0],[2,0],[0]]
=> [[2,2,3],[3]]
=> [2,2]
=> [2]
=> 1
[[3,1,0,0],[3,1,0],[2,0],[1]]
=> [[1,2,3],[3]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[3,1,0],[3,0],[0]]
=> [[2,2,2],[3]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[3,1,0],[3,0],[3]]
=> [[1,1,1],[3]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[3,1,0],[3,1],[1]]
=> [[1,2,2],[2]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[3,1,0],[3,1],[3]]
=> [[1,1,1],[2]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
Description
The number of ways to select a row of a Ferrers shape and two cells in this row. Equivalently, if $\lambda = (\lambda_0\geq\lambda_1 \geq \dots\geq\lambda_m)$ is an integer partition, then the statistic is
$$\frac{1}{2} \sum_{i=0}^m \lambda_i(\lambda_i -1).$$
Matching statistic: St000621
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00036: Gelfand-Tsetlin patterns —to semistandard tableau⟶ Semistandard tableaux
Mp00225: Semistandard tableaux —weight⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000621: Integer partitions ⟶ ℤResult quality: 66% ●values known / values provided: 66%●distinct values known / distinct values provided: 67%
Mp00225: Semistandard tableaux —weight⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000621: Integer partitions ⟶ ℤResult quality: 66% ●values known / values provided: 66%●distinct values known / distinct values provided: 67%
Values
[[2,0],[0]]
=> [[2,2]]
=> [2]
=> []
=> ? ∊ {0,0,0,0}
[[2,0],[1]]
=> [[1,2]]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0}
[[2,0],[2]]
=> [[1,1]]
=> [2]
=> []
=> ? ∊ {0,0,0,0}
[[1,1],[1]]
=> [[1],[2]]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0}
[[3,0,0],[0,0],[0]]
=> [[3,3,3]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[1,0],[0]]
=> [[2,3,3]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[1,0],[1]]
=> [[1,3,3]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[2,0],[0]]
=> [[2,2,3]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[2,0],[1]]
=> [[1,2,3]]
=> [1,1,1]
=> [1,1]
=> 0
[[3,0,0],[2,0],[2]]
=> [[1,1,3]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[3,0],[0]]
=> [[2,2,2]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[3,0],[1]]
=> [[1,2,2]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[3,0],[2]]
=> [[1,1,2]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[3,0],[3]]
=> [[1,1,1]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[2,1,0],[1,0],[0]]
=> [[2,3],[3]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[2,1,0],[1,0],[1]]
=> [[1,3],[3]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[2,1,0],[1,1],[1]]
=> [[1,3],[2]]
=> [1,1,1]
=> [1,1]
=> 0
[[2,1,0],[2,0],[0]]
=> [[2,2],[3]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[2,1,0],[2,0],[1]]
=> [[1,2],[3]]
=> [1,1,1]
=> [1,1]
=> 0
[[2,1,0],[2,0],[2]]
=> [[1,1],[3]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[2,1,0],[2,1],[1]]
=> [[1,2],[2]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[2,1,0],[2,1],[2]]
=> [[1,1],[2]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[1,1,1],[1,1],[1]]
=> [[1],[2],[3]]
=> [1,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[0,0,0],[0,0],[0]]
=> [[4,4,4,4]]
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[1,0,0],[0,0],[0]]
=> [[3,4,4,4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[1,0,0],[1,0],[0]]
=> [[2,4,4,4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[1,0,0],[1,0],[1]]
=> [[1,4,4,4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[2,0,0],[0,0],[0]]
=> [[3,3,4,4]]
=> [2,2]
=> [2]
=> 1
[[4,0,0,0],[2,0,0],[1,0],[0]]
=> [[2,3,4,4]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[2,0,0],[1,0],[1]]
=> [[1,3,4,4]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[2,0,0],[2,0],[0]]
=> [[2,2,4,4]]
=> [2,2]
=> [2]
=> 1
[[4,0,0,0],[2,0,0],[2,0],[1]]
=> [[1,2,4,4]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[2,0,0],[2,0],[2]]
=> [[1,1,4,4]]
=> [2,2]
=> [2]
=> 1
[[4,0,0,0],[3,0,0],[0,0],[0]]
=> [[3,3,3,4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[1,0],[0]]
=> [[2,3,3,4]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[3,0,0],[1,0],[1]]
=> [[1,3,3,4]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[3,0,0],[2,0],[0]]
=> [[2,2,3,4]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3,4]]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[[4,0,0,0],[3,0,0],[2,0],[2]]
=> [[1,1,3,4]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[3,0,0],[3,0],[0]]
=> [[2,2,2,4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[3,0],[1]]
=> [[1,2,2,4]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[3,0,0],[3,0],[2]]
=> [[1,1,2,4]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[3,0,0],[3,0],[3]]
=> [[1,1,1,4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[0,0],[0]]
=> [[3,3,3,3]]
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[1,0],[0]]
=> [[2,3,3,3]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[1,0],[1]]
=> [[1,3,3,3]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[2,0],[0]]
=> [[2,2,3,3]]
=> [2,2]
=> [2]
=> 1
[[4,0,0,0],[4,0,0],[2,0],[1]]
=> [[1,2,3,3]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[4,0,0],[2,0],[2]]
=> [[1,1,3,3]]
=> [2,2]
=> [2]
=> 1
[[4,0,0,0],[4,0,0],[3,0],[0]]
=> [[2,2,2,3]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[3,0],[1]]
=> [[1,2,2,3]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[4,0,0],[3,0],[2]]
=> [[1,1,2,3]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[4,0,0],[3,0],[3]]
=> [[1,1,1,3]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[0]]
=> [[2,2,2,2]]
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[1]]
=> [[1,2,2,2]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[2]]
=> [[1,1,2,2]]
=> [2,2]
=> [2]
=> 1
[[4,0,0,0],[4,0,0],[4,0],[3]]
=> [[1,1,1,2]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[4]]
=> [[1,1,1,1]]
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[1,0,0],[0,0],[0]]
=> [[3,4,4],[4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[1,0,0],[1,0],[0]]
=> [[2,4,4],[4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[1,0,0],[1,0],[1]]
=> [[1,4,4],[4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[1,1,0],[1,0],[0]]
=> [[2,4,4],[3]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[1,1,0],[1,0],[1]]
=> [[1,4,4],[3]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[1,1,0],[1,1],[1]]
=> [[1,4,4],[2]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[2,0,0],[0,0],[0]]
=> [[3,3,4],[4]]
=> [2,2]
=> [2]
=> 1
[[3,1,0,0],[2,0,0],[1,0],[0]]
=> [[2,3,4],[4]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[2,0,0],[1,0],[1]]
=> [[1,3,4],[4]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[2,0,0],[2,0],[0]]
=> [[2,2,4],[4]]
=> [2,2]
=> [2]
=> 1
[[3,1,0,0],[2,0,0],[2,0],[1]]
=> [[1,2,4],[4]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[2,0,0],[2,0],[2]]
=> [[1,1,4],[4]]
=> [2,2]
=> [2]
=> 1
[[3,1,0,0],[2,1,0],[1,0],[0]]
=> [[2,3,4],[3]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[2,1,0],[1,0],[1]]
=> [[1,3,4],[3]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[2,1,0],[1,1],[1]]
=> [[1,3,4],[2]]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[[3,1,0,0],[2,1,0],[2,0],[0]]
=> [[2,2,4],[3]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[2,1,0],[2,0],[1]]
=> [[1,2,4],[3]]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[[3,1,0,0],[2,1,0],[2,0],[2]]
=> [[1,1,4],[3]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[2,1,0],[2,1],[1]]
=> [[1,2,4],[2]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[2,1,0],[2,1],[2]]
=> [[1,1,4],[2]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[3,0,0],[0,0],[0]]
=> [[3,3,3],[4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[3,0,0],[1,0],[0]]
=> [[2,3,3],[4]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[3,0,0],[1,0],[1]]
=> [[1,3,3],[4]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[3,0,0],[2,0],[0]]
=> [[2,2,3],[4]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3],[4]]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[[3,1,0,0],[3,0,0],[2,0],[2]]
=> [[1,1,3],[4]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[3,0,0],[3,0],[0]]
=> [[2,2,2],[4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[3,0,0],[3,0],[1]]
=> [[1,2,2],[4]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[3,0,0],[3,0],[2]]
=> [[1,1,2],[4]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[3,0,0],[3,0],[3]]
=> [[1,1,1],[4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[3,1,0],[1,0],[0]]
=> [[2,3,3],[3]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[3,1,0],[1,0],[1]]
=> [[1,3,3],[3]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[3,1,0],[1,1],[1]]
=> [[1,3,3],[2]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[3,1,0],[2,0],[0]]
=> [[2,2,3],[3]]
=> [2,2]
=> [2]
=> 1
[[3,1,0,0],[3,1,0],[2,0],[1]]
=> [[1,2,3],[3]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[3,1,0],[3,0],[0]]
=> [[2,2,2],[3]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[3,1,0],[3,0],[3]]
=> [[1,1,1],[3]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[3,1,0],[3,1],[1]]
=> [[1,2,2],[2]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[3,1,0],[3,1],[3]]
=> [[1,1,1],[2]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
Description
The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even.
To be precise, this is given for a partition $\lambda \vdash n$ by the number of standard tableaux $T$ of shape $\lambda$ such that $\min\big( \operatorname{Des}(T) \cup \{n\} \big)$ is even.
This notion was used in [1, Proposition 2.3], see also [2, Theorem 1.1].
The case of an odd minimum is [[St000620]].
Matching statistic: St000934
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00036: Gelfand-Tsetlin patterns —to semistandard tableau⟶ Semistandard tableaux
Mp00225: Semistandard tableaux —weight⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000934: Integer partitions ⟶ ℤResult quality: 66% ●values known / values provided: 66%●distinct values known / distinct values provided: 67%
Mp00225: Semistandard tableaux —weight⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000934: Integer partitions ⟶ ℤResult quality: 66% ●values known / values provided: 66%●distinct values known / distinct values provided: 67%
Values
[[2,0],[0]]
=> [[2,2]]
=> [2]
=> []
=> ? ∊ {0,0,0,0}
[[2,0],[1]]
=> [[1,2]]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0}
[[2,0],[2]]
=> [[1,1]]
=> [2]
=> []
=> ? ∊ {0,0,0,0}
[[1,1],[1]]
=> [[1],[2]]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0}
[[3,0,0],[0,0],[0]]
=> [[3,3,3]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[1,0],[0]]
=> [[2,3,3]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[1,0],[1]]
=> [[1,3,3]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[2,0],[0]]
=> [[2,2,3]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[2,0],[1]]
=> [[1,2,3]]
=> [1,1,1]
=> [1,1]
=> 0
[[3,0,0],[2,0],[2]]
=> [[1,1,3]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[3,0],[0]]
=> [[2,2,2]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[3,0],[1]]
=> [[1,2,2]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[3,0],[2]]
=> [[1,1,2]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[3,0],[3]]
=> [[1,1,1]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[2,1,0],[1,0],[0]]
=> [[2,3],[3]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[2,1,0],[1,0],[1]]
=> [[1,3],[3]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[2,1,0],[1,1],[1]]
=> [[1,3],[2]]
=> [1,1,1]
=> [1,1]
=> 0
[[2,1,0],[2,0],[0]]
=> [[2,2],[3]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[2,1,0],[2,0],[1]]
=> [[1,2],[3]]
=> [1,1,1]
=> [1,1]
=> 0
[[2,1,0],[2,0],[2]]
=> [[1,1],[3]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[2,1,0],[2,1],[1]]
=> [[1,2],[2]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[2,1,0],[2,1],[2]]
=> [[1,1],[2]]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[1,1,1],[1,1],[1]]
=> [[1],[2],[3]]
=> [1,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[0,0,0],[0,0],[0]]
=> [[4,4,4,4]]
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[1,0,0],[0,0],[0]]
=> [[3,4,4,4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[1,0,0],[1,0],[0]]
=> [[2,4,4,4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[1,0,0],[1,0],[1]]
=> [[1,4,4,4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[2,0,0],[0,0],[0]]
=> [[3,3,4,4]]
=> [2,2]
=> [2]
=> 1
[[4,0,0,0],[2,0,0],[1,0],[0]]
=> [[2,3,4,4]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[2,0,0],[1,0],[1]]
=> [[1,3,4,4]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[2,0,0],[2,0],[0]]
=> [[2,2,4,4]]
=> [2,2]
=> [2]
=> 1
[[4,0,0,0],[2,0,0],[2,0],[1]]
=> [[1,2,4,4]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[2,0,0],[2,0],[2]]
=> [[1,1,4,4]]
=> [2,2]
=> [2]
=> 1
[[4,0,0,0],[3,0,0],[0,0],[0]]
=> [[3,3,3,4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[1,0],[0]]
=> [[2,3,3,4]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[3,0,0],[1,0],[1]]
=> [[1,3,3,4]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[3,0,0],[2,0],[0]]
=> [[2,2,3,4]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3,4]]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[[4,0,0,0],[3,0,0],[2,0],[2]]
=> [[1,1,3,4]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[3,0,0],[3,0],[0]]
=> [[2,2,2,4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[3,0],[1]]
=> [[1,2,2,4]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[3,0,0],[3,0],[2]]
=> [[1,1,2,4]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[3,0,0],[3,0],[3]]
=> [[1,1,1,4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[0,0],[0]]
=> [[3,3,3,3]]
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[1,0],[0]]
=> [[2,3,3,3]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[1,0],[1]]
=> [[1,3,3,3]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[2,0],[0]]
=> [[2,2,3,3]]
=> [2,2]
=> [2]
=> 1
[[4,0,0,0],[4,0,0],[2,0],[1]]
=> [[1,2,3,3]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[4,0,0],[2,0],[2]]
=> [[1,1,3,3]]
=> [2,2]
=> [2]
=> 1
[[4,0,0,0],[4,0,0],[3,0],[0]]
=> [[2,2,2,3]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[3,0],[1]]
=> [[1,2,2,3]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[4,0,0],[3,0],[2]]
=> [[1,1,2,3]]
=> [2,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[4,0,0],[3,0],[3]]
=> [[1,1,1,3]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[0]]
=> [[2,2,2,2]]
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[1]]
=> [[1,2,2,2]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[2]]
=> [[1,1,2,2]]
=> [2,2]
=> [2]
=> 1
[[4,0,0,0],[4,0,0],[4,0],[3]]
=> [[1,1,1,2]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[4]]
=> [[1,1,1,1]]
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[1,0,0],[0,0],[0]]
=> [[3,4,4],[4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[1,0,0],[1,0],[0]]
=> [[2,4,4],[4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[1,0,0],[1,0],[1]]
=> [[1,4,4],[4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[1,1,0],[1,0],[0]]
=> [[2,4,4],[3]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[1,1,0],[1,0],[1]]
=> [[1,4,4],[3]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[1,1,0],[1,1],[1]]
=> [[1,4,4],[2]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[2,0,0],[0,0],[0]]
=> [[3,3,4],[4]]
=> [2,2]
=> [2]
=> 1
[[3,1,0,0],[2,0,0],[1,0],[0]]
=> [[2,3,4],[4]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[2,0,0],[1,0],[1]]
=> [[1,3,4],[4]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[2,0,0],[2,0],[0]]
=> [[2,2,4],[4]]
=> [2,2]
=> [2]
=> 1
[[3,1,0,0],[2,0,0],[2,0],[1]]
=> [[1,2,4],[4]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[2,0,0],[2,0],[2]]
=> [[1,1,4],[4]]
=> [2,2]
=> [2]
=> 1
[[3,1,0,0],[2,1,0],[1,0],[0]]
=> [[2,3,4],[3]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[2,1,0],[1,0],[1]]
=> [[1,3,4],[3]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[2,1,0],[1,1],[1]]
=> [[1,3,4],[2]]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[[3,1,0,0],[2,1,0],[2,0],[0]]
=> [[2,2,4],[3]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[2,1,0],[2,0],[1]]
=> [[1,2,4],[3]]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[[3,1,0,0],[2,1,0],[2,0],[2]]
=> [[1,1,4],[3]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[2,1,0],[2,1],[1]]
=> [[1,2,4],[2]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[2,1,0],[2,1],[2]]
=> [[1,1,4],[2]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[3,0,0],[0,0],[0]]
=> [[3,3,3],[4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[3,0,0],[1,0],[0]]
=> [[2,3,3],[4]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[3,0,0],[1,0],[1]]
=> [[1,3,3],[4]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[3,0,0],[2,0],[0]]
=> [[2,2,3],[4]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3],[4]]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[[3,1,0,0],[3,0,0],[2,0],[2]]
=> [[1,1,3],[4]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[3,0,0],[3,0],[0]]
=> [[2,2,2],[4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[3,0,0],[3,0],[1]]
=> [[1,2,2],[4]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[3,0,0],[3,0],[2]]
=> [[1,1,2],[4]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[3,0,0],[3,0],[3]]
=> [[1,1,1],[4]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[3,1,0],[1,0],[0]]
=> [[2,3,3],[3]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[3,1,0],[1,0],[1]]
=> [[1,3,3],[3]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[3,1,0],[1,1],[1]]
=> [[1,3,3],[2]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[3,1,0],[2,0],[0]]
=> [[2,2,3],[3]]
=> [2,2]
=> [2]
=> 1
[[3,1,0,0],[3,1,0],[2,0],[1]]
=> [[1,2,3],[3]]
=> [2,1,1]
=> [1,1]
=> 0
[[3,1,0,0],[3,1,0],[3,0],[0]]
=> [[2,2,2],[3]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[3,1,0],[3,0],[3]]
=> [[1,1,1],[3]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[3,1,0],[3,1],[1]]
=> [[1,2,2],[2]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[3,1,0],[3,1],[3]]
=> [[1,1,1],[2]]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
Description
The 2-degree of an integer partition.
For an integer partition $\lambda$, this is given by the exponent of 2 in the Gram determinant of the integal Specht module of the symmetric group indexed by $\lambda$.
Matching statistic: St000319
Mp00036: Gelfand-Tsetlin patterns —to semistandard tableau⟶ Semistandard tableaux
Mp00077: Semistandard tableaux —shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000319: Integer partitions ⟶ ℤResult quality: 65% ●values known / values provided: 65%●distinct values known / distinct values provided: 67%
Mp00077: Semistandard tableaux —shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000319: Integer partitions ⟶ ℤResult quality: 65% ●values known / values provided: 65%●distinct values known / distinct values provided: 67%
Values
[[2,0],[0]]
=> [[2,2]]
=> [2]
=> []
=> ? ∊ {0,0,0}
[[2,0],[1]]
=> [[1,2]]
=> [2]
=> []
=> ? ∊ {0,0,0}
[[2,0],[2]]
=> [[1,1]]
=> [2]
=> []
=> ? ∊ {0,0,0}
[[1,1],[1]]
=> [[1],[2]]
=> [1,1]
=> [1]
=> 0
[[3,0,0],[0,0],[0]]
=> [[3,3,3]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[1,0],[0]]
=> [[2,3,3]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[1,0],[1]]
=> [[1,3,3]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[2,0],[0]]
=> [[2,2,3]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[2,0],[1]]
=> [[1,2,3]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[2,0],[2]]
=> [[1,1,3]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[3,0],[0]]
=> [[2,2,2]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[3,0],[1]]
=> [[1,2,2]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[3,0],[2]]
=> [[1,1,2]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[3,0],[3]]
=> [[1,1,1]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1}
[[2,1,0],[1,0],[0]]
=> [[2,3],[3]]
=> [2,1]
=> [1]
=> 0
[[2,1,0],[1,0],[1]]
=> [[1,3],[3]]
=> [2,1]
=> [1]
=> 0
[[2,1,0],[1,1],[1]]
=> [[1,3],[2]]
=> [2,1]
=> [1]
=> 0
[[2,1,0],[2,0],[0]]
=> [[2,2],[3]]
=> [2,1]
=> [1]
=> 0
[[2,1,0],[2,0],[1]]
=> [[1,2],[3]]
=> [2,1]
=> [1]
=> 0
[[2,1,0],[2,0],[2]]
=> [[1,1],[3]]
=> [2,1]
=> [1]
=> 0
[[2,1,0],[2,1],[1]]
=> [[1,2],[2]]
=> [2,1]
=> [1]
=> 0
[[2,1,0],[2,1],[2]]
=> [[1,1],[2]]
=> [2,1]
=> [1]
=> 0
[[1,1,1],[1,1],[1]]
=> [[1],[2],[3]]
=> [1,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[0,0,0],[0,0],[0]]
=> [[4,4,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[1,0,0],[0,0],[0]]
=> [[3,4,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[1,0,0],[1,0],[0]]
=> [[2,4,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[1,0,0],[1,0],[1]]
=> [[1,4,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[2,0,0],[0,0],[0]]
=> [[3,3,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[2,0,0],[1,0],[0]]
=> [[2,3,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[2,0,0],[1,0],[1]]
=> [[1,3,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[2,0,0],[2,0],[0]]
=> [[2,2,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[2,0,0],[2,0],[1]]
=> [[1,2,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[2,0,0],[2,0],[2]]
=> [[1,1,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[0,0],[0]]
=> [[3,3,3,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[1,0],[0]]
=> [[2,3,3,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[1,0],[1]]
=> [[1,3,3,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[2,0],[0]]
=> [[2,2,3,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[2,0],[2]]
=> [[1,1,3,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[3,0],[0]]
=> [[2,2,2,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[3,0],[1]]
=> [[1,2,2,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[3,0],[2]]
=> [[1,1,2,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[3,0],[3]]
=> [[1,1,1,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[0,0],[0]]
=> [[3,3,3,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[1,0],[0]]
=> [[2,3,3,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[1,0],[1]]
=> [[1,3,3,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[2,0],[0]]
=> [[2,2,3,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[2,0],[1]]
=> [[1,2,3,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[2,0],[2]]
=> [[1,1,3,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[3,0],[0]]
=> [[2,2,2,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[3,0],[1]]
=> [[1,2,2,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[3,0],[2]]
=> [[1,1,2,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[3,0],[3]]
=> [[1,1,1,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[0]]
=> [[2,2,2,2]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[1]]
=> [[1,2,2,2]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[2]]
=> [[1,1,2,2]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[3]]
=> [[1,1,1,2]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[4]]
=> [[1,1,1,1]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[1,0,0],[0,0],[0]]
=> [[3,4,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[1,0,0],[1,0],[0]]
=> [[2,4,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[1,0,0],[1,0],[1]]
=> [[1,4,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[1,1,0],[1,0],[0]]
=> [[2,4,4],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[1,1,0],[1,0],[1]]
=> [[1,4,4],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[1,1,0],[1,1],[1]]
=> [[1,4,4],[2]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,0,0],[0,0],[0]]
=> [[3,3,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,0,0],[1,0],[0]]
=> [[2,3,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,0,0],[1,0],[1]]
=> [[1,3,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,0,0],[2,0],[0]]
=> [[2,2,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,0,0],[2,0],[1]]
=> [[1,2,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,0,0],[2,0],[2]]
=> [[1,1,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[1,0],[0]]
=> [[2,3,4],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[1,0],[1]]
=> [[1,3,4],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[1,1],[1]]
=> [[1,3,4],[2]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[2,0],[0]]
=> [[2,2,4],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[2,0],[1]]
=> [[1,2,4],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[2,0],[2]]
=> [[1,1,4],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[2,1],[1]]
=> [[1,2,4],[2]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[2,1],[2]]
=> [[1,1,4],[2]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[0,0],[0]]
=> [[3,3,3],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[1,0],[0]]
=> [[2,3,3],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[1,0],[1]]
=> [[1,3,3],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[2,0],[0]]
=> [[2,2,3],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[2,0],[2]]
=> [[1,1,3],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[3,0],[0]]
=> [[2,2,2],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[3,0],[1]]
=> [[1,2,2],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[3,0],[2]]
=> [[1,1,2],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[3,0],[3]]
=> [[1,1,1],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[1,0],[0]]
=> [[2,3,3],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[1,0],[1]]
=> [[1,3,3],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[1,1],[1]]
=> [[1,3,3],[2]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[2,0],[0]]
=> [[2,2,3],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[2,0],[1]]
=> [[1,2,3],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[2,0],[2]]
=> [[1,1,3],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[2,1],[1]]
=> [[1,2,3],[2]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[2,1],[2]]
=> [[1,1,3],[2]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[3,0],[0]]
=> [[2,2,2],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[3,0],[1]]
=> [[1,2,2],[3]]
=> [3,1]
=> [1]
=> 0
Description
The spin of an integer partition.
The Ferrers shape of an integer partition $\lambda$ can be decomposed into border strips. The spin is then defined to be the total number of crossings of border strips of $\lambda$ with the vertical lines in the Ferrers shape.
The following example is taken from Appendix B in [1]: Let $\lambda = (5,5,4,4,2,1)$. Removing the border strips successively yields the sequence of partitions
$$(5,5,4,4,2,1), (4,3,3,1), (2,2), (1), ().$$
The first strip $(5,5,4,4,2,1) \setminus (4,3,3,1)$ crosses $4$ times, the second strip $(4,3,3,1) \setminus (2,2)$ crosses $3$ times, the strip $(2,2) \setminus (1)$ crosses $1$ time, and the remaining strip $(1) \setminus ()$ does not cross.
This yields the spin of $(5,5,4,4,2,1)$ to be $4+3+1 = 8$.
Matching statistic: St000320
Mp00036: Gelfand-Tsetlin patterns —to semistandard tableau⟶ Semistandard tableaux
Mp00077: Semistandard tableaux —shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000320: Integer partitions ⟶ ℤResult quality: 65% ●values known / values provided: 65%●distinct values known / distinct values provided: 67%
Mp00077: Semistandard tableaux —shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000320: Integer partitions ⟶ ℤResult quality: 65% ●values known / values provided: 65%●distinct values known / distinct values provided: 67%
Values
[[2,0],[0]]
=> [[2,2]]
=> [2]
=> []
=> ? ∊ {0,0,0}
[[2,0],[1]]
=> [[1,2]]
=> [2]
=> []
=> ? ∊ {0,0,0}
[[2,0],[2]]
=> [[1,1]]
=> [2]
=> []
=> ? ∊ {0,0,0}
[[1,1],[1]]
=> [[1],[2]]
=> [1,1]
=> [1]
=> 0
[[3,0,0],[0,0],[0]]
=> [[3,3,3]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[1,0],[0]]
=> [[2,3,3]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[1,0],[1]]
=> [[1,3,3]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[2,0],[0]]
=> [[2,2,3]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[2,0],[1]]
=> [[1,2,3]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[2,0],[2]]
=> [[1,1,3]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[3,0],[0]]
=> [[2,2,2]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[3,0],[1]]
=> [[1,2,2]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[3,0],[2]]
=> [[1,1,2]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[3,0],[3]]
=> [[1,1,1]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1}
[[2,1,0],[1,0],[0]]
=> [[2,3],[3]]
=> [2,1]
=> [1]
=> 0
[[2,1,0],[1,0],[1]]
=> [[1,3],[3]]
=> [2,1]
=> [1]
=> 0
[[2,1,0],[1,1],[1]]
=> [[1,3],[2]]
=> [2,1]
=> [1]
=> 0
[[2,1,0],[2,0],[0]]
=> [[2,2],[3]]
=> [2,1]
=> [1]
=> 0
[[2,1,0],[2,0],[1]]
=> [[1,2],[3]]
=> [2,1]
=> [1]
=> 0
[[2,1,0],[2,0],[2]]
=> [[1,1],[3]]
=> [2,1]
=> [1]
=> 0
[[2,1,0],[2,1],[1]]
=> [[1,2],[2]]
=> [2,1]
=> [1]
=> 0
[[2,1,0],[2,1],[2]]
=> [[1,1],[2]]
=> [2,1]
=> [1]
=> 0
[[1,1,1],[1,1],[1]]
=> [[1],[2],[3]]
=> [1,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[0,0,0],[0,0],[0]]
=> [[4,4,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[1,0,0],[0,0],[0]]
=> [[3,4,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[1,0,0],[1,0],[0]]
=> [[2,4,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[1,0,0],[1,0],[1]]
=> [[1,4,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[2,0,0],[0,0],[0]]
=> [[3,3,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[2,0,0],[1,0],[0]]
=> [[2,3,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[2,0,0],[1,0],[1]]
=> [[1,3,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[2,0,0],[2,0],[0]]
=> [[2,2,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[2,0,0],[2,0],[1]]
=> [[1,2,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[2,0,0],[2,0],[2]]
=> [[1,1,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[0,0],[0]]
=> [[3,3,3,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[1,0],[0]]
=> [[2,3,3,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[1,0],[1]]
=> [[1,3,3,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[2,0],[0]]
=> [[2,2,3,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[2,0],[2]]
=> [[1,1,3,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[3,0],[0]]
=> [[2,2,2,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[3,0],[1]]
=> [[1,2,2,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[3,0],[2]]
=> [[1,1,2,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[3,0],[3]]
=> [[1,1,1,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[0,0],[0]]
=> [[3,3,3,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[1,0],[0]]
=> [[2,3,3,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[1,0],[1]]
=> [[1,3,3,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[2,0],[0]]
=> [[2,2,3,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[2,0],[1]]
=> [[1,2,3,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[2,0],[2]]
=> [[1,1,3,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[3,0],[0]]
=> [[2,2,2,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[3,0],[1]]
=> [[1,2,2,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[3,0],[2]]
=> [[1,1,2,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[3,0],[3]]
=> [[1,1,1,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[0]]
=> [[2,2,2,2]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[1]]
=> [[1,2,2,2]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[2]]
=> [[1,1,2,2]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[3]]
=> [[1,1,1,2]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[4]]
=> [[1,1,1,1]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[1,0,0],[0,0],[0]]
=> [[3,4,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[1,0,0],[1,0],[0]]
=> [[2,4,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[1,0,0],[1,0],[1]]
=> [[1,4,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[1,1,0],[1,0],[0]]
=> [[2,4,4],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[1,1,0],[1,0],[1]]
=> [[1,4,4],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[1,1,0],[1,1],[1]]
=> [[1,4,4],[2]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,0,0],[0,0],[0]]
=> [[3,3,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,0,0],[1,0],[0]]
=> [[2,3,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,0,0],[1,0],[1]]
=> [[1,3,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,0,0],[2,0],[0]]
=> [[2,2,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,0,0],[2,0],[1]]
=> [[1,2,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,0,0],[2,0],[2]]
=> [[1,1,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[1,0],[0]]
=> [[2,3,4],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[1,0],[1]]
=> [[1,3,4],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[1,1],[1]]
=> [[1,3,4],[2]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[2,0],[0]]
=> [[2,2,4],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[2,0],[1]]
=> [[1,2,4],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[2,0],[2]]
=> [[1,1,4],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[2,1],[1]]
=> [[1,2,4],[2]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[2,1],[2]]
=> [[1,1,4],[2]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[0,0],[0]]
=> [[3,3,3],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[1,0],[0]]
=> [[2,3,3],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[1,0],[1]]
=> [[1,3,3],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[2,0],[0]]
=> [[2,2,3],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[2,0],[2]]
=> [[1,1,3],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[3,0],[0]]
=> [[2,2,2],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[3,0],[1]]
=> [[1,2,2],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[3,0],[2]]
=> [[1,1,2],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[3,0],[3]]
=> [[1,1,1],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[1,0],[0]]
=> [[2,3,3],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[1,0],[1]]
=> [[1,3,3],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[1,1],[1]]
=> [[1,3,3],[2]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[2,0],[0]]
=> [[2,2,3],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[2,0],[1]]
=> [[1,2,3],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[2,0],[2]]
=> [[1,1,3],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[2,1],[1]]
=> [[1,2,3],[2]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[2,1],[2]]
=> [[1,1,3],[2]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[3,0],[0]]
=> [[2,2,2],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[3,0],[1]]
=> [[1,2,2],[3]]
=> [3,1]
=> [1]
=> 0
Description
The dinv adjustment of an integer partition.
The Ferrers shape of an integer partition $\lambda = (\lambda_1,\ldots,\lambda_k)$ can be decomposed into border strips. For $0 \leq j < \lambda_1$ let $n_j$ be the length of the border strip starting at $(\lambda_1-j,0)$.
The dinv adjustment is then defined by
$$\sum_{j:n_j > 0}(\lambda_1-1-j).$$
The following example is taken from Appendix B in [2]: Let $\lambda=(5,5,4,4,2,1)$. Removing the border strips successively yields the sequence of partitions
$$(5,5,4,4,2,1),(4,3,3,1),(2,2),(1),(),$$
and we obtain $(n_0,\ldots,n_4) = (10,7,0,3,1)$.
The dinv adjustment is thus $4+3+1+0 = 8$.
Matching statistic: St000506
Mp00036: Gelfand-Tsetlin patterns —to semistandard tableau⟶ Semistandard tableaux
Mp00077: Semistandard tableaux —shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000506: Integer partitions ⟶ ℤResult quality: 65% ●values known / values provided: 65%●distinct values known / distinct values provided: 67%
Mp00077: Semistandard tableaux —shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000506: Integer partitions ⟶ ℤResult quality: 65% ●values known / values provided: 65%●distinct values known / distinct values provided: 67%
Values
[[2,0],[0]]
=> [[2,2]]
=> [2]
=> []
=> ? ∊ {0,0,0}
[[2,0],[1]]
=> [[1,2]]
=> [2]
=> []
=> ? ∊ {0,0,0}
[[2,0],[2]]
=> [[1,1]]
=> [2]
=> []
=> ? ∊ {0,0,0}
[[1,1],[1]]
=> [[1],[2]]
=> [1,1]
=> [1]
=> 0
[[3,0,0],[0,0],[0]]
=> [[3,3,3]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1}
[[3,0,0],[1,0],[0]]
=> [[2,3,3]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1}
[[3,0,0],[1,0],[1]]
=> [[1,3,3]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1}
[[3,0,0],[2,0],[0]]
=> [[2,2,3]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1}
[[3,0,0],[2,0],[1]]
=> [[1,2,3]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1}
[[3,0,0],[2,0],[2]]
=> [[1,1,3]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1}
[[3,0,0],[3,0],[0]]
=> [[2,2,2]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1}
[[3,0,0],[3,0],[1]]
=> [[1,2,2]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1}
[[3,0,0],[3,0],[2]]
=> [[1,1,2]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1}
[[3,0,0],[3,0],[3]]
=> [[1,1,1]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1}
[[2,1,0],[1,0],[0]]
=> [[2,3],[3]]
=> [2,1]
=> [1]
=> 0
[[2,1,0],[1,0],[1]]
=> [[1,3],[3]]
=> [2,1]
=> [1]
=> 0
[[2,1,0],[1,1],[1]]
=> [[1,3],[2]]
=> [2,1]
=> [1]
=> 0
[[2,1,0],[2,0],[0]]
=> [[2,2],[3]]
=> [2,1]
=> [1]
=> 0
[[2,1,0],[2,0],[1]]
=> [[1,2],[3]]
=> [2,1]
=> [1]
=> 0
[[2,1,0],[2,0],[2]]
=> [[1,1],[3]]
=> [2,1]
=> [1]
=> 0
[[2,1,0],[2,1],[1]]
=> [[1,2],[2]]
=> [2,1]
=> [1]
=> 0
[[2,1,0],[2,1],[2]]
=> [[1,1],[2]]
=> [2,1]
=> [1]
=> 0
[[1,1,1],[1,1],[1]]
=> [[1],[2],[3]]
=> [1,1,1]
=> [1,1]
=> 1
[[4,0,0,0],[0,0,0],[0,0],[0]]
=> [[4,4,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[1,0,0],[0,0],[0]]
=> [[3,4,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[1,0,0],[1,0],[0]]
=> [[2,4,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[1,0,0],[1,0],[1]]
=> [[1,4,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[2,0,0],[0,0],[0]]
=> [[3,3,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[2,0,0],[1,0],[0]]
=> [[2,3,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[2,0,0],[1,0],[1]]
=> [[1,3,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[2,0,0],[2,0],[0]]
=> [[2,2,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[2,0,0],[2,0],[1]]
=> [[1,2,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[2,0,0],[2,0],[2]]
=> [[1,1,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[0,0],[0]]
=> [[3,3,3,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[1,0],[0]]
=> [[2,3,3,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[1,0],[1]]
=> [[1,3,3,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[2,0],[0]]
=> [[2,2,3,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[2,0],[2]]
=> [[1,1,3,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[3,0],[0]]
=> [[2,2,2,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[3,0],[1]]
=> [[1,2,2,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[3,0],[2]]
=> [[1,1,2,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[3,0],[3]]
=> [[1,1,1,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[0,0],[0]]
=> [[3,3,3,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[1,0],[0]]
=> [[2,3,3,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[1,0],[1]]
=> [[1,3,3,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[2,0],[0]]
=> [[2,2,3,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[2,0],[1]]
=> [[1,2,3,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[2,0],[2]]
=> [[1,1,3,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[3,0],[0]]
=> [[2,2,2,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[3,0],[1]]
=> [[1,2,2,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[3,0],[2]]
=> [[1,1,2,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[3,0],[3]]
=> [[1,1,1,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[0]]
=> [[2,2,2,2]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[1]]
=> [[1,2,2,2]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[2]]
=> [[1,1,2,2]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[3]]
=> [[1,1,1,2]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[4]]
=> [[1,1,1,1]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[1,0,0],[0,0],[0]]
=> [[3,4,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[1,0,0],[1,0],[0]]
=> [[2,4,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[1,0,0],[1,0],[1]]
=> [[1,4,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[1,1,0],[1,0],[0]]
=> [[2,4,4],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[1,1,0],[1,0],[1]]
=> [[1,4,4],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[1,1,0],[1,1],[1]]
=> [[1,4,4],[2]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,0,0],[0,0],[0]]
=> [[3,3,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,0,0],[1,0],[0]]
=> [[2,3,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,0,0],[1,0],[1]]
=> [[1,3,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,0,0],[2,0],[0]]
=> [[2,2,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,0,0],[2,0],[1]]
=> [[1,2,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,0,0],[2,0],[2]]
=> [[1,1,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[1,0],[0]]
=> [[2,3,4],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[1,0],[1]]
=> [[1,3,4],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[1,1],[1]]
=> [[1,3,4],[2]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[2,0],[0]]
=> [[2,2,4],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[2,0],[1]]
=> [[1,2,4],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[2,0],[2]]
=> [[1,1,4],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[2,1],[1]]
=> [[1,2,4],[2]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[2,1],[2]]
=> [[1,1,4],[2]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[0,0],[0]]
=> [[3,3,3],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[1,0],[0]]
=> [[2,3,3],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[1,0],[1]]
=> [[1,3,3],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[2,0],[0]]
=> [[2,2,3],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[2,0],[2]]
=> [[1,1,3],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[3,0],[0]]
=> [[2,2,2],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[3,0],[1]]
=> [[1,2,2],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[3,0],[2]]
=> [[1,1,2],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[3,0],[3]]
=> [[1,1,1],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[1,0],[0]]
=> [[2,3,3],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[1,0],[1]]
=> [[1,3,3],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[1,1],[1]]
=> [[1,3,3],[2]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[2,0],[0]]
=> [[2,2,3],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[2,0],[1]]
=> [[1,2,3],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[2,0],[2]]
=> [[1,1,3],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[2,1],[1]]
=> [[1,2,3],[2]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[2,1],[2]]
=> [[1,1,3],[2]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[3,0],[0]]
=> [[2,2,2],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[3,0],[1]]
=> [[1,2,2],[3]]
=> [3,1]
=> [1]
=> 0
Description
The number of standard desarrangement tableaux of shape equal to the given partition.
A '''standard desarrangement tableau''' is a standard tableau whose first ascent is even. Here, an ascent of a standard tableau is an entry $i$ such that $i+1$ appears to the right or above $i$ in the tableau (with respect to English tableau notation).
This is also the nullity of the random-to-random operator (and the random-to-top) operator acting on the simple module of the symmetric group indexed by the given partition. See also:
* [[St000046]]: The largest eigenvalue of the random to random operator acting on the simple module corresponding to the given partition
* [[St000500]]: Eigenvalues of the random-to-random operator acting on the regular representation.
Matching statistic: St001176
Mp00036: Gelfand-Tsetlin patterns —to semistandard tableau⟶ Semistandard tableaux
Mp00077: Semistandard tableaux —shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001176: Integer partitions ⟶ ℤResult quality: 65% ●values known / values provided: 65%●distinct values known / distinct values provided: 100%
Mp00077: Semistandard tableaux —shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001176: Integer partitions ⟶ ℤResult quality: 65% ●values known / values provided: 65%●distinct values known / distinct values provided: 100%
Values
[[2,0],[0]]
=> [[2,2]]
=> [2]
=> []
=> ? ∊ {0,0,0}
[[2,0],[1]]
=> [[1,2]]
=> [2]
=> []
=> ? ∊ {0,0,0}
[[2,0],[2]]
=> [[1,1]]
=> [2]
=> []
=> ? ∊ {0,0,0}
[[1,1],[1]]
=> [[1],[2]]
=> [1,1]
=> [1]
=> 0
[[3,0,0],[0,0],[0]]
=> [[3,3,3]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1}
[[3,0,0],[1,0],[0]]
=> [[2,3,3]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1}
[[3,0,0],[1,0],[1]]
=> [[1,3,3]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1}
[[3,0,0],[2,0],[0]]
=> [[2,2,3]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1}
[[3,0,0],[2,0],[1]]
=> [[1,2,3]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1}
[[3,0,0],[2,0],[2]]
=> [[1,1,3]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1}
[[3,0,0],[3,0],[0]]
=> [[2,2,2]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1}
[[3,0,0],[3,0],[1]]
=> [[1,2,2]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1}
[[3,0,0],[3,0],[2]]
=> [[1,1,2]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1}
[[3,0,0],[3,0],[3]]
=> [[1,1,1]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1}
[[2,1,0],[1,0],[0]]
=> [[2,3],[3]]
=> [2,1]
=> [1]
=> 0
[[2,1,0],[1,0],[1]]
=> [[1,3],[3]]
=> [2,1]
=> [1]
=> 0
[[2,1,0],[1,1],[1]]
=> [[1,3],[2]]
=> [2,1]
=> [1]
=> 0
[[2,1,0],[2,0],[0]]
=> [[2,2],[3]]
=> [2,1]
=> [1]
=> 0
[[2,1,0],[2,0],[1]]
=> [[1,2],[3]]
=> [2,1]
=> [1]
=> 0
[[2,1,0],[2,0],[2]]
=> [[1,1],[3]]
=> [2,1]
=> [1]
=> 0
[[2,1,0],[2,1],[1]]
=> [[1,2],[2]]
=> [2,1]
=> [1]
=> 0
[[2,1,0],[2,1],[2]]
=> [[1,1],[2]]
=> [2,1]
=> [1]
=> 0
[[1,1,1],[1,1],[1]]
=> [[1],[2],[3]]
=> [1,1,1]
=> [1,1]
=> 1
[[4,0,0,0],[0,0,0],[0,0],[0]]
=> [[4,4,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,0,0,0],[1,0,0],[0,0],[0]]
=> [[3,4,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,0,0,0],[1,0,0],[1,0],[0]]
=> [[2,4,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,0,0,0],[1,0,0],[1,0],[1]]
=> [[1,4,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,0,0,0],[2,0,0],[0,0],[0]]
=> [[3,3,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,0,0,0],[2,0,0],[1,0],[0]]
=> [[2,3,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,0,0,0],[2,0,0],[1,0],[1]]
=> [[1,3,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,0,0,0],[2,0,0],[2,0],[0]]
=> [[2,2,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,0,0,0],[2,0,0],[2,0],[1]]
=> [[1,2,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,0,0,0],[2,0,0],[2,0],[2]]
=> [[1,1,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,0,0,0],[3,0,0],[0,0],[0]]
=> [[3,3,3,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,0,0,0],[3,0,0],[1,0],[0]]
=> [[2,3,3,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,0,0,0],[3,0,0],[1,0],[1]]
=> [[1,3,3,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,0,0,0],[3,0,0],[2,0],[0]]
=> [[2,2,3,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,0,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,0,0,0],[3,0,0],[2,0],[2]]
=> [[1,1,3,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,0,0,0],[3,0,0],[3,0],[0]]
=> [[2,2,2,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,0,0,0],[3,0,0],[3,0],[1]]
=> [[1,2,2,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,0,0,0],[3,0,0],[3,0],[2]]
=> [[1,1,2,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,0,0,0],[3,0,0],[3,0],[3]]
=> [[1,1,1,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,0,0,0],[4,0,0],[0,0],[0]]
=> [[3,3,3,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,0,0,0],[4,0,0],[1,0],[0]]
=> [[2,3,3,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,0,0,0],[4,0,0],[1,0],[1]]
=> [[1,3,3,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,0,0,0],[4,0,0],[2,0],[0]]
=> [[2,2,3,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,0,0,0],[4,0,0],[2,0],[1]]
=> [[1,2,3,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,0,0,0],[4,0,0],[2,0],[2]]
=> [[1,1,3,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,0,0,0],[4,0,0],[3,0],[0]]
=> [[2,2,2,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,0,0,0],[4,0,0],[3,0],[1]]
=> [[1,2,2,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,0,0,0],[4,0,0],[3,0],[2]]
=> [[1,1,2,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,0,0,0],[4,0,0],[3,0],[3]]
=> [[1,1,1,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[0]]
=> [[2,2,2,2]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[1]]
=> [[1,2,2,2]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[2]]
=> [[1,1,2,2]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[3]]
=> [[1,1,1,2]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[4]]
=> [[1,1,1,1]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[3,1,0,0],[1,0,0],[0,0],[0]]
=> [[3,4,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[1,0,0],[1,0],[0]]
=> [[2,4,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[1,0,0],[1,0],[1]]
=> [[1,4,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[1,1,0],[1,0],[0]]
=> [[2,4,4],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[1,1,0],[1,0],[1]]
=> [[1,4,4],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[1,1,0],[1,1],[1]]
=> [[1,4,4],[2]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,0,0],[0,0],[0]]
=> [[3,3,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,0,0],[1,0],[0]]
=> [[2,3,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,0,0],[1,0],[1]]
=> [[1,3,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,0,0],[2,0],[0]]
=> [[2,2,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,0,0],[2,0],[1]]
=> [[1,2,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,0,0],[2,0],[2]]
=> [[1,1,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[1,0],[0]]
=> [[2,3,4],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[1,0],[1]]
=> [[1,3,4],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[1,1],[1]]
=> [[1,3,4],[2]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[2,0],[0]]
=> [[2,2,4],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[2,0],[1]]
=> [[1,2,4],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[2,0],[2]]
=> [[1,1,4],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[2,1],[1]]
=> [[1,2,4],[2]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[2,1],[2]]
=> [[1,1,4],[2]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[0,0],[0]]
=> [[3,3,3],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[1,0],[0]]
=> [[2,3,3],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[1,0],[1]]
=> [[1,3,3],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[2,0],[0]]
=> [[2,2,3],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[2,0],[2]]
=> [[1,1,3],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[3,0],[0]]
=> [[2,2,2],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[3,0],[1]]
=> [[1,2,2],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[3,0],[2]]
=> [[1,1,2],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[3,0],[3]]
=> [[1,1,1],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[1,0],[0]]
=> [[2,3,3],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[1,0],[1]]
=> [[1,3,3],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[1,1],[1]]
=> [[1,3,3],[2]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[2,0],[0]]
=> [[2,2,3],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[2,0],[1]]
=> [[1,2,3],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[2,0],[2]]
=> [[1,1,3],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[2,1],[1]]
=> [[1,2,3],[2]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[2,1],[2]]
=> [[1,1,3],[2]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[3,0],[0]]
=> [[2,2,2],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[3,0],[1]]
=> [[1,2,2],[3]]
=> [3,1]
=> [1]
=> 0
Description
The size of a partition minus its first part.
This is the number of boxes in its diagram that are not in the first row.
Matching statistic: St001280
Mp00036: Gelfand-Tsetlin patterns —to semistandard tableau⟶ Semistandard tableaux
Mp00077: Semistandard tableaux —shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001280: Integer partitions ⟶ ℤResult quality: 65% ●values known / values provided: 65%●distinct values known / distinct values provided: 67%
Mp00077: Semistandard tableaux —shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001280: Integer partitions ⟶ ℤResult quality: 65% ●values known / values provided: 65%●distinct values known / distinct values provided: 67%
Values
[[2,0],[0]]
=> [[2,2]]
=> [2]
=> []
=> ? ∊ {0,0,0}
[[2,0],[1]]
=> [[1,2]]
=> [2]
=> []
=> ? ∊ {0,0,0}
[[2,0],[2]]
=> [[1,1]]
=> [2]
=> []
=> ? ∊ {0,0,0}
[[1,1],[1]]
=> [[1],[2]]
=> [1,1]
=> [1]
=> 0
[[3,0,0],[0,0],[0]]
=> [[3,3,3]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[1,0],[0]]
=> [[2,3,3]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[1,0],[1]]
=> [[1,3,3]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[2,0],[0]]
=> [[2,2,3]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[2,0],[1]]
=> [[1,2,3]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[2,0],[2]]
=> [[1,1,3]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[3,0],[0]]
=> [[2,2,2]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[3,0],[1]]
=> [[1,2,2]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[3,0],[2]]
=> [[1,1,2]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1}
[[3,0,0],[3,0],[3]]
=> [[1,1,1]]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1}
[[2,1,0],[1,0],[0]]
=> [[2,3],[3]]
=> [2,1]
=> [1]
=> 0
[[2,1,0],[1,0],[1]]
=> [[1,3],[3]]
=> [2,1]
=> [1]
=> 0
[[2,1,0],[1,1],[1]]
=> [[1,3],[2]]
=> [2,1]
=> [1]
=> 0
[[2,1,0],[2,0],[0]]
=> [[2,2],[3]]
=> [2,1]
=> [1]
=> 0
[[2,1,0],[2,0],[1]]
=> [[1,2],[3]]
=> [2,1]
=> [1]
=> 0
[[2,1,0],[2,0],[2]]
=> [[1,1],[3]]
=> [2,1]
=> [1]
=> 0
[[2,1,0],[2,1],[1]]
=> [[1,2],[2]]
=> [2,1]
=> [1]
=> 0
[[2,1,0],[2,1],[2]]
=> [[1,1],[2]]
=> [2,1]
=> [1]
=> 0
[[1,1,1],[1,1],[1]]
=> [[1],[2],[3]]
=> [1,1,1]
=> [1,1]
=> 0
[[4,0,0,0],[0,0,0],[0,0],[0]]
=> [[4,4,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[1,0,0],[0,0],[0]]
=> [[3,4,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[1,0,0],[1,0],[0]]
=> [[2,4,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[1,0,0],[1,0],[1]]
=> [[1,4,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[2,0,0],[0,0],[0]]
=> [[3,3,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[2,0,0],[1,0],[0]]
=> [[2,3,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[2,0,0],[1,0],[1]]
=> [[1,3,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[2,0,0],[2,0],[0]]
=> [[2,2,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[2,0,0],[2,0],[1]]
=> [[1,2,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[2,0,0],[2,0],[2]]
=> [[1,1,4,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[0,0],[0]]
=> [[3,3,3,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[1,0],[0]]
=> [[2,3,3,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[1,0],[1]]
=> [[1,3,3,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[2,0],[0]]
=> [[2,2,3,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[2,0],[2]]
=> [[1,1,3,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[3,0],[0]]
=> [[2,2,2,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[3,0],[1]]
=> [[1,2,2,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[3,0],[2]]
=> [[1,1,2,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[3,0,0],[3,0],[3]]
=> [[1,1,1,4]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[0,0],[0]]
=> [[3,3,3,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[1,0],[0]]
=> [[2,3,3,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[1,0],[1]]
=> [[1,3,3,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[2,0],[0]]
=> [[2,2,3,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[2,0],[1]]
=> [[1,2,3,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[2,0],[2]]
=> [[1,1,3,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[3,0],[0]]
=> [[2,2,2,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[3,0],[1]]
=> [[1,2,2,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[3,0],[2]]
=> [[1,1,2,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[3,0],[3]]
=> [[1,1,1,3]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[0]]
=> [[2,2,2,2]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[1]]
=> [[1,2,2,2]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[2]]
=> [[1,1,2,2]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[3]]
=> [[1,1,1,2]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[4,0,0,0],[4,0,0],[4,0],[4]]
=> [[1,1,1,1]]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
[[3,1,0,0],[1,0,0],[0,0],[0]]
=> [[3,4,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[1,0,0],[1,0],[0]]
=> [[2,4,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[1,0,0],[1,0],[1]]
=> [[1,4,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[1,1,0],[1,0],[0]]
=> [[2,4,4],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[1,1,0],[1,0],[1]]
=> [[1,4,4],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[1,1,0],[1,1],[1]]
=> [[1,4,4],[2]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,0,0],[0,0],[0]]
=> [[3,3,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,0,0],[1,0],[0]]
=> [[2,3,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,0,0],[1,0],[1]]
=> [[1,3,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,0,0],[2,0],[0]]
=> [[2,2,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,0,0],[2,0],[1]]
=> [[1,2,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,0,0],[2,0],[2]]
=> [[1,1,4],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[1,0],[0]]
=> [[2,3,4],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[1,0],[1]]
=> [[1,3,4],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[1,1],[1]]
=> [[1,3,4],[2]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[2,0],[0]]
=> [[2,2,4],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[2,0],[1]]
=> [[1,2,4],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[2,0],[2]]
=> [[1,1,4],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[2,1],[1]]
=> [[1,2,4],[2]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[2,1,0],[2,1],[2]]
=> [[1,1,4],[2]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[0,0],[0]]
=> [[3,3,3],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[1,0],[0]]
=> [[2,3,3],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[1,0],[1]]
=> [[1,3,3],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[2,0],[0]]
=> [[2,2,3],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[2,0],[1]]
=> [[1,2,3],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[2,0],[2]]
=> [[1,1,3],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[3,0],[0]]
=> [[2,2,2],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[3,0],[1]]
=> [[1,2,2],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[3,0],[2]]
=> [[1,1,2],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,0,0],[3,0],[3]]
=> [[1,1,1],[4]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[1,0],[0]]
=> [[2,3,3],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[1,0],[1]]
=> [[1,3,3],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[1,1],[1]]
=> [[1,3,3],[2]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[2,0],[0]]
=> [[2,2,3],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[2,0],[1]]
=> [[1,2,3],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[2,0],[2]]
=> [[1,1,3],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[2,1],[1]]
=> [[1,2,3],[2]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[2,1],[2]]
=> [[1,1,3],[2]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[3,0],[0]]
=> [[2,2,2],[3]]
=> [3,1]
=> [1]
=> 0
[[3,1,0,0],[3,1,0],[3,0],[1]]
=> [[1,2,2],[3]]
=> [3,1]
=> [1]
=> 0
Description
The number of parts of an integer partition that are at least two.
The following 187 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001541The Gini index of an integer partition. St001587Half of the largest even part of an integer partition. St001657The number of twos in an integer partition. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St001624The breadth of a lattice. St000272The treewidth of a graph. St000323The minimal crossing number of a graph. St000351The determinant of the adjacency matrix of a graph. St000368The Altshuler-Steinberg determinant of a graph. St000370The genus of a graph. St000403The Szeged index minus the Wiener index of a graph. St000449The number of pairs of vertices of a graph with distance 4. St000535The rank-width of a graph. St000536The pathwidth of a graph. St000537The cutwidth of a graph. St000637The length of the longest cycle in a graph. St000671The maximin edge-connectivity for choosing a subgraph. St001069The coefficient of the monomial xy of the Tutte polynomial of the graph. St001071The beta invariant of the graph. St001119The length of a shortest maximal path in a graph. St001270The bandwidth of a graph. St001271The competition number of a graph. St001277The degeneracy of a graph. St001305The number of induced cycles on four vertices in a graph. St001306The number of induced paths on four vertices in a graph. St001307The number of induced stars on four vertices in a graph. St001309The number of four-cliques in a graph. St001310The number of induced diamond graphs in a graph. St001311The cyclomatic number of a graph. St001317The minimal number of occurrences of the forest-pattern in a linear ordering of the vertices of the graph. St001319The minimal number of occurrences of the star-pattern in a linear ordering of the vertices of the graph. St001320The minimal number of occurrences of the path-pattern in a linear ordering of the vertices of the graph. St001323The independence gap of a graph. St001324The minimal number of occurrences of the chordal-pattern in a linear ordering of the vertices of the graph. St001325The minimal number of occurrences of the comparability-pattern in a linear ordering of the vertices of the graph. St001326The minimal number of occurrences of the interval-pattern in a linear ordering of the vertices of the graph. St001327The minimal number of occurrences of the split-pattern in a linear ordering of the vertices of the graph. St001328The minimal number of occurrences of the bipartite-pattern in a linear ordering of the vertices of the graph. St001329The minimal number of occurrences of the outerplanar pattern in a linear ordering of the vertices of the graph. St001331The size of the minimal feedback vertex set. St001333The cardinality of a minimal edge-isolating set of a graph. St001334The minimal number of occurrences of the 3-colorable pattern in a linear ordering of the vertices of the graph. St001335The cardinality of a minimal cycle-isolating set of a graph. St001336The minimal number of vertices in a graph whose complement is triangle-free. St001350Half of the Albertson index of a graph. St001354The number of series nodes in the modular decomposition of a graph. St001357The maximal degree of a regular spanning subgraph of a graph. St001358The largest degree of a regular subgraph of a graph. St001393The induced matching number of a graph. St001395The number of strictly unfriendly partitions of a graph. St001638The book thickness of a graph. St001644The dimension of a graph. St001689The number of celebrities in a graph. St001702The absolute value of the determinant of the adjacency matrix of a graph. St001723The differential of a graph. St001724The 2-packing differential of a graph. St001736The total number of cycles in a graph. St001743The discrepancy of a graph. St001792The arboricity of a graph. St001793The difference between the clique number and the chromatic number of a graph. St001794Half the number of sets of vertices in a graph which are dominating and non-blocking. St001797The number of overfull subgraphs of a graph. St001798The difference of the number of edges in a graph and the number of edges in the complement of the Turán graph. St001826The maximal number of leaves on a vertex of a graph. St001962The proper pathwidth of a graph. St000266The number of spanning subgraphs of a graph with the same connected components. St000267The number of maximal spanning forests contained in a graph. St000482The (zero)-forcing number of a graph. St000544The cop number of a graph. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000773The multiplicity of the largest Laplacian eigenvalue in a graph. St000774The maximal multiplicity of a Laplacian eigenvalue in a graph. St000775The multiplicity of the largest eigenvalue in a graph. St000776The maximal multiplicity of an eigenvalue in a graph. St000785The number of distinct colouring schemes of a graph. St001029The size of the core of a graph. St001111The weak 2-dynamic chromatic number of a graph. St001112The 3-weak dynamic number of a graph. St001116The game chromatic number of a graph. St001261The Castelnuovo-Mumford regularity of a graph. St001272The number of graphs with the same degree sequence. St001316The domatic number of a graph. St001352The number of internal nodes in the modular decomposition of a graph. St001475The evaluation of the Tutte polynomial of the graph at (x,y) equal to (1,0). St001476The evaluation of the Tutte polynomial of the graph at (x,y) equal to (1,-1). St001494The Alon-Tarsi number of a graph. St001496The number of graphs with the same Laplacian spectrum as the given graph. St001546The number of monomials in the Tutte polynomial of a graph. St001580The acyclic chromatic number of a graph. St001694The number of maximal dissociation sets in a graph. St001716The 1-improper chromatic number of a graph. St001774The degree of the minimal polynomial of the smallest eigenvalue of a graph. St001775The degree of the minimal polynomial of the largest eigenvalue of a graph. St001776The degree of the minimal polynomial of the largest Laplacian eigenvalue of a graph. St001883The mutual visibility number of a graph. St001951The number of factors in the disjoint direct product decomposition of the automorphism group of a graph. St000081The number of edges of a graph. St000454The largest eigenvalue of a graph if it is integral. St000632The jump number of the poset. St001301The first Betti number of the order complex associated with the poset. St001396Number of triples of incomparable elements in a finite poset. St001397Number of pairs of incomparable elements in a finite poset. St000298The order dimension or Dushnik-Miller dimension of a poset. St000908The length of the shortest maximal antichain in a poset. St001268The size of the largest ordinal summand in the poset. St001399The distinguishing number of a poset. St001532The leading coefficient of the Poincare polynomial of the poset cone. St001533The largest coefficient of the Poincare polynomial of the poset cone. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St001779The order of promotion on the set of linear extensions of a poset. St001677The number of non-degenerate subsets of a lattice whose meet is the bottom element. St001845The number of join irreducibles minus the rank of a lattice. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001613The binary logarithm of the size of the center of a lattice. St001681The number of inclusion-wise minimal subsets of a lattice, whose meet is the bottom element. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001881The number of factors of a lattice as a Cartesian product of lattices. St000307The number of rowmotion orbits of a poset. St000095The number of triangles of a graph. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000274The number of perfect matchings of a graph. St000303The determinant of the product of the incidence matrix and its transpose of a graph divided by $4$. St000310The minimal degree of a vertex of a graph. St000322The skewness of a graph. St000447The number of pairs of vertices of a graph with distance 3. St001117The game chromatic index of a graph. St001572The minimal number of edges to remove to make a graph bipartite. St001573The minimal number of edges to remove to make a graph triangle-free. St001574The minimal number of edges to add or remove to make a graph regular. St001575The minimal number of edges to add or remove to make a graph edge transitive. St001576The minimal number of edges to add or remove to make a graph vertex transitive. St001577The minimal number of edges to add or remove to make a graph a cograph. St001578The minimal number of edges to add or remove to make a graph a line graph. St001649The length of a longest trail in a graph. St001690The length of a longest path in a graph such that after removing the paths edges, every vertex of the path has distance two from some other vertex of the path. St001742The difference of the maximal and the minimal degree in a graph. St001812The biclique partition number of a graph. St001869The maximum cut size of a graph. St001871The number of triconnected components of a graph. St000086The number of subgraphs. St000286The number of connected components of the complement of a graph. St000287The number of connected components of a graph. St000299The number of nonisomorphic vertex-induced subtrees. St000343The number of spanning subgraphs of a graph. St000450The number of edges minus the number of vertices plus 2 of a graph. St000822The Hadwiger number of the graph. St001330The hat guessing number of a graph. St001518The number of graphs with the same ordinary spectrum as the given graph. St001734The lettericity of a graph. St000379The number of Hamiltonian cycles in a graph. St000699The toughness times the least common multiple of 1,. St001281The normalized isoperimetric number of a graph. St001592The maximal number of simple paths between any two different vertices of a graph. St001877Number of indecomposable injective modules with projective dimension 2. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St000850The number of 1/2-balanced pairs in a poset. St001095The number of non-isomorphic posets with precisely one further covering relation. St001964The interval resolution global dimension of a poset. St000181The number of connected components of the Hasse diagram for the poset. St001621The number of atoms of a lattice. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St000284The Plancherel distribution on integer partitions. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000681The Grundy value of Chomp on Ferrers diagrams. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000929The constant term of the character polynomial of an integer partition. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St000941The number of characters of the symmetric group whose value on the partition is even. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001128The exponens consonantiae of a partition. St000455The second largest eigenvalue of a graph if it is integral.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!