Loading [MathJax]/jax/output/HTML-CSS/jax.js

Your data matches 40 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000756: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => 1
[1,2] => 3
[2,1] => 1
[1,2,3] => 6
[1,3,2] => 3
[2,1,3] => 4
[2,3,1] => 3
[3,1,2] => 1
[3,2,1] => 1
[1,2,3,4] => 10
[1,2,4,3] => 6
[1,3,2,4] => 7
[1,3,4,2] => 6
[1,4,2,3] => 3
[1,4,3,2] => 3
[2,1,3,4] => 8
[2,1,4,3] => 4
[2,3,1,4] => 7
[2,3,4,1] => 6
[2,4,1,3] => 3
[2,4,3,1] => 3
[3,1,2,4] => 5
[3,1,4,2] => 4
[3,2,1,4] => 5
[3,2,4,1] => 4
[3,4,1,2] => 3
[3,4,2,1] => 3
[4,1,2,3] => 1
[4,1,3,2] => 1
[4,2,1,3] => 1
[4,2,3,1] => 1
[4,3,1,2] => 1
[4,3,2,1] => 1
[1,2,3,4,5] => 15
[1,2,3,5,4] => 10
[1,2,4,3,5] => 11
[1,2,4,5,3] => 10
[1,2,5,3,4] => 6
[1,2,5,4,3] => 6
[1,3,2,4,5] => 12
[1,3,2,5,4] => 7
[1,3,4,2,5] => 11
[1,3,4,5,2] => 10
[1,3,5,2,4] => 6
[1,3,5,4,2] => 6
[1,4,2,3,5] => 8
[1,4,2,5,3] => 7
[1,4,3,2,5] => 8
[1,4,3,5,2] => 7
[1,4,5,2,3] => 6
Description
The sum of the positions of the left to right maxima of a permutation. The generating function for this statistic is $$\sum_{\pi\in\mathfrak S_n} q^{slrmax(pi)} = \prod_{k=1}^n (q^k+k-1),$$ see [prop. 2.6., 1].
Mp00151: Permutations to cycle typeSet partitions
St000230: Set partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => {{1}}
=> 1
[1,2] => {{1},{2}}
=> 3
[2,1] => {{1,2}}
=> 1
[1,2,3] => {{1},{2},{3}}
=> 6
[1,3,2] => {{1},{2,3}}
=> 3
[2,1,3] => {{1,2},{3}}
=> 4
[2,3,1] => {{1,2,3}}
=> 1
[3,1,2] => {{1,2,3}}
=> 1
[3,2,1] => {{1,3},{2}}
=> 3
[1,2,3,4] => {{1},{2},{3},{4}}
=> 10
[1,2,4,3] => {{1},{2},{3,4}}
=> 6
[1,3,2,4] => {{1},{2,3},{4}}
=> 7
[1,3,4,2] => {{1},{2,3,4}}
=> 3
[1,4,2,3] => {{1},{2,3,4}}
=> 3
[1,4,3,2] => {{1},{2,4},{3}}
=> 6
[2,1,3,4] => {{1,2},{3},{4}}
=> 8
[2,1,4,3] => {{1,2},{3,4}}
=> 4
[2,3,1,4] => {{1,2,3},{4}}
=> 5
[2,3,4,1] => {{1,2,3,4}}
=> 1
[2,4,1,3] => {{1,2,3,4}}
=> 1
[2,4,3,1] => {{1,2,4},{3}}
=> 4
[3,1,2,4] => {{1,2,3},{4}}
=> 5
[3,1,4,2] => {{1,2,3,4}}
=> 1
[3,2,1,4] => {{1,3},{2},{4}}
=> 7
[3,2,4,1] => {{1,3,4},{2}}
=> 3
[3,4,1,2] => {{1,3},{2,4}}
=> 3
[3,4,2,1] => {{1,2,3,4}}
=> 1
[4,1,2,3] => {{1,2,3,4}}
=> 1
[4,1,3,2] => {{1,2,4},{3}}
=> 4
[4,2,1,3] => {{1,3,4},{2}}
=> 3
[4,2,3,1] => {{1,4},{2},{3}}
=> 6
[4,3,1,2] => {{1,2,3,4}}
=> 1
[4,3,2,1] => {{1,4},{2,3}}
=> 3
[1,2,3,4,5] => {{1},{2},{3},{4},{5}}
=> 15
[1,2,3,5,4] => {{1},{2},{3},{4,5}}
=> 10
[1,2,4,3,5] => {{1},{2},{3,4},{5}}
=> 11
[1,2,4,5,3] => {{1},{2},{3,4,5}}
=> 6
[1,2,5,3,4] => {{1},{2},{3,4,5}}
=> 6
[1,2,5,4,3] => {{1},{2},{3,5},{4}}
=> 10
[1,3,2,4,5] => {{1},{2,3},{4},{5}}
=> 12
[1,3,2,5,4] => {{1},{2,3},{4,5}}
=> 7
[1,3,4,2,5] => {{1},{2,3,4},{5}}
=> 8
[1,3,4,5,2] => {{1},{2,3,4,5}}
=> 3
[1,3,5,2,4] => {{1},{2,3,4,5}}
=> 3
[1,3,5,4,2] => {{1},{2,3,5},{4}}
=> 7
[1,4,2,3,5] => {{1},{2,3,4},{5}}
=> 8
[1,4,2,5,3] => {{1},{2,3,4,5}}
=> 3
[1,4,3,2,5] => {{1},{2,4},{3},{5}}
=> 11
[1,4,3,5,2] => {{1},{2,4,5},{3}}
=> 6
[1,4,5,2,3] => {{1},{2,4},{3,5}}
=> 6
Description
Sum of the minimal elements of the blocks of a set partition.
Matching statistic: St000154
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00201: Dyck paths RingelPermutations
Mp00087: Permutations inverse first fundamental transformationPermutations
St000154: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [2,1] => [2,1] => 1
[1,2] => [1,0,1,0]
=> [3,1,2] => [3,2,1] => 3
[2,1] => [1,1,0,0]
=> [2,3,1] => [3,1,2] => 1
[1,2,3] => [1,0,1,0,1,0]
=> [4,1,2,3] => [4,3,2,1] => 6
[1,3,2] => [1,0,1,1,0,0]
=> [3,1,4,2] => [4,2,1,3] => 3
[2,1,3] => [1,1,0,0,1,0]
=> [2,4,1,3] => [4,3,1,2] => 4
[2,3,1] => [1,1,0,1,0,0]
=> [4,3,1,2] => [4,2,3,1] => 3
[3,1,2] => [1,1,1,0,0,0]
=> [2,3,4,1] => [4,1,2,3] => 1
[3,2,1] => [1,1,1,0,0,0]
=> [2,3,4,1] => [4,1,2,3] => 1
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [5,4,3,2,1] => 10
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [5,3,2,1,4] => 6
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [5,4,2,1,3] => 7
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [5,3,4,2,1] => 6
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [5,2,1,3,4] => 3
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [5,2,1,3,4] => 3
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [5,4,3,1,2] => 8
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [5,3,1,2,4] => 4
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [5,4,2,3,1] => 7
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [4,2,5,3,1] => 6
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [5,2,3,1,4] => 3
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [5,2,3,1,4] => 3
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [5,4,1,2,3] => 5
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [5,3,4,1,2] => 4
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [5,4,1,2,3] => 5
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [5,3,4,1,2] => 4
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [5,2,3,4,1] => 3
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [5,2,3,4,1] => 3
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => 1
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => 1
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => 1
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => 1
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => 1
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => 1
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [6,5,4,3,2,1] => 15
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [6,4,3,2,1,5] => 10
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [6,5,3,2,1,4] => 11
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [6,4,5,3,2,1] => 10
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [6,3,2,1,4,5] => 6
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [6,3,2,1,4,5] => 6
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [6,5,4,2,1,3] => 12
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [6,4,2,1,3,5] => 7
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [6,5,3,4,2,1] => 11
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [5,3,6,4,2,1] => 10
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [6,3,4,2,1,5] => 6
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [6,3,4,2,1,5] => 6
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [6,5,2,1,3,4] => 8
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [6,4,5,2,1,3] => 7
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [6,5,2,1,3,4] => 8
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [6,4,5,2,1,3] => 7
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [6,3,4,5,2,1] => 6
Description
The sum of the descent bottoms of a permutation. This statistic is given by $$\pi \mapsto \sum_{i\in\operatorname{Des}(\pi)} \pi_{i+1}.$$ For the descent tops, see [[St000111]].
Matching statistic: St000156
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
St000156: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,1,0,0]
=> [2,1] => 1
[1,2] => [1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => 3
[2,1] => [1,1,0,0]
=> [1,1,1,0,0,0]
=> [3,1,2] => 1
[1,2,3] => [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 6
[1,3,2] => [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,1,3] => 3
[2,1,3] => [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1,4,2] => 4
[2,3,1] => [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,1,2] => 3
[3,1,2] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,1,2,3] => 1
[3,2,1] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,1,2,3] => 1
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 10
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => 6
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => 7
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => 6
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => 3
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => 3
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,1,4,5,2] => 8
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => 4
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,4,1,5,2] => 7
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,1,2] => 6
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,5,1,2,4] => 3
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,5,1,2,4] => 3
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,5,3] => 5
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,1,5,2,3] => 4
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,5,3] => 5
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,1,5,2,3] => 4
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [4,5,1,2,3] => 3
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [4,5,1,2,3] => 3
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,1,2,3,4] => 1
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,1,2,3,4] => 1
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,1,2,3,4] => 1
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,1,2,3,4] => 1
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,1,2,3,4] => 1
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,1,2,3,4] => 1
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => 15
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,1,5] => 10
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,5,1,6,4] => 11
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,5,6,1,4] => 10
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,1,4,5] => 6
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,1,4,5] => 6
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,1,5,6,3] => 12
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,4,1,6,3,5] => 7
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,4,5,1,6,3] => 11
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,4,5,6,1,3] => 10
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,4,6,1,3,5] => 6
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,4,6,1,3,5] => 6
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,1,3,6,4] => 8
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,5,1,6,3,4] => 7
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,1,3,6,4] => 8
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,5,1,6,3,4] => 7
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,5,6,1,3,4] => 6
Description
The Denert index of a permutation. It is defined as $$ \begin{align*} den(\sigma) &= \#\{ 1\leq l < k \leq n : \sigma(k) < \sigma(l) \leq k \} \\ &+ \#\{ 1\leq l < k \leq n : \sigma(l) \leq k < \sigma(k) \} \\ &+ \#\{ 1\leq l < k \leq n : k < \sigma(k) < \sigma(l) \} \end{align*} $$ where $n$ is the size of $\sigma$. It was studied by Denert in [1], and it was shown by Foata and Zeilberger in [2] that the bistatistic $(exc,den)$ is [[Permutations/Descents-Major#Euler-Mahonian_statistics|Euler-Mahonian]]. Here, $exc$ is the number of weak exceedences, see [[St000155]].
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00142: Dyck paths promotionDyck paths
St000947: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[1,2] => [1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 3
[2,1] => [1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,2,3] => [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 6
[1,3,2] => [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 3
[2,1,3] => [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 4
[2,3,1] => [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 3
[3,1,2] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[3,2,1] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 10
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 6
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 7
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 6
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 8
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 4
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 7
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 6
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 3
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 3
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 5
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 4
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 5
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 4
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 3
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 3
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 15
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 10
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 11
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 10
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 6
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 6
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 12
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 7
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> 11
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 10
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> 6
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> 6
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 8
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> 7
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 8
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> 7
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> 6
Description
The major index east count of a Dyck path. The descent set $\operatorname{des}(D)$ of a Dyck path $D = D_1 \cdots D_{2n}$ with $D_i \in \{N,E\}$ is given by all indices $i$ such that $D_i = E$ and $D_{i+1} = N$. This is, the positions of the valleys of $D$. The '''major index''' of a Dyck path is then the sum of the positions of the valleys, $\sum_{i \in \operatorname{des}(D)} i$, see [[St000027]]. The '''major index east count''' is given by $\sum_{i \in \operatorname{des}(D)} \#\{ j \leq i \mid D_j = E\}$.
Mp00160: Permutations graph of inversionsGraphs
Mp00264: Graphs delete endpointsGraphs
St001645: Graphs ⟶ ℤResult quality: 31% values known / values provided: 33%distinct values known / distinct values provided: 31%
Values
[1] => ([],1)
=> ([],1)
=> 1
[1,2] => ([],2)
=> ([],2)
=> ? = 3
[2,1] => ([(0,1)],2)
=> ([],1)
=> 1
[1,2,3] => ([],3)
=> ([],3)
=> ? ∊ {3,4,6}
[1,3,2] => ([(1,2)],3)
=> ([],2)
=> ? ∊ {3,4,6}
[2,1,3] => ([(1,2)],3)
=> ([],2)
=> ? ∊ {3,4,6}
[2,3,1] => ([(0,2),(1,2)],3)
=> ([],1)
=> 1
[3,1,2] => ([(0,2),(1,2)],3)
=> ([],1)
=> 1
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,2,3,4] => ([],4)
=> ([],4)
=> ? ∊ {1,1,3,3,4,5,5,6,6,6,7,7,8,10}
[1,2,4,3] => ([(2,3)],4)
=> ([],3)
=> ? ∊ {1,1,3,3,4,5,5,6,6,6,7,7,8,10}
[1,3,2,4] => ([(2,3)],4)
=> ([],3)
=> ? ∊ {1,1,3,3,4,5,5,6,6,6,7,7,8,10}
[1,3,4,2] => ([(1,3),(2,3)],4)
=> ([],2)
=> ? ∊ {1,1,3,3,4,5,5,6,6,6,7,7,8,10}
[1,4,2,3] => ([(1,3),(2,3)],4)
=> ([],2)
=> ? ∊ {1,1,3,3,4,5,5,6,6,6,7,7,8,10}
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,3,3,4,5,5,6,6,6,7,7,8,10}
[2,1,3,4] => ([(2,3)],4)
=> ([],3)
=> ? ∊ {1,1,3,3,4,5,5,6,6,6,7,7,8,10}
[2,1,4,3] => ([(0,3),(1,2)],4)
=> ([],2)
=> ? ∊ {1,1,3,3,4,5,5,6,6,6,7,7,8,10}
[2,3,1,4] => ([(1,3),(2,3)],4)
=> ([],2)
=> ? ∊ {1,1,3,3,4,5,5,6,6,6,7,7,8,10}
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> 1
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ([],1)
=> 1
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[3,1,2,4] => ([(1,3),(2,3)],4)
=> ([],2)
=> ? ∊ {1,1,3,3,4,5,5,6,6,6,7,7,8,10}
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ([],1)
=> 1
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,3,3,4,5,5,6,6,6,7,7,8,10}
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,3,3,4,5,5,6,6,6,7,7,8,10}
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> 1
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,3,3,4,5,5,6,6,6,7,7,8,10}
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,3,3,4,5,5,6,6,6,7,7,8,10}
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,2,3,4,5] => ([],5)
=> ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,2,3,5,4] => ([(3,4)],5)
=> ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,2,4,3,5] => ([(3,4)],5)
=> ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,3,2,4,5] => ([(3,4)],5)
=> ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,5,3,2,4] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,5,4,2,3] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[2,1,3,4,5] => ([(3,4)],5)
=> ([],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ([],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> 1
[2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([],1)
=> 1
[2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> 1
[2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
[2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([],1)
=> 1
[2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([],1)
=> 1
[3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> 1
[3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
[3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
[4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([],1)
=> 1
[4,1,3,5,2] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
[4,2,1,5,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[4,5,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 5
[4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 5
[4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> 1
[5,1,2,4,3] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[5,1,3,2,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[5,1,4,3,2] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[5,2,1,3,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[5,3,2,1,4] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 5
[5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[5,4,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
Description
The pebbling number of a connected graph.
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00071: Permutations descent compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000456: Graphs ⟶ ℤResult quality: 33% values known / values provided: 33%distinct values known / distinct values provided: 38%
Values
[1] => [1] => [1] => ([],1)
=> ? = 1
[1,2] => [1,2] => [2] => ([],2)
=> ? ∊ {1,3}
[2,1] => [1,2] => [2] => ([],2)
=> ? ∊ {1,3}
[1,2,3] => [1,2,3] => [3] => ([],3)
=> ? ∊ {3,3,4,6}
[1,3,2] => [1,2,3] => [3] => ([],3)
=> ? ∊ {3,3,4,6}
[2,1,3] => [1,2,3] => [3] => ([],3)
=> ? ∊ {3,3,4,6}
[2,3,1] => [1,2,3] => [3] => ([],3)
=> ? ∊ {3,3,4,6}
[3,1,2] => [1,3,2] => [2,1] => ([(0,2),(1,2)],3)
=> 1
[3,2,1] => [1,3,2] => [2,1] => ([(0,2),(1,2)],3)
=> 1
[1,2,3,4] => [1,2,3,4] => [4] => ([],4)
=> ? ∊ {3,3,3,3,3,3,4,5,5,6,6,6,7,7,8,10}
[1,2,4,3] => [1,2,3,4] => [4] => ([],4)
=> ? ∊ {3,3,3,3,3,3,4,5,5,6,6,6,7,7,8,10}
[1,3,2,4] => [1,2,3,4] => [4] => ([],4)
=> ? ∊ {3,3,3,3,3,3,4,5,5,6,6,6,7,7,8,10}
[1,3,4,2] => [1,2,3,4] => [4] => ([],4)
=> ? ∊ {3,3,3,3,3,3,4,5,5,6,6,6,7,7,8,10}
[1,4,2,3] => [1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,4,3,2] => [1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[2,1,3,4] => [1,2,3,4] => [4] => ([],4)
=> ? ∊ {3,3,3,3,3,3,4,5,5,6,6,6,7,7,8,10}
[2,1,4,3] => [1,2,3,4] => [4] => ([],4)
=> ? ∊ {3,3,3,3,3,3,4,5,5,6,6,6,7,7,8,10}
[2,3,1,4] => [1,2,3,4] => [4] => ([],4)
=> ? ∊ {3,3,3,3,3,3,4,5,5,6,6,6,7,7,8,10}
[2,3,4,1] => [1,2,3,4] => [4] => ([],4)
=> ? ∊ {3,3,3,3,3,3,4,5,5,6,6,6,7,7,8,10}
[2,4,1,3] => [1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[2,4,3,1] => [1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[3,1,2,4] => [1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,4,5,5,6,6,6,7,7,8,10}
[3,1,4,2] => [1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[3,2,1,4] => [1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,4,5,5,6,6,6,7,7,8,10}
[3,2,4,1] => [1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[3,4,1,2] => [1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,4,5,5,6,6,6,7,7,8,10}
[3,4,2,1] => [1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,4,5,5,6,6,6,7,7,8,10}
[4,1,2,3] => [1,4,3,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[4,1,3,2] => [1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,4,5,5,6,6,6,7,7,8,10}
[4,2,1,3] => [1,4,3,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[4,2,3,1] => [1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,4,5,5,6,6,6,7,7,8,10}
[4,3,1,2] => [1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,4,5,5,6,6,6,7,7,8,10}
[4,3,2,1] => [1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,4,5,5,6,6,6,7,7,8,10}
[1,2,3,4,5] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,2,3,5,4] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,2,4,3,5] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,2,4,5,3] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,2,5,3,4] => [1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,2,5,4,3] => [1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,3,2,4,5] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,3,2,5,4] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,3,4,2,5] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,3,4,5,2] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,3,5,2,4] => [1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,3,5,4,2] => [1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,4,2,3,5] => [1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,4,2,5,3] => [1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,4,3,2,5] => [1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,4,3,5,2] => [1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,4,5,2,3] => [1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,4,5,3,2] => [1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,5,2,3,4] => [1,2,5,4,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,5,2,4,3] => [1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,5,3,2,4] => [1,2,5,4,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,5,3,4,2] => [1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,5,4,2,3] => [1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,5,4,3,2] => [1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[2,1,3,4,5] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[2,1,3,5,4] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[2,1,4,3,5] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[2,1,4,5,3] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[2,1,5,3,4] => [1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,1,5,4,3] => [1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,3,1,4,5] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[2,3,1,5,4] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[2,3,4,1,5] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[2,3,4,5,1] => [1,2,3,4,5] => [5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[2,3,5,1,4] => [1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,3,5,4,1] => [1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,4,1,3,5] => [1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[2,4,1,5,3] => [1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,4,3,1,5] => [1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[2,4,3,5,1] => [1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,4,5,1,3] => [1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[2,5,1,3,4] => [1,2,5,4,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[2,5,3,1,4] => [1,2,5,4,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[3,1,4,5,2] => [1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[3,1,5,2,4] => [1,3,5,4,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[3,2,4,5,1] => [1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[3,2,5,1,4] => [1,3,5,4,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[3,5,1,2,4] => [1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,5,1,4,2] => [1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,5,2,1,4] => [1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,5,2,4,1] => [1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[4,1,2,5,3] => [1,4,5,3,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[4,1,5,3,2] => [1,4,3,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[4,2,1,5,3] => [1,4,5,3,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[4,2,5,3,1] => [1,4,3,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[4,5,1,2,3] => [1,4,2,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[4,5,2,1,3] => [1,4,2,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[4,5,3,1,2] => [1,4,2,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[4,5,3,2,1] => [1,4,2,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[5,1,2,3,4] => [1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
[5,1,4,2,3] => [1,5,3,4,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[5,2,1,3,4] => [1,5,4,3,2] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
[5,2,4,1,3] => [1,5,3,4,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[5,4,1,3,2] => [1,5,2,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[5,4,2,3,1] => [1,5,2,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[5,4,3,1,2] => [1,5,2,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[5,4,3,2,1] => [1,5,2,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
Description
The monochromatic index of a connected graph. This is the maximal number of colours such that there is a colouring of the edges where any two vertices can be joined by a monochromatic path. For example, a circle graph other than the triangle can be coloured with at most two colours: one edge blue, all the others red.
Mp00223: Permutations runsortPermutations
Mp00126: Permutations cactus evacuationPermutations
Mp00160: Permutations graph of inversionsGraphs
St000259: Graphs ⟶ ℤResult quality: 28% values known / values provided: 28%distinct values known / distinct values provided: 31%
Values
[1] => [1] => [1] => ([],1)
=> 0 = 1 - 1
[1,2] => [1,2] => [1,2] => ([],2)
=> ? ∊ {1,3} - 1
[2,1] => [1,2] => [1,2] => ([],2)
=> ? ∊ {1,3} - 1
[1,2,3] => [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,4,6} - 1
[1,3,2] => [1,3,2] => [3,1,2] => ([(0,2),(1,2)],3)
=> 2 = 3 - 1
[2,1,3] => [1,3,2] => [3,1,2] => ([(0,2),(1,2)],3)
=> 2 = 3 - 1
[2,3,1] => [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,4,6} - 1
[3,1,2] => [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,4,6} - 1
[3,2,1] => [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,1,4,6} - 1
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,3,3,4,4,4,5,5,6,6,6,7,7,8,10} - 1
[1,2,4,3] => [1,2,4,3] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,3,2,4] => [1,3,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,3,3,4,4,4,5,5,6,6,6,7,7,8,10} - 1
[1,3,4,2] => [1,3,4,2] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,3,3,4,4,4,5,5,6,6,6,7,7,8,10} - 1
[1,4,2,3] => [1,4,2,3] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,3,3,4,4,4,5,5,6,6,6,7,7,8,10} - 1
[1,4,3,2] => [1,4,2,3] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,3,3,4,4,4,5,5,6,6,6,7,7,8,10} - 1
[2,1,3,4] => [1,3,4,2] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,3,3,4,4,4,5,5,6,6,6,7,7,8,10} - 1
[2,1,4,3] => [1,4,2,3] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,3,3,4,4,4,5,5,6,6,6,7,7,8,10} - 1
[2,3,1,4] => [1,4,2,3] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,3,3,4,4,4,5,5,6,6,6,7,7,8,10} - 1
[2,3,4,1] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,3,3,4,4,4,5,5,6,6,6,7,7,8,10} - 1
[2,4,1,3] => [1,3,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,3,3,4,4,4,5,5,6,6,6,7,7,8,10} - 1
[2,4,3,1] => [1,2,4,3] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 3 - 1
[3,1,2,4] => [1,2,4,3] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 3 - 1
[3,1,4,2] => [1,4,2,3] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,3,3,4,4,4,5,5,6,6,6,7,7,8,10} - 1
[3,2,1,4] => [1,4,2,3] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,3,3,4,4,4,5,5,6,6,6,7,7,8,10} - 1
[3,2,4,1] => [1,2,4,3] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 3 - 1
[3,4,1,2] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,3,3,4,4,4,5,5,6,6,6,7,7,8,10} - 1
[3,4,2,1] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,3,3,4,4,4,5,5,6,6,6,7,7,8,10} - 1
[4,1,2,3] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,3,3,4,4,4,5,5,6,6,6,7,7,8,10} - 1
[4,1,3,2] => [1,3,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,3,3,4,4,4,5,5,6,6,6,7,7,8,10} - 1
[4,2,1,3] => [1,3,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,3,3,4,4,4,5,5,6,6,6,7,7,8,10} - 1
[4,2,3,1] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,3,3,4,4,4,5,5,6,6,6,7,7,8,10} - 1
[4,3,1,2] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,3,3,4,4,4,5,5,6,6,6,7,7,8,10} - 1
[4,3,2,1] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,1,1,1,1,3,3,4,4,4,5,5,6,6,6,7,7,8,10} - 1
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15} - 1
[1,2,3,5,4] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,2,4,3,5] => [1,2,4,3,5] => [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15} - 1
[1,2,4,5,3] => [1,2,4,5,3] => [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15} - 1
[1,2,5,3,4] => [1,2,5,3,4] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15} - 1
[1,2,5,4,3] => [1,2,5,3,4] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15} - 1
[1,3,2,4,5] => [1,3,2,4,5] => [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15} - 1
[1,3,2,5,4] => [1,3,2,5,4] => [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4 = 5 - 1
[1,3,4,2,5] => [1,3,4,2,5] => [1,3,2,4,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15} - 1
[1,3,4,5,2] => [1,3,4,5,2] => [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15} - 1
[1,3,5,2,4] => [1,3,5,2,4] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,3,5,4,2] => [1,3,5,2,4] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,4,2,3,5] => [1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15} - 1
[1,4,2,5,3] => [1,4,2,5,3] => [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,4,3,2,5] => [1,4,2,5,3] => [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,4,3,5,2] => [1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15} - 1
[1,4,5,2,3] => [1,4,5,2,3] => [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 3 - 1
[1,4,5,3,2] => [1,4,5,2,3] => [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 3 - 1
[1,5,2,3,4] => [1,5,2,3,4] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15} - 1
[1,5,2,4,3] => [1,5,2,4,3] => [5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,5,3,2,4] => [1,5,2,4,3] => [5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,5,3,4,2] => [1,5,2,3,4] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15} - 1
[1,5,4,2,3] => [1,5,2,3,4] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15} - 1
[1,5,4,3,2] => [1,5,2,3,4] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15} - 1
[2,1,3,4,5] => [1,3,4,5,2] => [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15} - 1
[2,1,3,5,4] => [1,3,5,2,4] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[2,1,4,3,5] => [1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15} - 1
[2,1,4,5,3] => [1,4,5,2,3] => [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 3 - 1
[2,1,5,3,4] => [1,5,2,3,4] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15} - 1
[2,1,5,4,3] => [1,5,2,3,4] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15} - 1
[2,3,1,4,5] => [1,4,5,2,3] => [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 3 - 1
[2,3,1,5,4] => [1,5,2,3,4] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15} - 1
[2,3,4,1,5] => [1,5,2,3,4] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15} - 1
[2,3,4,5,1] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15} - 1
[2,3,5,1,4] => [1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15} - 1
[2,3,5,4,1] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[2,4,1,3,5] => [1,3,5,2,4] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[2,4,1,5,3] => [1,5,2,4,3] => [5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[2,4,3,1,5] => [1,5,2,4,3] => [5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[2,4,3,5,1] => [1,2,4,3,5] => [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15} - 1
[2,4,5,1,3] => [1,3,2,4,5] => [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15} - 1
[2,5,1,4,3] => [1,4,2,5,3] => [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[2,5,3,1,4] => [1,4,2,5,3] => [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[2,5,4,1,3] => [1,3,2,5,4] => [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4 = 5 - 1
[3,1,4,2,5] => [1,4,2,5,3] => [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[3,1,4,5,2] => [1,4,5,2,3] => [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 3 - 1
[3,1,5,2,4] => [1,5,2,4,3] => [5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,2,1,4,5] => [1,4,5,2,3] => [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 3 - 1
[3,2,4,1,5] => [1,5,2,4,3] => [5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,2,5,1,4] => [1,4,2,5,3] => [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[3,5,4,1,2] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,5,4,2,1] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[4,1,2,3,5] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[4,1,3,2,5] => [1,3,2,5,4] => [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4 = 5 - 1
[4,1,3,5,2] => [1,3,5,2,4] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[4,2,1,3,5] => [1,3,5,2,4] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[4,2,3,5,1] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[4,2,5,1,3] => [1,3,2,5,4] => [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4 = 5 - 1
[4,3,5,1,2] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[4,3,5,2,1] => [1,2,3,5,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
Description
The diameter of a connected graph. This is the greatest distance between any pair of vertices.
Matching statistic: St001603
Mp00060: Permutations Robinson-Schensted tableau shapeInteger partitions
Mp00313: Integer partitions Glaisher-Franklin inverseInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001603: Integer partitions ⟶ ℤResult quality: 15% values known / values provided: 22%distinct values known / distinct values provided: 15%
Values
[1] => [1]
=> [1]
=> []
=> ? = 1
[1,2] => [2]
=> [1,1]
=> [1]
=> ? ∊ {1,3}
[2,1] => [1,1]
=> [2]
=> []
=> ? ∊ {1,3}
[1,2,3] => [3]
=> [3]
=> []
=> ? ∊ {1,1,3,3,4,6}
[1,3,2] => [2,1]
=> [1,1,1]
=> [1,1]
=> ? ∊ {1,1,3,3,4,6}
[2,1,3] => [2,1]
=> [1,1,1]
=> [1,1]
=> ? ∊ {1,1,3,3,4,6}
[2,3,1] => [2,1]
=> [1,1,1]
=> [1,1]
=> ? ∊ {1,1,3,3,4,6}
[3,1,2] => [2,1]
=> [1,1,1]
=> [1,1]
=> ? ∊ {1,1,3,3,4,6}
[3,2,1] => [1,1,1]
=> [2,1]
=> [1]
=> ? ∊ {1,1,3,3,4,6}
[1,2,3,4] => [4]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3] => [3,1]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,3,3,3,3,3,3,4,4,4,5,5,6,6,6,7,7,8,10}
[1,3,2,4] => [3,1]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,3,3,3,3,3,3,4,4,4,5,5,6,6,6,7,7,8,10}
[1,3,4,2] => [3,1]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,3,3,3,3,3,3,4,4,4,5,5,6,6,6,7,7,8,10}
[1,4,2,3] => [3,1]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,3,3,3,3,3,3,4,4,4,5,5,6,6,6,7,7,8,10}
[1,4,3,2] => [2,1,1]
=> [2,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,3,3,3,3,3,3,4,4,4,5,5,6,6,6,7,7,8,10}
[2,1,3,4] => [3,1]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,3,3,3,3,3,3,4,4,4,5,5,6,6,6,7,7,8,10}
[2,1,4,3] => [2,2]
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,3,3,3,3,3,3,4,4,4,5,5,6,6,6,7,7,8,10}
[2,3,1,4] => [3,1]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,3,3,3,3,3,3,4,4,4,5,5,6,6,6,7,7,8,10}
[2,3,4,1] => [3,1]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,3,3,3,3,3,3,4,4,4,5,5,6,6,6,7,7,8,10}
[2,4,1,3] => [2,2]
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,3,3,3,3,3,3,4,4,4,5,5,6,6,6,7,7,8,10}
[2,4,3,1] => [2,1,1]
=> [2,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,3,3,3,3,3,3,4,4,4,5,5,6,6,6,7,7,8,10}
[3,1,2,4] => [3,1]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,3,3,3,3,3,3,4,4,4,5,5,6,6,6,7,7,8,10}
[3,1,4,2] => [2,2]
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,3,3,3,3,3,3,4,4,4,5,5,6,6,6,7,7,8,10}
[3,2,1,4] => [2,1,1]
=> [2,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,3,3,3,3,3,3,4,4,4,5,5,6,6,6,7,7,8,10}
[3,2,4,1] => [2,1,1]
=> [2,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,3,3,3,3,3,3,4,4,4,5,5,6,6,6,7,7,8,10}
[3,4,1,2] => [2,2]
=> [4]
=> []
=> ? ∊ {1,1,1,1,1,3,3,3,3,3,3,4,4,4,5,5,6,6,6,7,7,8,10}
[3,4,2,1] => [2,1,1]
=> [2,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,3,3,3,3,3,3,4,4,4,5,5,6,6,6,7,7,8,10}
[4,1,2,3] => [3,1]
=> [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,3,3,3,3,3,3,4,4,4,5,5,6,6,6,7,7,8,10}
[4,1,3,2] => [2,1,1]
=> [2,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,3,3,3,3,3,3,4,4,4,5,5,6,6,6,7,7,8,10}
[4,2,1,3] => [2,1,1]
=> [2,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,3,3,3,3,3,3,4,4,4,5,5,6,6,6,7,7,8,10}
[4,2,3,1] => [2,1,1]
=> [2,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,3,3,3,3,3,3,4,4,4,5,5,6,6,6,7,7,8,10}
[4,3,1,2] => [2,1,1]
=> [2,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,3,3,3,3,3,3,4,4,4,5,5,6,6,6,7,7,8,10}
[4,3,2,1] => [1,1,1,1]
=> [2,2]
=> [2]
=> ? ∊ {1,1,1,1,1,3,3,3,3,3,3,4,4,4,5,5,6,6,6,7,7,8,10}
[1,2,3,4,5] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,2,3,5,4] => [4,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 3
[1,2,4,3,5] => [4,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 3
[1,2,4,5,3] => [4,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 3
[1,2,5,3,4] => [4,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 3
[1,2,5,4,3] => [3,1,1]
=> [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,3,2,4,5] => [4,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 3
[1,3,2,5,4] => [3,2]
=> [3,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,3,4,2,5] => [4,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 3
[1,3,4,5,2] => [4,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 3
[1,3,5,2,4] => [3,2]
=> [3,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,3,5,4,2] => [3,1,1]
=> [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,4,2,3,5] => [4,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 3
[1,4,2,5,3] => [3,2]
=> [3,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,4,3,2,5] => [3,1,1]
=> [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,4,3,5,2] => [3,1,1]
=> [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,4,5,2,3] => [3,2]
=> [3,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,4,5,3,2] => [3,1,1]
=> [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,5,2,3,4] => [4,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 3
[1,5,2,4,3] => [3,1,1]
=> [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,5,3,2,4] => [3,1,1]
=> [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,5,3,4,2] => [3,1,1]
=> [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,5,4,2,3] => [3,1,1]
=> [3,2]
=> [2]
=> ? ∊ {1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,5,4,3,2] => [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[2,1,3,4,5] => [4,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 3
[2,1,3,5,4] => [3,2]
=> [3,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[2,1,4,3,5] => [3,2]
=> [3,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[2,1,4,5,3] => [3,2]
=> [3,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[2,1,5,3,4] => [3,2]
=> [3,1,1]
=> [1,1]
=> ? ∊ {1,1,1,1,1,1,1,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[2,3,1,4,5] => [4,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 3
[2,3,4,1,5] => [4,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 3
[2,3,4,5,1] => [4,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 3
[2,5,4,3,1] => [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[3,1,2,4,5] => [4,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 3
[3,5,4,2,1] => [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[4,1,2,3,5] => [4,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 3
[4,3,2,1,5] => [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[4,3,2,5,1] => [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[4,3,5,2,1] => [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[4,5,3,2,1] => [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[5,1,2,3,4] => [4,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 3
[5,1,4,3,2] => [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[5,2,4,3,1] => [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[5,3,2,1,4] => [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[5,3,2,4,1] => [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[5,3,4,2,1] => [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[5,4,1,3,2] => [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[5,4,2,1,3] => [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[5,4,2,3,1] => [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[5,4,3,1,2] => [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[5,4,3,2,1] => [1,1,1,1,1]
=> [2,2,1]
=> [2,1]
=> 1
Description
The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. Two colourings are considered equal, if they are obtained by an action of the dihedral group. This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
Mp00160: Permutations graph of inversionsGraphs
Mp00147: Graphs squareGraphs
Mp00111: Graphs complementGraphs
St000264: Graphs ⟶ ℤResult quality: 15% values known / values provided: 22%distinct values known / distinct values provided: 15%
Values
[1] => ([],1)
=> ([],1)
=> ([],1)
=> ? = 1
[1,2] => ([],2)
=> ([],2)
=> ([(0,1)],2)
=> ? ∊ {1,3}
[2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {1,3}
[1,2,3] => ([],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,3,4,6}
[2,1,3] => ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,3,4,6}
[2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,3,4,6}
[3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,3,4,6}
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {1,1,3,4,6}
[1,2,3,4] => ([],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,2,4,3] => ([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,3,2,4] => ([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,3,3,4,4,5,5,6,6,6,7,7,8,10}
[1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,3,3,4,4,5,5,6,6,6,7,7,8,10}
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,3,3,4,4,5,5,6,6,6,7,7,8,10}
[2,1,3,4] => ([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[2,1,4,3] => ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
[2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,3,3,4,4,5,5,6,6,6,7,7,8,10}
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,1,1,1,1,3,3,4,4,5,5,6,6,6,7,7,8,10}
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,3,3,4,4,5,5,6,6,6,7,7,8,10}
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,1,1,1,1,3,3,4,4,5,5,6,6,6,7,7,8,10}
[3,1,2,4] => ([(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,3,3,4,4,5,5,6,6,6,7,7,8,10}
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,3,3,4,4,5,5,6,6,6,7,7,8,10}
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,3,3,4,4,5,5,6,6,6,7,7,8,10}
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,1,1,1,1,3,3,4,4,5,5,6,6,6,7,7,8,10}
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,1,1,1,1,3,3,4,4,5,5,6,6,6,7,7,8,10}
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,1,1,1,1,3,3,4,4,5,5,6,6,6,7,7,8,10}
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,1,1,1,1,3,3,4,4,5,5,6,6,6,7,7,8,10}
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,1,1,1,1,3,3,4,4,5,5,6,6,6,7,7,8,10}
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,1,1,1,1,3,3,4,4,5,5,6,6,6,7,7,8,10}
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,1,1,1,1,3,3,4,4,5,5,6,6,6,7,7,8,10}
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,1,1,1,1,3,3,4,4,5,5,6,6,6,7,7,8,10}
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {1,1,1,1,1,1,3,3,4,4,5,5,6,6,6,7,7,8,10}
[1,2,3,4,5] => ([],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,2,3,5,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,2,4,3,5] => ([(3,4)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,3,2,4,5] => ([(3,4)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 3
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,5,3,2,4] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,5,4,2,3] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[2,1,3,4,5] => ([(3,4)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 3
[2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 3
[2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,9,9,9,10,10,10,10,10,10,11,11,11,12,12,13,15}
[3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
Description
The girth of a graph, which is not a tree. This is the length of the shortest cycle in the graph.
The following 30 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001875The number of simple modules with projective dimension at most 1. St001877Number of indecomposable injective modules with projective dimension 2. St000284The Plancherel distribution on integer partitions. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000813The number of zero-one matrices with weakly decreasing column sums and row sums given by the partition. St000927The alternating sum of the coefficients of the character polynomial of an integer partition. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000327The number of cover relations in a poset. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000882The number of connected components of short braid edges in the graph of braid moves of a permutation. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St000567The sum of the products of all pairs of parts. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000668The least common multiple of the parts of the partition. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000929The constant term of the character polynomial of an integer partition. St000933The number of multipartitions of sizes given by an integer partition. St001099The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. St001100The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled trees. St001128The exponens consonantiae of a partition. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.