Processing math: 100%

Your data matches 19 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000465: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 0
([],2)
=> 0
([(0,1)],2)
=> 2
([],3)
=> 0
([(1,2)],3)
=> 2
([(0,2),(1,2)],3)
=> 6
([(0,1),(0,2),(1,2)],3)
=> 12
([],4)
=> 0
([(2,3)],4)
=> 2
([(1,3),(2,3)],4)
=> 6
([(0,3),(1,3),(2,3)],4)
=> 12
([(0,3),(1,2)],4)
=> 4
([(0,3),(1,2),(2,3)],4)
=> 10
([(1,2),(1,3),(2,3)],4)
=> 12
([(0,3),(1,2),(1,3),(2,3)],4)
=> 18
([(0,2),(0,3),(1,2),(1,3)],4)
=> 16
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 26
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 36
Description
The first Zagreb index of a graph. This is the sum of the squares of the degrees of the vertices, vV(G)d2(v)={u,v}E(G)(d(u)+d(v)) where d(u) is the degree of the vertex u.
Matching statistic: St000350
Mp00156: Graphs line graphGraphs
Mp00203: Graphs coneGraphs
St000350: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],0)
=> ([],1)
=> 0
([],2)
=> ([],0)
=> ([],1)
=> 0
([(0,1)],2)
=> ([],1)
=> ([(0,1)],2)
=> 2
([],3)
=> ([],0)
=> ([],1)
=> 0
([(1,2)],3)
=> ([],1)
=> ([(0,1)],2)
=> 2
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 6
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 12
([],4)
=> ([],0)
=> ([],1)
=> 0
([(2,3)],4)
=> ([],1)
=> ([(0,1)],2)
=> 2
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 6
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 12
([(0,3),(1,2)],4)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 4
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 10
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 12
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 16
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 26
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> 36
Description
The sum of the vertex degrees of a graph. This is clearly equal to twice the number of edges, and, incidentally, also equal to the trace of the Laplacian matrix of a graph. From this it follows that it is also the sum of the squares of the eigenvalues of the adjacency matrix of the graph. The Laplacian matrix is defined as DA where D is the degree matrix (the diagonal matrix with the vertex degrees on the diagonal) and where A is the adjacency matrix. See [1] for detailed definitions.
Matching statistic: St001232
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00296: Dyck paths Knuth-KrattenthalerDyck paths
St001232: Dyck paths ⟶ ℤResult quality: 30% values known / values provided: 33%distinct values known / distinct values provided: 30%
Values
([],1)
=> [1]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
([],2)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> ? = 0
([],3)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([(1,2)],3)
=> [2,1]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
([(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {6,12}
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> ? ∊ {6,12}
([],4)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
([(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 4
([(1,3),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {0,6,10,12,12,16,18,26,36}
([(0,3),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? ∊ {0,6,10,12,12,16,18,26,36}
([(0,3),(1,2)],4)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? ∊ {0,6,10,12,12,16,18,26,36}
([(0,3),(1,2),(2,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? ∊ {0,6,10,12,12,16,18,26,36}
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> ? ∊ {0,6,10,12,12,16,18,26,36}
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? ∊ {0,6,10,12,12,16,18,26,36}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? ∊ {0,6,10,12,12,16,18,26,36}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? ∊ {0,6,10,12,12,16,18,26,36}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? ∊ {0,6,10,12,12,16,18,26,36}
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Mp00264: Graphs delete endpointsGraphs
Mp00247: Graphs de-duplicateGraphs
St000464: Graphs ⟶ ℤResult quality: 28% values known / values provided: 28%distinct values known / distinct values provided: 30%
Values
([],1)
=> ([],1)
=> ([],1)
=> ? = 0
([],2)
=> ([],2)
=> ([],1)
=> ? ∊ {0,2}
([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? ∊ {0,2}
([],3)
=> ([],3)
=> ([],1)
=> ? ∊ {0,2,6}
([(1,2)],3)
=> ([],2)
=> ([],1)
=> ? ∊ {0,2,6}
([(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ? ∊ {0,2,6}
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 12
([],4)
=> ([],4)
=> ([],1)
=> ? ∊ {0,4,6,10,16,18,26}
([(2,3)],4)
=> ([],3)
=> ([],1)
=> ? ∊ {0,4,6,10,16,18,26}
([(1,3),(2,3)],4)
=> ([],2)
=> ([],1)
=> ? ∊ {0,4,6,10,16,18,26}
([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,4,6,10,16,18,26}
([(0,3),(1,2)],4)
=> ([],2)
=> ([],1)
=> ? ∊ {0,4,6,10,16,18,26}
([(0,3),(1,2),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,4,6,10,16,18,26}
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,4,6,10,16,18,26}
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 12
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 12
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 36
Description
The Schultz index of a connected graph. This is {u,v}V(d(u)+d(v))d(u,v) where d(u) is the degree of vertex u and d(u,v) is the distance between vertices u and v. For trees on n vertices, the Schultz index is related to the Wiener index via S(T)=4W(T)n(n1) [2].
Matching statistic: St000422
Mp00154: Graphs coreGraphs
Mp00111: Graphs complementGraphs
Mp00203: Graphs coneGraphs
St000422: Graphs ⟶ ℤResult quality: 20% values known / values provided: 28%distinct values known / distinct values provided: 20%
Values
([],1)
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 0 + 2
([],2)
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 0 + 2
([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
([],3)
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 0 + 2
([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,6,12} + 2
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> ? ∊ {2,6,12} + 2
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {2,6,12} + 2
([],4)
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 2 = 0 + 2
([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> ? ∊ {4,6,10,12,12,16,18,26,36} + 2
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> ? ∊ {4,6,10,12,12,16,18,26,36} + 2
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> ? ∊ {4,6,10,12,12,16,18,26,36} + 2
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> ? ∊ {4,6,10,12,12,16,18,26,36} + 2
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> ? ∊ {4,6,10,12,12,16,18,26,36} + 2
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {4,6,10,12,12,16,18,26,36} + 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {4,6,10,12,12,16,18,26,36} + 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> ? ∊ {4,6,10,12,12,16,18,26,36} + 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {4,6,10,12,12,16,18,26,36} + 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 2 + 2
Description
The energy of a graph, if it is integral. The energy of a graph is the sum of the absolute values of its eigenvalues. This statistic is only defined for graphs with integral energy. It is known, that the energy is never an odd integer [2]. In fact, it is never the square root of an odd integer [3]. The energy of a graph is the sum of the energies of the connected components of a graph. The energy of the complete graph Kn equals 2n2. For this reason, we do not define the energy of the empty graph.
Mp00154: Graphs coreGraphs
Mp00111: Graphs complementGraphs
St000259: Graphs ⟶ ℤResult quality: 10% values known / values provided: 22%distinct values known / distinct values provided: 10%
Values
([],1)
=> ([],1)
=> ([],1)
=> 0
([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2
([],3)
=> ([],1)
=> ([],1)
=> 0
([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,6,12}
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,6,12}
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {2,6,12}
([],4)
=> ([],1)
=> ([],1)
=> 0
([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
Description
The diameter of a connected graph. This is the greatest distance between any pair of vertices.
Mp00154: Graphs coreGraphs
Mp00111: Graphs complementGraphs
St000260: Graphs ⟶ ℤResult quality: 10% values known / values provided: 22%distinct values known / distinct values provided: 10%
Values
([],1)
=> ([],1)
=> ([],1)
=> 0
([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2
([],3)
=> ([],1)
=> ([],1)
=> 0
([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,6,12}
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,6,12}
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {2,6,12}
([],4)
=> ([],1)
=> ([],1)
=> 0
([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
Description
The radius of a connected graph. This is the minimum eccentricity of any vertex.
Mp00154: Graphs coreGraphs
Mp00111: Graphs complementGraphs
St000302: Graphs ⟶ ℤResult quality: 10% values known / values provided: 22%distinct values known / distinct values provided: 10%
Values
([],1)
=> ([],1)
=> ([],1)
=> 0
([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2
([],3)
=> ([],1)
=> ([],1)
=> 0
([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,6,12}
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,6,12}
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {2,6,12}
([],4)
=> ([],1)
=> ([],1)
=> 0
([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
Description
The determinant of the distance matrix of a connected graph.
Mp00154: Graphs coreGraphs
Mp00111: Graphs complementGraphs
St000466: Graphs ⟶ ℤResult quality: 10% values known / values provided: 22%distinct values known / distinct values provided: 10%
Values
([],1)
=> ([],1)
=> ([],1)
=> 0
([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2
([],3)
=> ([],1)
=> ([],1)
=> 0
([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,6,12}
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,6,12}
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {2,6,12}
([],4)
=> ([],1)
=> ([],1)
=> 0
([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
Description
The Gutman (or modified Schultz) index of a connected graph. This is {u,v}Vd(u)d(v)d(u,v) where d(u) is the degree of vertex u and d(u,v) is the distance between vertices u and v. For trees on n vertices, the modified Schultz index is related to the Wiener index via S(T)=4W(T)(n1)(2n1) [1].
Mp00154: Graphs coreGraphs
Mp00111: Graphs complementGraphs
St000467: Graphs ⟶ ℤResult quality: 10% values known / values provided: 22%distinct values known / distinct values provided: 10%
Values
([],1)
=> ([],1)
=> ([],1)
=> 0
([],2)
=> ([],1)
=> ([],1)
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2
([],3)
=> ([],1)
=> ([],1)
=> 0
([(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,6,12}
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,6,12}
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {2,6,12}
([],4)
=> ([],1)
=> ([],1)
=> 0
([(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? ∊ {2,4,6,10,12,12,16,18,26,36}
Description
The hyper-Wiener index of a connected graph. This is {u,v}Vd(u,v)+d(u,v)2.
The following 9 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001645The pebbling number of a connected graph. St001330The hat guessing number of a graph. St001616The number of neutral elements in a lattice. St001754The number of tolerances of a finite lattice. St001177Twice the mean value of the major index among all standard Young tableaux of a partition.