Your data matches 84 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00150: Perfect matchings to Dyck pathDyck paths
Mp00023: Dyck paths to non-crossing permutationPermutations
St000352: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[(1,2)]
=> [1,0]
=> [1] => 0
[(1,2),(3,4)]
=> [1,0,1,0]
=> [1,2] => 0
[(1,3),(2,4)]
=> [1,1,0,0]
=> [2,1] => 1
[(1,4),(2,3)]
=> [1,1,0,0]
=> [2,1] => 1
[(1,2),(3,4),(5,6)]
=> [1,0,1,0,1,0]
=> [1,2,3] => 0
[(1,3),(2,4),(5,6)]
=> [1,1,0,0,1,0]
=> [2,1,3] => 1
[(1,4),(2,3),(5,6)]
=> [1,1,0,0,1,0]
=> [2,1,3] => 1
[(1,5),(2,3),(4,6)]
=> [1,1,0,1,0,0]
=> [2,3,1] => 1
[(1,6),(2,3),(4,5)]
=> [1,1,0,1,0,0]
=> [2,3,1] => 1
[(1,6),(2,4),(3,5)]
=> [1,1,1,0,0,0]
=> [3,2,1] => 1
[(1,5),(2,4),(3,6)]
=> [1,1,1,0,0,0]
=> [3,2,1] => 1
[(1,4),(2,5),(3,6)]
=> [1,1,1,0,0,0]
=> [3,2,1] => 1
[(1,3),(2,5),(4,6)]
=> [1,1,0,1,0,0]
=> [2,3,1] => 1
[(1,2),(3,5),(4,6)]
=> [1,0,1,1,0,0]
=> [1,3,2] => 0
[(1,2),(3,6),(4,5)]
=> [1,0,1,1,0,0]
=> [1,3,2] => 0
[(1,3),(2,6),(4,5)]
=> [1,1,0,1,0,0]
=> [2,3,1] => 1
[(1,4),(2,6),(3,5)]
=> [1,1,1,0,0,0]
=> [3,2,1] => 1
[(1,5),(2,6),(3,4)]
=> [1,1,1,0,0,0]
=> [3,2,1] => 1
[(1,6),(2,5),(3,4)]
=> [1,1,1,0,0,0]
=> [3,2,1] => 1
[(1,2),(3,4),(5,6),(7,8)]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[(1,3),(2,4),(5,6),(7,8)]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[(1,4),(2,3),(5,6),(7,8)]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[(1,5),(2,3),(4,6),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1
[(1,6),(2,3),(4,5),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1
[(1,7),(2,3),(4,5),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 1
[(1,8),(2,3),(4,5),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 1
[(1,8),(2,4),(3,5),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 1
[(1,7),(2,4),(3,5),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 1
[(1,6),(2,4),(3,5),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 1
[(1,5),(2,4),(3,6),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 1
[(1,4),(2,5),(3,6),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 1
[(1,3),(2,5),(4,6),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1
[(1,2),(3,5),(4,6),(7,8)]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 0
[(1,2),(3,6),(4,5),(7,8)]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 0
[(1,3),(2,6),(4,5),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1
[(1,4),(2,6),(3,5),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 1
[(1,5),(2,6),(3,4),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 1
[(1,6),(2,5),(3,4),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 1
[(1,7),(2,5),(3,4),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 1
[(1,8),(2,5),(3,4),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 1
[(1,8),(2,6),(3,4),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 1
[(1,7),(2,6),(3,4),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 1
[(1,6),(2,7),(3,4),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 1
[(1,5),(2,7),(3,4),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 1
[(1,4),(2,7),(3,5),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 1
[(1,3),(2,7),(4,5),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 1
[(1,2),(3,7),(4,5),(6,8)]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 0
[(1,2),(3,8),(4,5),(6,7)]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 0
[(1,3),(2,8),(4,5),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 1
[(1,4),(2,8),(3,5),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 1
Description
The Elizalde-Pak rank of a permutation. This is the largest $k$ such that $\pi(i) > k$ for all $i\leq k$. According to [1], the length of the longest increasing subsequence in a $321$-avoiding permutation is equidistributed with the rank of a $132$-avoiding permutation.
Matching statistic: St001135
Mp00150: Perfect matchings to Dyck pathDyck paths
Mp00099: Dyck paths bounce pathDyck paths
Mp00227: Dyck paths Delest-Viennot-inverseDyck paths
St001135: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[(1,2)]
=> [1,0]
=> [1,0]
=> [1,0]
=> 1 = 0 + 1
[(1,2),(3,4)]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
[(1,3),(2,4)]
=> [1,1,0,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2 = 1 + 1
[(1,4),(2,3)]
=> [1,1,0,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2 = 1 + 1
[(1,2),(3,4),(5,6)]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
[(1,3),(2,4),(5,6)]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1 = 0 + 1
[(1,4),(2,3),(5,6)]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1 = 0 + 1
[(1,5),(2,3),(4,6)]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2 = 1 + 1
[(1,6),(2,3),(4,5)]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2 = 1 + 1
[(1,6),(2,4),(3,5)]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2 = 1 + 1
[(1,5),(2,4),(3,6)]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2 = 1 + 1
[(1,4),(2,5),(3,6)]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2 = 1 + 1
[(1,3),(2,5),(4,6)]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2 = 1 + 1
[(1,2),(3,5),(4,6)]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2 = 1 + 1
[(1,2),(3,6),(4,5)]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2 = 1 + 1
[(1,3),(2,6),(4,5)]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2 = 1 + 1
[(1,4),(2,6),(3,5)]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2 = 1 + 1
[(1,5),(2,6),(3,4)]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2 = 1 + 1
[(1,6),(2,5),(3,4)]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2 = 1 + 1
[(1,2),(3,4),(5,6),(7,8)]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[(1,3),(2,4),(5,6),(7,8)]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[(1,4),(2,3),(5,6),(7,8)]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[(1,5),(2,3),(4,6),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[(1,6),(2,3),(4,5),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[(1,7),(2,3),(4,5),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[(1,8),(2,3),(4,5),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[(1,8),(2,4),(3,5),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[(1,7),(2,4),(3,5),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[(1,6),(2,4),(3,5),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[(1,5),(2,4),(3,6),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[(1,4),(2,5),(3,6),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[(1,3),(2,5),(4,6),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[(1,2),(3,5),(4,6),(7,8)]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[(1,2),(3,6),(4,5),(7,8)]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[(1,3),(2,6),(4,5),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[(1,4),(2,6),(3,5),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[(1,5),(2,6),(3,4),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[(1,6),(2,5),(3,4),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[(1,7),(2,5),(3,4),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[(1,8),(2,5),(3,4),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[(1,8),(2,6),(3,4),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[(1,7),(2,6),(3,4),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[(1,6),(2,7),(3,4),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[(1,5),(2,7),(3,4),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[(1,4),(2,7),(3,5),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[(1,3),(2,7),(4,5),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[(1,2),(3,7),(4,5),(6,8)]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[(1,2),(3,8),(4,5),(6,7)]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[(1,3),(2,8),(4,5),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[(1,4),(2,8),(3,5),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
Description
The projective dimension of the first simple module in the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St000678
Mp00150: Perfect matchings to Dyck pathDyck paths
Mp00099: Dyck paths bounce pathDyck paths
Mp00227: Dyck paths Delest-Viennot-inverseDyck paths
St000678: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[(1,2)]
=> [1,0]
=> [1,0]
=> [1,0]
=> ? = 0 + 1
[(1,2),(3,4)]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
[(1,3),(2,4)]
=> [1,1,0,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2 = 1 + 1
[(1,4),(2,3)]
=> [1,1,0,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2 = 1 + 1
[(1,2),(3,4),(5,6)]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
[(1,3),(2,4),(5,6)]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1 = 0 + 1
[(1,4),(2,3),(5,6)]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1 = 0 + 1
[(1,5),(2,3),(4,6)]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2 = 1 + 1
[(1,6),(2,3),(4,5)]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2 = 1 + 1
[(1,6),(2,4),(3,5)]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2 = 1 + 1
[(1,5),(2,4),(3,6)]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2 = 1 + 1
[(1,4),(2,5),(3,6)]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2 = 1 + 1
[(1,3),(2,5),(4,6)]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2 = 1 + 1
[(1,2),(3,5),(4,6)]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2 = 1 + 1
[(1,2),(3,6),(4,5)]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2 = 1 + 1
[(1,3),(2,6),(4,5)]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2 = 1 + 1
[(1,4),(2,6),(3,5)]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2 = 1 + 1
[(1,5),(2,6),(3,4)]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2 = 1 + 1
[(1,6),(2,5),(3,4)]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2 = 1 + 1
[(1,2),(3,4),(5,6),(7,8)]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[(1,3),(2,4),(5,6),(7,8)]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[(1,4),(2,3),(5,6),(7,8)]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[(1,5),(2,3),(4,6),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[(1,6),(2,3),(4,5),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[(1,7),(2,3),(4,5),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[(1,8),(2,3),(4,5),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[(1,8),(2,4),(3,5),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[(1,7),(2,4),(3,5),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[(1,6),(2,4),(3,5),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[(1,5),(2,4),(3,6),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[(1,4),(2,5),(3,6),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[(1,3),(2,5),(4,6),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[(1,2),(3,5),(4,6),(7,8)]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[(1,2),(3,6),(4,5),(7,8)]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[(1,3),(2,6),(4,5),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[(1,4),(2,6),(3,5),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[(1,5),(2,6),(3,4),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[(1,6),(2,5),(3,4),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[(1,7),(2,5),(3,4),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[(1,8),(2,5),(3,4),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[(1,8),(2,6),(3,4),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[(1,7),(2,6),(3,4),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[(1,6),(2,7),(3,4),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[(1,5),(2,7),(3,4),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[(1,4),(2,7),(3,5),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[(1,3),(2,7),(4,5),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[(1,2),(3,7),(4,5),(6,8)]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[(1,2),(3,8),(4,5),(6,7)]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[(1,3),(2,8),(4,5),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[(1,4),(2,8),(3,5),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[(1,5),(2,8),(3,4),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
Description
The number of up steps after the last double rise of a Dyck path.
Mp00150: Perfect matchings to Dyck pathDyck paths
Mp00201: Dyck paths RingelPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
St001199: Dyck paths ⟶ ℤResult quality: 67% values known / values provided: 67%distinct values known / distinct values provided: 67%
Values
[(1,2)]
=> [1,0]
=> [2,1] => [1,1,0,0]
=> ? = 0
[(1,2),(3,4)]
=> [1,0,1,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> ? = 0
[(1,3),(2,4)]
=> [1,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> 1
[(1,4),(2,3)]
=> [1,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> 1
[(1,2),(3,4),(5,6)]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,1,1}
[(1,3),(2,4),(5,6)]
=> [1,1,0,0,1,0]
=> [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> 1
[(1,4),(2,3),(5,6)]
=> [1,1,0,0,1,0]
=> [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> 1
[(1,5),(2,3),(4,6)]
=> [1,1,0,1,0,0]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,1,1}
[(1,6),(2,3),(4,5)]
=> [1,1,0,1,0,0]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,1,1}
[(1,6),(2,4),(3,5)]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 1
[(1,5),(2,4),(3,6)]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 1
[(1,4),(2,5),(3,6)]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 1
[(1,3),(2,5),(4,6)]
=> [1,1,0,1,0,0]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,1,1}
[(1,2),(3,5),(4,6)]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 1
[(1,2),(3,6),(4,5)]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 1
[(1,3),(2,6),(4,5)]
=> [1,1,0,1,0,0]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0,0,1,1}
[(1,4),(2,6),(3,5)]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 1
[(1,5),(2,6),(3,4)]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 1
[(1,6),(2,5),(3,4)]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 1
[(1,2),(3,4),(5,6),(7,8)]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,3),(2,4),(5,6),(7,8)]
=> [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [1,1,0,1,1,1,0,0,0,0]
=> 1
[(1,4),(2,3),(5,6),(7,8)]
=> [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [1,1,0,1,1,1,0,0,0,0]
=> 1
[(1,5),(2,3),(4,6),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,3),(4,5),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,3),(4,5),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,3),(4,5),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,4),(3,5),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> 1
[(1,7),(2,4),(3,5),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> 1
[(1,6),(2,4),(3,5),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> 1
[(1,5),(2,4),(3,6),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> 1
[(1,4),(2,5),(3,6),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> 1
[(1,3),(2,5),(4,6),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,2),(3,5),(4,6),(7,8)]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [1,1,1,0,0,1,1,0,0,0]
=> 1
[(1,2),(3,6),(4,5),(7,8)]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [1,1,1,0,0,1,1,0,0,0]
=> 1
[(1,3),(2,6),(4,5),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,4),(2,6),(3,5),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> 1
[(1,5),(2,6),(3,4),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> 1
[(1,6),(2,5),(3,4),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> 1
[(1,7),(2,5),(3,4),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> 1
[(1,8),(2,5),(3,4),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> 1
[(1,8),(2,6),(3,4),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,6),(3,4),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,7),(3,4),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,5),(2,7),(3,4),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> 1
[(1,4),(2,7),(3,5),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> 1
[(1,3),(2,7),(4,5),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,2),(3,7),(4,5),(6,8)]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,2),(3,8),(4,5),(6,7)]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,3),(2,8),(4,5),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,4),(2,8),(3,5),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> 1
[(1,5),(2,8),(3,4),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> 1
[(1,6),(2,8),(3,4),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,8),(3,4),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,7),(3,4),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,7),(3,5),(4,6)]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 1
[(1,7),(2,8),(3,5),(4,6)]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 1
[(1,6),(2,8),(3,5),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 1
[(1,5),(2,8),(3,6),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 1
[(1,4),(2,8),(3,6),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,3),(2,8),(4,6),(5,7)]
=> [1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> 1
[(1,2),(3,8),(4,6),(5,7)]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0]
=> 1
[(1,2),(3,7),(4,6),(5,8)]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0]
=> 1
[(1,3),(2,7),(4,6),(5,8)]
=> [1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> 1
[(1,4),(2,7),(3,6),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,5),(2,7),(3,6),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 1
[(1,6),(2,7),(3,5),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 1
[(1,7),(2,6),(3,5),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 1
[(1,8),(2,6),(3,5),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 1
[(1,8),(2,5),(3,6),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 1
[(1,7),(2,5),(3,6),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 1
[(1,6),(2,5),(3,7),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 1
[(1,5),(2,6),(3,7),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 1
[(1,4),(2,6),(3,7),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,3),(2,6),(4,7),(5,8)]
=> [1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> 1
[(1,2),(3,6),(4,7),(5,8)]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0]
=> 1
[(1,2),(3,5),(4,7),(6,8)]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,3),(2,5),(4,7),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,4),(2,5),(3,7),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> 1
[(1,5),(2,4),(3,7),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> 1
[(1,6),(2,4),(3,7),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,4),(3,6),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,4),(3,6),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,5),(2,3),(4,7),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,5),(2,3),(4,8),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,4),(3,7),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,4),(3,8),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,4),(3,8),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,3),(2,5),(4,8),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,2),(3,5),(4,8),(6,7)]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,4),(2,6),(3,8),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,4),(2,7),(3,8),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,4),(2,8),(3,7),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,5),(2,3),(4,6),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,3),(4,5),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,3),(4,5),(6,8),(9,10)]
=> [1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,3),(2,5),(4,6),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,3),(2,6),(4,5),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,10),(2,6),(3,4),(5,7),(8,9)]
=> [1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
Description
The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Mp00150: Perfect matchings to Dyck pathDyck paths
Mp00027: Dyck paths to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000755: Integer partitions ⟶ ℤResult quality: 59% values known / values provided: 59%distinct values known / distinct values provided: 67%
Values
[(1,2)]
=> [1,0]
=> []
=> ?
=> ? = 0
[(1,2),(3,4)]
=> [1,0,1,0]
=> [1]
=> []
=> ? ∊ {0,1,1}
[(1,3),(2,4)]
=> [1,1,0,0]
=> []
=> ?
=> ? ∊ {0,1,1}
[(1,4),(2,3)]
=> [1,1,0,0]
=> []
=> ?
=> ? ∊ {0,1,1}
[(1,2),(3,4),(5,6)]
=> [1,0,1,0,1,0]
=> [2,1]
=> [1]
=> 1
[(1,3),(2,4),(5,6)]
=> [1,1,0,0,1,0]
=> [2]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1}
[(1,4),(2,3),(5,6)]
=> [1,1,0,0,1,0]
=> [2]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1}
[(1,5),(2,3),(4,6)]
=> [1,1,0,1,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1}
[(1,6),(2,3),(4,5)]
=> [1,1,0,1,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1}
[(1,6),(2,4),(3,5)]
=> [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1}
[(1,5),(2,4),(3,6)]
=> [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1}
[(1,4),(2,5),(3,6)]
=> [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1}
[(1,3),(2,5),(4,6)]
=> [1,1,0,1,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1}
[(1,2),(3,5),(4,6)]
=> [1,0,1,1,0,0]
=> [1,1]
=> [1]
=> 1
[(1,2),(3,6),(4,5)]
=> [1,0,1,1,0,0]
=> [1,1]
=> [1]
=> 1
[(1,3),(2,6),(4,5)]
=> [1,1,0,1,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1}
[(1,4),(2,6),(3,5)]
=> [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1}
[(1,5),(2,6),(3,4)]
=> [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1}
[(1,6),(2,5),(3,4)]
=> [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1}
[(1,2),(3,4),(5,6),(7,8)]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [2,1]
=> 2
[(1,3),(2,4),(5,6),(7,8)]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> [2]
=> 2
[(1,4),(2,3),(5,6),(7,8)]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> [2]
=> 2
[(1,5),(2,3),(4,6),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1]
=> 1
[(1,6),(2,3),(4,5),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1]
=> 1
[(1,7),(2,3),(4,5),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1]
=> 1
[(1,8),(2,3),(4,5),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1]
=> 1
[(1,8),(2,4),(3,5),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,4),(3,5),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,4),(3,5),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,5),(2,4),(3,6),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,4),(2,5),(3,6),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,3),(2,5),(4,6),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1]
=> 1
[(1,2),(3,5),(4,6),(7,8)]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,1]
=> 1
[(1,2),(3,6),(4,5),(7,8)]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,1]
=> 1
[(1,3),(2,6),(4,5),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1]
=> 1
[(1,4),(2,6),(3,5),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,5),(2,6),(3,4),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,5),(3,4),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,5),(3,4),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,5),(3,4),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,6),(3,4),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,6),(3,4),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,7),(3,4),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,5),(2,7),(3,4),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,4),(2,7),(3,5),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,3),(2,7),(4,5),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1]
=> 1
[(1,2),(3,7),(4,5),(6,8)]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,1]
=> 1
[(1,2),(3,8),(4,5),(6,7)]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,1]
=> 1
[(1,3),(2,8),(4,5),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1]
=> 1
[(1,4),(2,8),(3,5),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,5),(2,8),(3,4),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,8),(3,4),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,8),(3,4),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,7),(3,4),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,7),(3,5),(4,6)]
=> [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,8),(3,5),(4,6)]
=> [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,8),(3,5),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,5),(2,8),(3,6),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,4),(2,8),(3,6),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,3),(2,8),(4,6),(5,7)]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1]
=> 1
[(1,2),(3,8),(4,6),(5,7)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 1
[(1,2),(3,7),(4,6),(5,8)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 1
[(1,3),(2,7),(4,6),(5,8)]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1]
=> 1
[(1,4),(2,7),(3,6),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,5),(2,7),(3,6),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,7),(3,5),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,6),(3,5),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,6),(3,5),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,5),(3,6),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,5),(3,6),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,5),(3,7),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,5),(2,6),(3,7),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,3),(2,6),(4,7),(5,8)]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1]
=> 1
[(1,2),(3,6),(4,7),(5,8)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 1
[(1,2),(3,5),(4,7),(6,8)]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,1]
=> 1
[(1,3),(2,5),(4,7),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1]
=> 1
[(1,8),(2,3),(4,6),(5,7)]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1]
=> 1
[(1,7),(2,3),(4,6),(5,8)]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1]
=> 1
[(1,6),(2,3),(4,7),(5,8)]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1]
=> 1
[(1,5),(2,3),(4,7),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1]
=> 1
[(1,4),(2,3),(5,7),(6,8)]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [2]
=> 2
[(1,3),(2,4),(5,7),(6,8)]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [2]
=> 2
[(1,2),(3,4),(5,7),(6,8)]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [2,1]
=> 2
[(1,2),(3,4),(5,8),(6,7)]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [2,1]
=> 2
[(1,3),(2,4),(5,8),(6,7)]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [2]
=> 2
[(1,4),(2,3),(5,8),(6,7)]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [2]
=> 2
[(1,5),(2,3),(4,8),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1]
=> 1
[(1,6),(2,3),(4,8),(5,7)]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1]
=> 1
[(1,7),(2,3),(4,8),(5,6)]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1]
=> 1
[(1,8),(2,3),(4,7),(5,6)]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1]
=> 1
[(1,3),(2,5),(4,8),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1]
=> 1
[(1,2),(3,5),(4,8),(6,7)]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,1]
=> 1
[(1,2),(3,6),(4,8),(5,7)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 1
[(1,3),(2,6),(4,8),(5,7)]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1]
=> 1
[(1,3),(2,7),(4,8),(5,6)]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1]
=> 1
[(1,2),(3,7),(4,8),(5,6)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 1
[(1,2),(3,8),(4,7),(5,6)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 1
[(1,3),(2,8),(4,7),(5,6)]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1]
=> 1
[(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [3,2,1]
=> 1
[(1,3),(2,4),(5,6),(7,8),(9,10)]
=> [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [3,2]
=> 1
Description
The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. Consider the recurrence $$f(n)=\sum_{p\in\lambda} f(n-p).$$ This statistic returns the number of distinct real roots of the associated characteristic polynomial. For example, the partition $(2,1)$ corresponds to the recurrence $f(n)=f(n-1)+f(n-2)$ with associated characteristic polynomial $x^2-x-1$, which has two real roots.
Mp00150: Perfect matchings to Dyck pathDyck paths
Mp00027: Dyck paths to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001913: Integer partitions ⟶ ℤResult quality: 59% values known / values provided: 59%distinct values known / distinct values provided: 100%
Values
[(1,2)]
=> [1,0]
=> []
=> ?
=> ? = 0
[(1,2),(3,4)]
=> [1,0,1,0]
=> [1]
=> []
=> ? ∊ {0,1,1}
[(1,3),(2,4)]
=> [1,1,0,0]
=> []
=> ?
=> ? ∊ {0,1,1}
[(1,4),(2,3)]
=> [1,1,0,0]
=> []
=> ?
=> ? ∊ {0,1,1}
[(1,2),(3,4),(5,6)]
=> [1,0,1,0,1,0]
=> [2,1]
=> [1]
=> 1
[(1,3),(2,4),(5,6)]
=> [1,1,0,0,1,0]
=> [2]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1}
[(1,4),(2,3),(5,6)]
=> [1,1,0,0,1,0]
=> [2]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1}
[(1,5),(2,3),(4,6)]
=> [1,1,0,1,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1}
[(1,6),(2,3),(4,5)]
=> [1,1,0,1,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1}
[(1,6),(2,4),(3,5)]
=> [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1}
[(1,5),(2,4),(3,6)]
=> [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1}
[(1,4),(2,5),(3,6)]
=> [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1}
[(1,3),(2,5),(4,6)]
=> [1,1,0,1,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1}
[(1,2),(3,5),(4,6)]
=> [1,0,1,1,0,0]
=> [1,1]
=> [1]
=> 1
[(1,2),(3,6),(4,5)]
=> [1,0,1,1,0,0]
=> [1,1]
=> [1]
=> 1
[(1,3),(2,6),(4,5)]
=> [1,1,0,1,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1}
[(1,4),(2,6),(3,5)]
=> [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1}
[(1,5),(2,6),(3,4)]
=> [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1}
[(1,6),(2,5),(3,4)]
=> [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1}
[(1,2),(3,4),(5,6),(7,8)]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [2,1]
=> 2
[(1,3),(2,4),(5,6),(7,8)]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> [2]
=> 1
[(1,4),(2,3),(5,6),(7,8)]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> [2]
=> 1
[(1,5),(2,3),(4,6),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1]
=> 1
[(1,6),(2,3),(4,5),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1]
=> 1
[(1,7),(2,3),(4,5),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1]
=> 1
[(1,8),(2,3),(4,5),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1]
=> 1
[(1,8),(2,4),(3,5),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,4),(3,5),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,4),(3,5),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,5),(2,4),(3,6),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,4),(2,5),(3,6),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,3),(2,5),(4,6),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1]
=> 1
[(1,2),(3,5),(4,6),(7,8)]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,1]
=> 1
[(1,2),(3,6),(4,5),(7,8)]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,1]
=> 1
[(1,3),(2,6),(4,5),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1]
=> 1
[(1,4),(2,6),(3,5),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,5),(2,6),(3,4),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,5),(3,4),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,5),(3,4),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,5),(3,4),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,6),(3,4),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,6),(3,4),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,7),(3,4),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,5),(2,7),(3,4),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,4),(2,7),(3,5),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,3),(2,7),(4,5),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1]
=> 1
[(1,2),(3,7),(4,5),(6,8)]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,1]
=> 1
[(1,2),(3,8),(4,5),(6,7)]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,1]
=> 1
[(1,3),(2,8),(4,5),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1]
=> 1
[(1,4),(2,8),(3,5),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,5),(2,8),(3,4),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,8),(3,4),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,8),(3,4),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,7),(3,4),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,7),(3,5),(4,6)]
=> [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,8),(3,5),(4,6)]
=> [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,8),(3,5),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,5),(2,8),(3,6),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,4),(2,8),(3,6),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,3),(2,8),(4,6),(5,7)]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1]
=> 1
[(1,2),(3,8),(4,6),(5,7)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 1
[(1,2),(3,7),(4,6),(5,8)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 1
[(1,3),(2,7),(4,6),(5,8)]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1]
=> 1
[(1,4),(2,7),(3,6),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,5),(2,7),(3,6),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,7),(3,5),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,6),(3,5),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,6),(3,5),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,5),(3,6),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,5),(3,6),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,5),(3,7),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,5),(2,6),(3,7),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,3),(2,6),(4,7),(5,8)]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1]
=> 1
[(1,2),(3,6),(4,7),(5,8)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 1
[(1,2),(3,5),(4,7),(6,8)]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,1]
=> 1
[(1,3),(2,5),(4,7),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1]
=> 1
[(1,8),(2,3),(4,6),(5,7)]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1]
=> 1
[(1,7),(2,3),(4,6),(5,8)]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1]
=> 1
[(1,6),(2,3),(4,7),(5,8)]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1]
=> 1
[(1,5),(2,3),(4,7),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1]
=> 1
[(1,4),(2,3),(5,7),(6,8)]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [2]
=> 1
[(1,3),(2,4),(5,7),(6,8)]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [2]
=> 1
[(1,2),(3,4),(5,7),(6,8)]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [2,1]
=> 2
[(1,2),(3,4),(5,8),(6,7)]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [2,1]
=> 2
[(1,3),(2,4),(5,8),(6,7)]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [2]
=> 1
[(1,4),(2,3),(5,8),(6,7)]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [2]
=> 1
[(1,5),(2,3),(4,8),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1]
=> 1
[(1,6),(2,3),(4,8),(5,7)]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1]
=> 1
[(1,7),(2,3),(4,8),(5,6)]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1]
=> 1
[(1,8),(2,3),(4,7),(5,6)]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1]
=> 1
[(1,3),(2,5),(4,8),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1]
=> 1
[(1,2),(3,5),(4,8),(6,7)]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,1]
=> 1
[(1,2),(3,6),(4,8),(5,7)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 1
[(1,3),(2,6),(4,8),(5,7)]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1]
=> 1
[(1,3),(2,7),(4,8),(5,6)]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1]
=> 1
[(1,2),(3,7),(4,8),(5,6)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 1
[(1,2),(3,8),(4,7),(5,6)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 1
[(1,3),(2,8),(4,7),(5,6)]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1]
=> 1
[(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [3,2,1]
=> 2
[(1,3),(2,4),(5,6),(7,8),(9,10)]
=> [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [3,2]
=> 2
Description
The number of preimages of an integer partition in Bulgarian solitaire. A move in Bulgarian solitaire consists of removing the first column of the Ferrers diagram and inserting it as a new row. Partitions without preimages are called garden of eden partitions [1].
Mp00150: Perfect matchings to Dyck pathDyck paths
Mp00027: Dyck paths to partitionInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St001195: Dyck paths ⟶ ℤResult quality: 51% values known / values provided: 51%distinct values known / distinct values provided: 67%
Values
[(1,2)]
=> [1,0]
=> []
=> []
=> ? = 0
[(1,2),(3,4)]
=> [1,0,1,0]
=> [1]
=> [1,0]
=> ? ∊ {0,1,1}
[(1,3),(2,4)]
=> [1,1,0,0]
=> []
=> []
=> ? ∊ {0,1,1}
[(1,4),(2,3)]
=> [1,1,0,0]
=> []
=> []
=> ? ∊ {0,1,1}
[(1,2),(3,4),(5,6)]
=> [1,0,1,0,1,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[(1,3),(2,4),(5,6)]
=> [1,1,0,0,1,0]
=> [2]
=> [1,0,1,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1}
[(1,4),(2,3),(5,6)]
=> [1,1,0,0,1,0]
=> [2]
=> [1,0,1,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1}
[(1,5),(2,3),(4,6)]
=> [1,1,0,1,0,0]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1}
[(1,6),(2,3),(4,5)]
=> [1,1,0,1,0,0]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1}
[(1,6),(2,4),(3,5)]
=> [1,1,1,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1}
[(1,5),(2,4),(3,6)]
=> [1,1,1,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1}
[(1,4),(2,5),(3,6)]
=> [1,1,1,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1}
[(1,3),(2,5),(4,6)]
=> [1,1,0,1,0,0]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1}
[(1,2),(3,5),(4,6)]
=> [1,0,1,1,0,0]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1}
[(1,2),(3,6),(4,5)]
=> [1,0,1,1,0,0]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1}
[(1,3),(2,6),(4,5)]
=> [1,1,0,1,0,0]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1}
[(1,4),(2,6),(3,5)]
=> [1,1,1,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1}
[(1,5),(2,6),(3,4)]
=> [1,1,1,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1}
[(1,6),(2,5),(3,4)]
=> [1,1,1,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1,1}
[(1,2),(3,4),(5,6),(7,8)]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[(1,3),(2,4),(5,6),(7,8)]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 1
[(1,4),(2,3),(5,6),(7,8)]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 1
[(1,5),(2,3),(4,6),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1
[(1,6),(2,3),(4,5),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1
[(1,7),(2,3),(4,5),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[(1,8),(2,3),(4,5),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[(1,8),(2,4),(3,5),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,4),(3,5),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,4),(3,5),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> [1,0,1,0,1,0]
=> 0
[(1,5),(2,4),(3,6),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> [1,0,1,0,1,0]
=> 0
[(1,4),(2,5),(3,6),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> [1,0,1,0,1,0]
=> 0
[(1,3),(2,5),(4,6),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1
[(1,2),(3,5),(4,6),(7,8)]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[(1,2),(3,6),(4,5),(7,8)]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[(1,3),(2,6),(4,5),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1
[(1,4),(2,6),(3,5),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> [1,0,1,0,1,0]
=> 0
[(1,5),(2,6),(3,4),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> [1,0,1,0,1,0]
=> 0
[(1,6),(2,5),(3,4),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> [1,0,1,0,1,0]
=> 0
[(1,7),(2,5),(3,4),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,5),(3,4),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,6),(3,4),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,6),(3,4),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,7),(3,4),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,5),(2,7),(3,4),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,4),(2,7),(3,5),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,3),(2,7),(4,5),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[(1,2),(3,7),(4,5),(6,8)]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 1
[(1,2),(3,8),(4,5),(6,7)]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 1
[(1,3),(2,8),(4,5),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[(1,4),(2,8),(3,5),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,5),(2,8),(3,4),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,8),(3,4),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,8),(3,4),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,7),(3,4),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,7),(3,5),(4,6)]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,8),(3,5),(4,6)]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,8),(3,5),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,5),(2,8),(3,6),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,4),(2,8),(3,6),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,3),(2,8),(4,6),(5,7)]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,2),(3,8),(4,6),(5,7)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[(1,2),(3,7),(4,6),(5,8)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[(1,3),(2,7),(4,6),(5,8)]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,4),(2,7),(3,6),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,5),(2,7),(3,6),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,7),(3,5),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,6),(3,5),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,6),(3,5),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,5),(3,6),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,5),(3,6),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,5),(3,7),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,5),(2,6),(3,7),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,4),(2,6),(3,7),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,3),(2,6),(4,7),(5,8)]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,2),(3,6),(4,7),(5,8)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[(1,2),(3,5),(4,7),(6,8)]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 1
[(1,3),(2,5),(4,7),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[(1,5),(2,3),(4,7),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[(1,4),(2,3),(5,7),(6,8)]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> 1
[(1,3),(2,4),(5,7),(6,8)]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> 1
[(1,2),(3,4),(5,7),(6,8)]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 1
[(1,2),(3,4),(5,8),(6,7)]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 1
[(1,3),(2,4),(5,8),(6,7)]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> 1
[(1,4),(2,3),(5,8),(6,7)]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> 1
[(1,5),(2,3),(4,8),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[(1,3),(2,5),(4,8),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[(1,2),(3,5),(4,8),(6,7)]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 1
[(1,2),(3,6),(4,8),(5,7)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[(1,2),(3,7),(4,8),(5,6)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[(1,2),(3,8),(4,7),(5,6)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[(1,9),(2,3),(4,5),(6,7),(8,10)]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[(1,10),(2,4),(3,5),(6,7),(8,9)]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 1
[(1,9),(2,4),(3,5),(6,7),(8,10)]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 1
[(1,8),(2,4),(3,5),(6,7),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[(1,7),(2,4),(3,5),(6,8),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[(1,6),(2,4),(3,5),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1
[(1,5),(2,4),(3,6),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1
[(1,4),(2,5),(3,6),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1
[(1,4),(2,6),(3,5),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1
Description
The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$.
Mp00150: Perfect matchings to Dyck pathDyck paths
Mp00027: Dyck paths to partitionInteger partitions
Mp00095: Integer partitions to binary wordBinary words
St001491: Binary words ⟶ ℤResult quality: 47% values known / values provided: 47%distinct values known / distinct values provided: 100%
Values
[(1,2)]
=> [1,0]
=> []
=> => ? = 0
[(1,2),(3,4)]
=> [1,0,1,0]
=> [1]
=> 10 => 1
[(1,3),(2,4)]
=> [1,1,0,0]
=> []
=> => ? ∊ {0,1}
[(1,4),(2,3)]
=> [1,1,0,0]
=> []
=> => ? ∊ {0,1}
[(1,2),(3,4),(5,6)]
=> [1,0,1,0,1,0]
=> [2,1]
=> 1010 => 0
[(1,3),(2,4),(5,6)]
=> [1,1,0,0,1,0]
=> [2]
=> 100 => 1
[(1,4),(2,3),(5,6)]
=> [1,1,0,0,1,0]
=> [2]
=> 100 => 1
[(1,5),(2,3),(4,6)]
=> [1,1,0,1,0,0]
=> [1]
=> 10 => 1
[(1,6),(2,3),(4,5)]
=> [1,1,0,1,0,0]
=> [1]
=> 10 => 1
[(1,6),(2,4),(3,5)]
=> [1,1,1,0,0,0]
=> []
=> => ? ∊ {0,0,1,1,1,1}
[(1,5),(2,4),(3,6)]
=> [1,1,1,0,0,0]
=> []
=> => ? ∊ {0,0,1,1,1,1}
[(1,4),(2,5),(3,6)]
=> [1,1,1,0,0,0]
=> []
=> => ? ∊ {0,0,1,1,1,1}
[(1,3),(2,5),(4,6)]
=> [1,1,0,1,0,0]
=> [1]
=> 10 => 1
[(1,2),(3,5),(4,6)]
=> [1,0,1,1,0,0]
=> [1,1]
=> 110 => 1
[(1,2),(3,6),(4,5)]
=> [1,0,1,1,0,0]
=> [1,1]
=> 110 => 1
[(1,3),(2,6),(4,5)]
=> [1,1,0,1,0,0]
=> [1]
=> 10 => 1
[(1,4),(2,6),(3,5)]
=> [1,1,1,0,0,0]
=> []
=> => ? ∊ {0,0,1,1,1,1}
[(1,5),(2,6),(3,4)]
=> [1,1,1,0,0,0]
=> []
=> => ? ∊ {0,0,1,1,1,1}
[(1,6),(2,5),(3,4)]
=> [1,1,1,0,0,0]
=> []
=> => ? ∊ {0,0,1,1,1,1}
[(1,2),(3,4),(5,6),(7,8)]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 101010 => ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,3),(2,4),(5,6),(7,8)]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> 10100 => ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,4),(2,3),(5,6),(7,8)]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> 10100 => ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,5),(2,3),(4,6),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> 10010 => ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,3),(4,5),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> 10010 => ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,3),(4,5),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 1010 => 0
[(1,8),(2,3),(4,5),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 1010 => 0
[(1,8),(2,4),(3,5),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 100 => 1
[(1,7),(2,4),(3,5),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 100 => 1
[(1,6),(2,4),(3,5),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> 1000 => 1
[(1,5),(2,4),(3,6),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> 1000 => 1
[(1,4),(2,5),(3,6),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> 1000 => 1
[(1,3),(2,5),(4,6),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> 10010 => ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,2),(3,5),(4,6),(7,8)]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> 100110 => ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,2),(3,6),(4,5),(7,8)]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> 100110 => ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,3),(2,6),(4,5),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> 10010 => ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,4),(2,6),(3,5),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> 1000 => 1
[(1,5),(2,6),(3,4),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> 1000 => 1
[(1,6),(2,5),(3,4),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> 1000 => 1
[(1,7),(2,5),(3,4),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 100 => 1
[(1,8),(2,5),(3,4),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 100 => 1
[(1,8),(2,6),(3,4),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 10 => 1
[(1,7),(2,6),(3,4),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 10 => 1
[(1,6),(2,7),(3,4),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 10 => 1
[(1,5),(2,7),(3,4),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 100 => 1
[(1,4),(2,7),(3,5),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 100 => 1
[(1,3),(2,7),(4,5),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 1010 => 0
[(1,2),(3,7),(4,5),(6,8)]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 10110 => ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,2),(3,8),(4,5),(6,7)]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 10110 => ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,3),(2,8),(4,5),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 1010 => 0
[(1,4),(2,8),(3,5),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 100 => 1
[(1,5),(2,8),(3,4),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 100 => 1
[(1,6),(2,8),(3,4),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 10 => 1
[(1,7),(2,8),(3,4),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 10 => 1
[(1,8),(2,7),(3,4),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 10 => 1
[(1,8),(2,7),(3,5),(4,6)]
=> [1,1,1,1,0,0,0,0]
=> []
=> => ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,8),(3,5),(4,6)]
=> [1,1,1,1,0,0,0,0]
=> []
=> => ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,8),(3,5),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> []
=> => ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,5),(2,8),(3,6),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> []
=> => ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,4),(2,8),(3,6),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 10 => 1
[(1,3),(2,8),(4,6),(5,7)]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 110 => 1
[(1,2),(3,8),(4,6),(5,7)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1110 => 2
[(1,2),(3,7),(4,6),(5,8)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1110 => 2
[(1,3),(2,7),(4,6),(5,8)]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 110 => 1
[(1,4),(2,7),(3,6),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 10 => 1
[(1,5),(2,7),(3,6),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> []
=> => ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,7),(3,5),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> []
=> => ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,6),(3,5),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> []
=> => ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,6),(3,5),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> []
=> => ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,5),(3,6),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> []
=> => ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,5),(3,6),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> []
=> => ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,5),(3,7),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> []
=> => ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,5),(2,6),(3,7),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> []
=> => ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,4),(2,6),(3,7),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 10 => 1
[(1,3),(2,6),(4,7),(5,8)]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 110 => 1
[(1,2),(3,6),(4,7),(5,8)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1110 => 2
[(1,2),(3,5),(4,7),(6,8)]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 10110 => ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,3),(2,5),(4,7),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 1010 => 0
[(1,4),(2,5),(3,7),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 100 => 1
[(1,5),(2,4),(3,7),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 100 => 1
[(1,6),(2,4),(3,7),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 10 => 1
[(1,7),(2,4),(3,6),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 10 => 1
[(1,8),(2,4),(3,6),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> 10 => 1
[(1,8),(2,3),(4,6),(5,7)]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 110 => 1
[(1,2),(3,4),(5,7),(6,8)]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 11010 => ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,2),(3,4),(5,8),(6,7)]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 11010 => ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,2),(3,5),(4,8),(6,7)]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 10110 => ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,5),(2,6),(3,8),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> []
=> => ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,5),(3,8),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> []
=> => ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,5),(3,8),(4,6)]
=> [1,1,1,1,0,0,0,0]
=> []
=> => ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,5),(3,7),(4,6)]
=> [1,1,1,1,0,0,0,0]
=> []
=> => ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,6),(3,7),(4,5)]
=> [1,1,1,1,0,0,0,0]
=> []
=> => ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,6),(3,8),(4,5)]
=> [1,1,1,1,0,0,0,0]
=> []
=> => ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,7),(3,8),(4,5)]
=> [1,1,1,1,0,0,0,0]
=> []
=> => ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,5),(2,7),(3,8),(4,6)]
=> [1,1,1,1,0,0,0,0]
=> []
=> => ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,5),(2,8),(3,7),(4,6)]
=> [1,1,1,1,0,0,0,0]
=> []
=> => ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,8),(3,7),(4,5)]
=> [1,1,1,1,0,0,0,0]
=> []
=> => ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,8),(3,6),(4,5)]
=> [1,1,1,1,0,0,0,0]
=> []
=> => ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,7),(3,6),(4,5)]
=> [1,1,1,1,0,0,0,0]
=> []
=> => ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 10101010 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,3),(2,4),(5,6),(7,8),(9,10)]
=> [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> 1010100 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
Description
The number of indecomposable projective-injective modules in the algebra corresponding to a subset. Let $A_n=K[x]/(x^n)$. We associate to a nonempty subset S of an (n-1)-set the module $M_S$, which is the direct sum of $A_n$-modules with indecomposable non-projective direct summands of dimension $i$ when $i$ is in $S$ (note that such modules have vector space dimension at most n-1). Then the corresponding algebra associated to S is the stable endomorphism ring of $M_S$. We decode the subset as a binary word so that for example the subset $S=\{1,3 \} $ of $\{1,2,3 \}$ is decoded as 101.
Matching statistic: St000618
Mp00150: Perfect matchings to Dyck pathDyck paths
Mp00233: Dyck paths skew partitionSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
St000618: Integer partitions ⟶ ℤResult quality: 41% values known / values provided: 41%distinct values known / distinct values provided: 100%
Values
[(1,2)]
=> [1,0]
=> [[1],[]]
=> []
=> ? = 0
[(1,2),(3,4)]
=> [1,0,1,0]
=> [[1,1],[]]
=> []
=> ? ∊ {0,1,1}
[(1,3),(2,4)]
=> [1,1,0,0]
=> [[2],[]]
=> []
=> ? ∊ {0,1,1}
[(1,4),(2,3)]
=> [1,1,0,0]
=> [[2],[]]
=> []
=> ? ∊ {0,1,1}
[(1,2),(3,4),(5,6)]
=> [1,0,1,0,1,0]
=> [[1,1,1],[]]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1}
[(1,3),(2,4),(5,6)]
=> [1,1,0,0,1,0]
=> [[2,2],[1]]
=> [1]
=> 1
[(1,4),(2,3),(5,6)]
=> [1,1,0,0,1,0]
=> [[2,2],[1]]
=> [1]
=> 1
[(1,5),(2,3),(4,6)]
=> [1,1,0,1,0,0]
=> [[3],[]]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1}
[(1,6),(2,3),(4,5)]
=> [1,1,0,1,0,0]
=> [[3],[]]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1}
[(1,6),(2,4),(3,5)]
=> [1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1}
[(1,5),(2,4),(3,6)]
=> [1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1}
[(1,4),(2,5),(3,6)]
=> [1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1}
[(1,3),(2,5),(4,6)]
=> [1,1,0,1,0,0]
=> [[3],[]]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1}
[(1,2),(3,5),(4,6)]
=> [1,0,1,1,0,0]
=> [[2,1],[]]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1}
[(1,2),(3,6),(4,5)]
=> [1,0,1,1,0,0]
=> [[2,1],[]]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1}
[(1,3),(2,6),(4,5)]
=> [1,1,0,1,0,0]
=> [[3],[]]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1}
[(1,4),(2,6),(3,5)]
=> [1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1}
[(1,5),(2,6),(3,4)]
=> [1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1}
[(1,6),(2,5),(3,4)]
=> [1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1}
[(1,2),(3,4),(5,6),(7,8)]
=> [1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,3),(2,4),(5,6),(7,8)]
=> [1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [1,1]
=> 1
[(1,4),(2,3),(5,6),(7,8)]
=> [1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [1,1]
=> 1
[(1,5),(2,3),(4,6),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [2]
=> 1
[(1,6),(2,3),(4,5),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [2]
=> 1
[(1,7),(2,3),(4,5),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,3),(4,5),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,4),(3,5),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,4),(3,5),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,4),(3,5),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> 1
[(1,5),(2,4),(3,6),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> 1
[(1,4),(2,5),(3,6),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> 1
[(1,3),(2,5),(4,6),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [2]
=> 1
[(1,2),(3,5),(4,6),(7,8)]
=> [1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [1]
=> 1
[(1,2),(3,6),(4,5),(7,8)]
=> [1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [1]
=> 1
[(1,3),(2,6),(4,5),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [2]
=> 1
[(1,4),(2,6),(3,5),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> 1
[(1,5),(2,6),(3,4),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> 1
[(1,6),(2,5),(3,4),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> 1
[(1,7),(2,5),(3,4),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,5),(3,4),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,6),(3,4),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,6),(3,4),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,7),(3,4),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,5),(2,7),(3,4),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,4),(2,7),(3,5),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,3),(2,7),(4,5),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,2),(3,7),(4,5),(6,8)]
=> [1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,2),(3,8),(4,5),(6,7)]
=> [1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,3),(2,8),(4,5),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,4),(2,8),(3,5),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,5),(2,8),(3,4),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,8),(3,4),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,8),(3,4),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,7),(3,4),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,7),(3,5),(4,6)]
=> [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,8),(3,5),(4,6)]
=> [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,8),(3,5),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,5),(2,8),(3,6),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,4),(2,8),(3,6),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,3),(2,8),(4,6),(5,7)]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> 1
[(1,2),(3,8),(4,6),(5,7)]
=> [1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,2),(3,7),(4,6),(5,8)]
=> [1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,3),(2,7),(4,6),(5,8)]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> 1
[(1,4),(2,7),(3,6),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,5),(2,7),(3,6),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,7),(3,5),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,6),(3,5),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,6),(3,5),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,3),(2,6),(4,7),(5,8)]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> 1
[(1,8),(2,3),(4,6),(5,7)]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> 1
[(1,7),(2,3),(4,6),(5,8)]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> 1
[(1,6),(2,3),(4,7),(5,8)]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> 1
[(1,4),(2,3),(5,7),(6,8)]
=> [1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [1]
=> 1
[(1,3),(2,4),(5,7),(6,8)]
=> [1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [1]
=> 1
[(1,3),(2,4),(5,8),(6,7)]
=> [1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [1]
=> 1
[(1,4),(2,3),(5,8),(6,7)]
=> [1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [1]
=> 1
[(1,6),(2,3),(4,8),(5,7)]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> 1
[(1,7),(2,3),(4,8),(5,6)]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> 1
[(1,8),(2,3),(4,7),(5,6)]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> 1
[(1,3),(2,6),(4,8),(5,7)]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> 1
[(1,3),(2,7),(4,8),(5,6)]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> 1
[(1,3),(2,8),(4,7),(5,6)]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> 1
[(1,3),(2,4),(5,6),(7,8),(9,10)]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 1
[(1,4),(2,3),(5,6),(7,8),(9,10)]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 1
[(1,5),(2,3),(4,6),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [2,2]
=> 2
[(1,6),(2,3),(4,5),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [2,2]
=> 2
[(1,7),(2,3),(4,5),(6,8),(9,10)]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [3]
=> 1
[(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [3]
=> 1
[(1,8),(2,4),(3,5),(6,7),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> 1
[(1,7),(2,4),(3,5),(6,8),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> 1
[(1,6),(2,4),(3,5),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> 1
[(1,5),(2,4),(3,6),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> 1
[(1,4),(2,5),(3,6),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> 1
[(1,3),(2,5),(4,6),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [2,2]
=> 2
[(1,2),(3,5),(4,6),(7,8),(9,10)]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [1,1]
=> 1
[(1,2),(3,6),(4,5),(7,8),(9,10)]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [1,1]
=> 1
[(1,3),(2,6),(4,5),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [2,2]
=> 2
[(1,4),(2,6),(3,5),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> 1
[(1,5),(2,6),(3,4),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> 1
[(1,6),(2,5),(3,4),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> 1
Description
The number of self-evacuating tableaux of given shape. This is the same as the number of standard domino tableaux of the given shape.
Matching statistic: St000781
Mp00150: Perfect matchings to Dyck pathDyck paths
Mp00233: Dyck paths skew partitionSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
St000781: Integer partitions ⟶ ℤResult quality: 33% values known / values provided: 41%distinct values known / distinct values provided: 33%
Values
[(1,2)]
=> [1,0]
=> [[1],[]]
=> []
=> ? = 0
[(1,2),(3,4)]
=> [1,0,1,0]
=> [[1,1],[]]
=> []
=> ? ∊ {0,1,1}
[(1,3),(2,4)]
=> [1,1,0,0]
=> [[2],[]]
=> []
=> ? ∊ {0,1,1}
[(1,4),(2,3)]
=> [1,1,0,0]
=> [[2],[]]
=> []
=> ? ∊ {0,1,1}
[(1,2),(3,4),(5,6)]
=> [1,0,1,0,1,0]
=> [[1,1,1],[]]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1}
[(1,3),(2,4),(5,6)]
=> [1,1,0,0,1,0]
=> [[2,2],[1]]
=> [1]
=> 1
[(1,4),(2,3),(5,6)]
=> [1,1,0,0,1,0]
=> [[2,2],[1]]
=> [1]
=> 1
[(1,5),(2,3),(4,6)]
=> [1,1,0,1,0,0]
=> [[3],[]]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1}
[(1,6),(2,3),(4,5)]
=> [1,1,0,1,0,0]
=> [[3],[]]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1}
[(1,6),(2,4),(3,5)]
=> [1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1}
[(1,5),(2,4),(3,6)]
=> [1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1}
[(1,4),(2,5),(3,6)]
=> [1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1}
[(1,3),(2,5),(4,6)]
=> [1,1,0,1,0,0]
=> [[3],[]]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1}
[(1,2),(3,5),(4,6)]
=> [1,0,1,1,0,0]
=> [[2,1],[]]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1}
[(1,2),(3,6),(4,5)]
=> [1,0,1,1,0,0]
=> [[2,1],[]]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1}
[(1,3),(2,6),(4,5)]
=> [1,1,0,1,0,0]
=> [[3],[]]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1}
[(1,4),(2,6),(3,5)]
=> [1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1}
[(1,5),(2,6),(3,4)]
=> [1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1}
[(1,6),(2,5),(3,4)]
=> [1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,1,1,1}
[(1,2),(3,4),(5,6),(7,8)]
=> [1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,3),(2,4),(5,6),(7,8)]
=> [1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [1,1]
=> 1
[(1,4),(2,3),(5,6),(7,8)]
=> [1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [1,1]
=> 1
[(1,5),(2,3),(4,6),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [2]
=> 1
[(1,6),(2,3),(4,5),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [2]
=> 1
[(1,7),(2,3),(4,5),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,3),(4,5),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,4),(3,5),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,4),(3,5),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,4),(3,5),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> 1
[(1,5),(2,4),(3,6),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> 1
[(1,4),(2,5),(3,6),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> 1
[(1,3),(2,5),(4,6),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [2]
=> 1
[(1,2),(3,5),(4,6),(7,8)]
=> [1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [1]
=> 1
[(1,2),(3,6),(4,5),(7,8)]
=> [1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [1]
=> 1
[(1,3),(2,6),(4,5),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [2]
=> 1
[(1,4),(2,6),(3,5),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> 1
[(1,5),(2,6),(3,4),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> 1
[(1,6),(2,5),(3,4),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> 1
[(1,7),(2,5),(3,4),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,5),(3,4),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,6),(3,4),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,6),(3,4),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,7),(3,4),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,5),(2,7),(3,4),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,4),(2,7),(3,5),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,3),(2,7),(4,5),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,2),(3,7),(4,5),(6,8)]
=> [1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,2),(3,8),(4,5),(6,7)]
=> [1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,3),(2,8),(4,5),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,4),(2,8),(3,5),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,5),(2,8),(3,4),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,8),(3,4),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,8),(3,4),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,7),(3,4),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,7),(3,5),(4,6)]
=> [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,8),(3,5),(4,6)]
=> [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,8),(3,5),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,5),(2,8),(3,6),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,4),(2,8),(3,6),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,3),(2,8),(4,6),(5,7)]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> 1
[(1,2),(3,8),(4,6),(5,7)]
=> [1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,2),(3,7),(4,6),(5,8)]
=> [1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,3),(2,7),(4,6),(5,8)]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> 1
[(1,4),(2,7),(3,6),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,5),(2,7),(3,6),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,6),(2,7),(3,5),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,7),(2,6),(3,5),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,8),(2,6),(3,5),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[(1,3),(2,6),(4,7),(5,8)]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> 1
[(1,8),(2,3),(4,6),(5,7)]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> 1
[(1,7),(2,3),(4,6),(5,8)]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> 1
[(1,6),(2,3),(4,7),(5,8)]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> 1
[(1,4),(2,3),(5,7),(6,8)]
=> [1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [1]
=> 1
[(1,3),(2,4),(5,7),(6,8)]
=> [1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [1]
=> 1
[(1,3),(2,4),(5,8),(6,7)]
=> [1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [1]
=> 1
[(1,4),(2,3),(5,8),(6,7)]
=> [1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [1]
=> 1
[(1,6),(2,3),(4,8),(5,7)]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> 1
[(1,7),(2,3),(4,8),(5,6)]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> 1
[(1,8),(2,3),(4,7),(5,6)]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> 1
[(1,3),(2,6),(4,8),(5,7)]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> 1
[(1,3),(2,7),(4,8),(5,6)]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> 1
[(1,3),(2,8),(4,7),(5,6)]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> 1
[(1,3),(2,4),(5,6),(7,8),(9,10)]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 1
[(1,4),(2,3),(5,6),(7,8),(9,10)]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 1
[(1,5),(2,3),(4,6),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [2,2]
=> 1
[(1,6),(2,3),(4,5),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [2,2]
=> 1
[(1,7),(2,3),(4,5),(6,8),(9,10)]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [3]
=> 1
[(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [3]
=> 1
[(1,8),(2,4),(3,5),(6,7),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> 1
[(1,7),(2,4),(3,5),(6,8),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> 1
[(1,6),(2,4),(3,5),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> 1
[(1,5),(2,4),(3,6),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> 1
[(1,4),(2,5),(3,6),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> 1
[(1,3),(2,5),(4,6),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [2,2]
=> 1
[(1,2),(3,5),(4,6),(7,8),(9,10)]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [1,1]
=> 1
[(1,2),(3,6),(4,5),(7,8),(9,10)]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [1,1]
=> 1
[(1,3),(2,6),(4,5),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [2,2]
=> 1
[(1,4),(2,6),(3,5),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> 1
[(1,5),(2,6),(3,4),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> 1
[(1,6),(2,5),(3,4),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> 1
Description
The number of proper colouring schemes of a Ferrers diagram. A colouring of a Ferrers diagram is proper if no two cells in a row or in a column have the same colour. The minimal number of colours needed is the maximum of the length and the first part of the partition, because we can restrict a latin square to the shape. We can associate to each colouring the integer partition recording how often each colour is used, see [1]. This statistic is the number of distinct such integer partitions that occur.
The following 74 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St001432The order dimension of the partition. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001593This is the number of standard Young tableaux of the given shifted shape. St001601The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on trees. St001780The order of promotion on the set of standard tableaux of given shape. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001568The smallest positive integer that does not appear twice in the partition. St000260The radius of a connected graph. St000454The largest eigenvalue of a graph if it is integral. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000681The Grundy value of Chomp on Ferrers diagrams. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000929The constant term of the character polynomial of an integer partition. St000934The 2-degree of an integer partition. St001128The exponens consonantiae of a partition. St000374The number of exclusive right-to-left minima of a permutation. St000996The number of exclusive left-to-right maxima of a permutation. St000701The protection number of a binary tree. St001086The number of occurrences of the consecutive pattern 132 in a permutation. St000660The number of rises of length at least 3 of a Dyck path. St001031The height of the bicoloured Motzkin path associated with the Dyck path. St001732The number of peaks visible from the left. St000007The number of saliances of the permutation. St000028The number of stack-sorts needed to sort a permutation. St000862The number of parts of the shifted shape of a permutation. St000659The number of rises of length at least 2 of a Dyck path. St001194The injective dimension of $A/AfA$ in the corresponding Nakayama algebra $A$ when $Af$ is the minimal faithful projective-injective left $A$-module St001273The projective dimension of the first term in an injective coresolution of the regular module. St000451The length of the longest pattern of the form k 1 2. St000665The number of rafts of a permutation. St001335The cardinality of a minimal cycle-isolating set of a graph. St000891The number of distinct diagonal sums of a permutation matrix. St001085The number of occurrences of the vincular pattern |21-3 in a permutation. St000022The number of fixed points of a permutation. St000373The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length $3$. St000534The number of 2-rises of a permutation. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St000306The bounce count of a Dyck path. St000402Half the size of the symmetry class of a permutation. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001394The genus of a permutation. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St000035The number of left outer peaks of a permutation. St000647The number of big descents of a permutation. St000834The number of right outer peaks of a permutation. St000884The number of isolated descents of a permutation. St000932The number of occurrences of the pattern UDU in a Dyck path. St000397The Strahler number of a rooted tree. St000675The number of centered multitunnels of a Dyck path. St000359The number of occurrences of the pattern 23-1. St000648The number of 2-excedences of a permutation. St000731The number of double exceedences of a permutation. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St000237The number of small exceedances. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001115The number of even descents of a permutation. St000054The first entry of the permutation. St000031The number of cycles in the cycle decomposition of a permutation. St000366The number of double descents of a permutation. St000624The normalized sum of the minimal distances to a greater element. St001096The size of the overlap set of a permutation.