Your data matches 51 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000368: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 0
([],2)
=> 0
([(0,1)],2)
=> 0
([],3)
=> 0
([(1,2)],3)
=> 0
([(0,2),(1,2)],3)
=> 0
([(0,1),(0,2),(1,2)],3)
=> 4
([],4)
=> 0
([(2,3)],4)
=> 0
([(1,3),(2,3)],4)
=> 0
([(0,3),(1,3),(2,3)],4)
=> 0
([(0,3),(1,2)],4)
=> 0
([(0,3),(1,2),(2,3)],4)
=> 0
([(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(0,2),(0,3),(1,2),(1,3)],4)
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 16
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 48
([],5)
=> 0
([(3,4)],5)
=> 0
([(2,4),(3,4)],5)
=> 0
([(1,4),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(1,4),(2,3)],5)
=> 0
([(1,4),(2,3),(3,4)],5)
=> 0
([(0,1),(2,4),(3,4)],5)
=> 0
([(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
([(1,3),(1,4),(2,3),(2,4)],5)
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 4
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 16
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 48
([(0,4),(1,3),(2,3),(2,4)],5)
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 4
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 24
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 4
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 16
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 60
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 16
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 48
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 144
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 48
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 144
Description
The Altshuler-Steinberg determinant of a graph. This is defined as the determinant of $MM^t$ where $M$ is the incidence matrix of $G$.
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
St000689: Dyck paths ⟶ ℤResult quality: 3% values known / values provided: 34%distinct values known / distinct values provided: 3%
Values
([],1)
=> []
=> []
=> []
=> ? = 0
([],2)
=> []
=> []
=> []
=> ? = 0
([(0,1)],2)
=> [1]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
([],3)
=> []
=> []
=> []
=> ? = 4
([(1,2)],3)
=> [1]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
([(0,2),(1,2)],3)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 0
([],4)
=> []
=> []
=> []
=> ? ∊ {4,16,48}
([(2,3)],4)
=> [1]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
([(1,3),(2,3)],4)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 0
([(0,3),(1,2)],4)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 0
([(1,2),(1,3),(2,3)],4)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {4,16,48}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {4,16,48}
([],5)
=> []
=> []
=> []
=> ? ∊ {4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(3,4)],5)
=> [1]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
([(2,4),(3,4)],5)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 0
([(1,4),(2,3)],5)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 0
([(2,3),(2,4),(3,4)],5)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> ? ∊ {4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> ? ∊ {4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? ∊ {4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([],6)
=> []
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(4,5)],6)
=> [1]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
([(3,5),(4,5)],6)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(2,5),(3,4)],6)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 0
([(3,4),(3,5),(4,5)],6)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
Description
The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. The correspondence between LNakayama algebras and Dyck paths is explained in [[St000684]]. A module $M$ is $n$-rigid, if $\operatorname{Ext}^i(M,M)=0$ for $1\leq i\leq n$. This statistic gives the maximal $n$ such that the minimal generator-cogenerator module $A \oplus D(A)$ of the LNakayama algebra $A$ corresponding to a Dyck path is $n$-rigid. An application is to check for maximal $n$-orthogonal objects in the module category in the sense of [2].
Mp00276: Graphs to edge-partition of biconnected componentsInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00123: Dyck paths Barnabei-Castronuovo involutionDyck paths
St001001: Dyck paths ⟶ ℤResult quality: 3% values known / values provided: 34%distinct values known / distinct values provided: 3%
Values
([],1)
=> []
=> []
=> []
=> ? = 0
([],2)
=> []
=> []
=> []
=> ? = 0
([(0,1)],2)
=> [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 0
([],3)
=> []
=> []
=> []
=> ? = 4
([(1,2)],3)
=> [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 0
([(0,2),(1,2)],3)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0
([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 0
([],4)
=> []
=> []
=> []
=> ? ∊ {4,16,48}
([(2,3)],4)
=> [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 0
([(1,3),(2,3)],4)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0
([(0,3),(1,2)],4)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0
([(1,2),(1,3),(2,3)],4)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {4,16,48}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {4,16,48}
([],5)
=> []
=> []
=> []
=> ? ∊ {4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(3,4)],5)
=> [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 0
([(2,4),(3,4)],5)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
([(1,4),(2,3)],5)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0
([(2,3),(2,4),(3,4)],5)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? ∊ {4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? ∊ {4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? ∊ {4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> ? ∊ {4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([],6)
=> []
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(4,5)],6)
=> [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 0
([(3,5),(4,5)],6)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(2,5),(3,4)],6)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0
([(3,4),(3,5),(4,5)],6)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> [5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
Description
The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path.
Mp00274: Graphs block-cut treeGraphs
Mp00111: Graphs complementGraphs
Mp00154: Graphs coreGraphs
St001570: Graphs ⟶ ℤResult quality: 3% values known / values provided: 33%distinct values known / distinct values provided: 3%
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 0
([],2)
=> ([],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0}
([(0,1)],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0}
([],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,2)],3)
=> ([],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,4}
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,4}
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,4}
([],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(2,3)],4)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,3),(1,2)],4)
=> ([],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,4,16,48}
([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,4,16,48}
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,4,16,48}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,4,16,48}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,4,16,48}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,4,16,48}
([],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(3,4)],5)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(1,4),(2,3)],5)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,1),(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? ∊ {0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(4,5)],6)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(2,5),(3,4)],6)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(2,5),(3,4),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(0,1),(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,2),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,2),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,6),(1,7),(2,7),(3,4),(3,5),(4,6),(5,7)],8)
=> ([(0,2),(0,3),(0,4),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,5),(2,6),(2,7),(3,5),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,4),(2,3)],6)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,7),(2,6),(3,4),(3,5),(4,6),(5,7)],8)
=> ([(0,1),(0,3),(0,4),(0,6),(0,7),(1,2),(1,4),(1,5),(1,7),(2,3),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(2,7),(3,5),(3,7),(4,6),(4,7)],8)
=> ([(0,3),(0,4),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,3),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
Description
The minimal number of edges to add to make a graph Hamiltonian. A graph is Hamiltonian if it contains a cycle as a subgraph, which contains all vertices.
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000205: Integer partitions ⟶ ℤResult quality: 3% values known / values provided: 31%distinct values known / distinct values provided: 3%
Values
([],1)
=> [1]
=> []
=> ? = 0
([],2)
=> [1,1]
=> [1]
=> 0
([(0,1)],2)
=> [2]
=> []
=> ? = 0
([],3)
=> [1,1,1]
=> [1,1]
=> 0
([(1,2)],3)
=> [2,1]
=> [1]
=> 0
([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {0,4}
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {0,4}
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 0
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,4,16,48}
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,4,16,48}
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,4,16,48}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,4,16,48}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,4,16,48}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,4,16,48}
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 0
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 0
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> 0
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
Description
Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. Given $\lambda$ count how many ''integer partitions'' $w$ (weight) there are, such that $P_{\lambda,w}$ is non-integral, i.e., $w$ such that the Gelfand-Tsetlin polytope $P_{\lambda,w}$ has at least one non-integral vertex.
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000206: Integer partitions ⟶ ℤResult quality: 3% values known / values provided: 31%distinct values known / distinct values provided: 3%
Values
([],1)
=> [1]
=> []
=> ? = 0
([],2)
=> [1,1]
=> [1]
=> 0
([(0,1)],2)
=> [2]
=> []
=> ? = 0
([],3)
=> [1,1,1]
=> [1,1]
=> 0
([(1,2)],3)
=> [2,1]
=> [1]
=> 0
([(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {0,4}
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? ∊ {0,4}
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 0
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 0
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,4,16,48}
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,4,16,48}
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,4,16,48}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,4,16,48}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,4,16,48}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,4,16,48}
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 0
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 0
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 0
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 0
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> 0
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [5,1]
=> [1]
=> 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
Description
Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. Given $\lambda$ count how many ''integer compositions'' $w$ (weight) there are, such that $P_{\lambda,w}$ is non-integral, i.e., $w$ such that the Gelfand-Tsetlin polytope $P_{\lambda,w}$ has at least one non-integral vertex. See also [[St000205]]. Each value in this statistic is greater than or equal to corresponding value in [[St000205]].
Matching statistic: St000379
Mp00203: Graphs coneGraphs
Mp00274: Graphs block-cut treeGraphs
St000379: Graphs ⟶ ℤResult quality: 3% values known / values provided: 31%distinct values known / distinct values provided: 3%
Values
([],1)
=> ([(0,1)],2)
=> ([],1)
=> ? = 0
([],2)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0
([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ? = 0
([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 0
([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,4}
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,4}
([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,4,16,48}
([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,4,16,48}
([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,4,16,48}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,4,16,48}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,4,16,48}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,4,16,48}
([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(1,4),(2,3)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0
([(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
([(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(2,5),(3,4)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,2),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,6),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
Description
The number of Hamiltonian cycles in a graph. A Hamiltonian cycle in a graph $G$ is a subgraph (this is, a subset of the edges) that is a cycle which contains every vertex of $G$. Since it is unclear whether the graph on one vertex is Hamiltonian, the statistic is undefined for this graph.
Matching statistic: St000455
Mp00203: Graphs coneGraphs
Mp00274: Graphs block-cut treeGraphs
St000455: Graphs ⟶ ℤResult quality: 3% values known / values provided: 31%distinct values known / distinct values provided: 3%
Values
([],1)
=> ([(0,1)],2)
=> ([],1)
=> ? = 0
([],2)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0
([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ? = 0
([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 0
([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,4}
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? ∊ {0,4}
([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,4,16,48}
([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,4,16,48}
([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,4,16,48}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,4,16,48}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,4,16,48}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? ∊ {0,0,0,4,16,48}
([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(1,4),(2,3)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 0
([(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
([(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(2,5),(3,4)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,2),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,6),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
Description
The second largest eigenvalue of a graph if it is integral. This statistic is undefined if the second largest eigenvalue of the graph is not integral. Chapter 4 of [1] provides lots of context.
Matching statistic: St000699
Mp00147: Graphs squareGraphs
Mp00117: Graphs Ore closureGraphs
St000699: Graphs ⟶ ℤResult quality: 3% values known / values provided: 31%distinct values known / distinct values provided: 3%
Values
([],1)
=> ([],1)
=> ([],1)
=> ? = 0
([],2)
=> ([],2)
=> ([],2)
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 0
([],3)
=> ([],3)
=> ([],3)
=> 0
([(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 0
([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ? ∊ {0,4}
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ? ∊ {0,4}
([],4)
=> ([],4)
=> ([],4)
=> 0
([(2,3)],4)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 0
([(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,4,16,48}
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,4,16,48}
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,4,16,48}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,4,16,48}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,4,16,48}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,4,16,48}
([],5)
=> ([],5)
=> ([],5)
=> 0
([(3,4)],5)
=> ([(3,4)],5)
=> ([(3,4)],5)
=> 0
([(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 0
([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> 0
([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 0
([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([],6)
=> ([],6)
=> ([],6)
=> 0
([(4,5)],6)
=> ([(4,5)],6)
=> ([(4,5)],6)
=> 0
([(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> 0
([(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> 0
([(2,5),(3,4),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(1,2),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> 0
([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 0
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
Description
The toughness times the least common multiple of 1,...,n-1 of a non-complete graph. A graph $G$ is $t$-tough if $G$ cannot be split into $k$ different connected components by the removal of fewer than $tk$ vertices for all integers $k>1$. The toughness of $G$ is the maximal number $t$ such that $G$ is $t$-tough. It is a rational number except for the complete graph, where it is infinity. The toughness of a disconnected graph is zero. This statistic is the toughness multiplied by the least common multiple of $1,\dots,n-1$, where $n$ is the number of vertices of $G$.
Matching statistic: St000290
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00317: Integer partitions odd partsBinary words
St000290: Binary words ⟶ ℤResult quality: 3% values known / values provided: 31%distinct values known / distinct values provided: 3%
Values
([],1)
=> [1]
=> []
=> ? => ? = 0
([],2)
=> [1,1]
=> [1]
=> 1 => 0
([(0,1)],2)
=> [2]
=> []
=> ? => ? = 0
([],3)
=> [1,1,1]
=> [1,1]
=> 11 => 0
([(1,2)],3)
=> [2,1]
=> [1]
=> 1 => 0
([(0,2),(1,2)],3)
=> [3]
=> []
=> ? => ? ∊ {0,4}
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? => ? ∊ {0,4}
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 111 => 0
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 11 => 0
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 1 => 0
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? => ? ∊ {0,0,0,4,16,48}
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 0 => 0
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? => ? ∊ {0,0,0,4,16,48}
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 1 => 0
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? => ? ∊ {0,0,0,4,16,48}
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? => ? ∊ {0,0,0,4,16,48}
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? => ? ∊ {0,0,0,4,16,48}
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? => ? ∊ {0,0,0,4,16,48}
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1111 => 0
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 111 => 0
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 11 => 0
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1 => 0
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 01 => 0
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 1 => 0
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0 => 0
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 11 => 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? => ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1 => 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1]
=> 1 => 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1 => 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? => ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? => ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0 => 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? => ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1 => 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? => ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? ∊ {0,0,0,0,0,4,4,4,4,16,16,16,24,48,48,48,60,144,144,324,648}
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 11111 => 0
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1111 => 0
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 111 => 0
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 11 => 0
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 011 => 0
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 11 => 0
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 01 => 0
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 111 => 0
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 0
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0 => 0
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 11 => 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> ? => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 11 => 0
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 1 => 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> ? => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 11 => 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> []
=> ? => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 1 => 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> 00 => 0
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 1 => 0
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 0 => 0
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 01 => 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0 => 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [5,1]
=> [1]
=> 1 => 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,4,4,4,4,4,4,16,16,16,16,16,16,16,16,16,16,16,16,16,24,24,24,40,48,48,48,48,48,48,48,48,48,60,60,60,60,60,64,80,80,80,96,96,128,128,144,144,144,144,144,144,144,176,176,176,200,200,200,216,216,224,224,324,324,324,384,384,420,420,420,432,480,480,480,500,512,648,864,864,864,936,936,1000,1024,1024,1728,1728,1920,1920,2048,3456,3584,6144,10240}
Description
The major index of a binary word. This is the sum of the positions of descents, i.e., a one followed by a zero. For words of length $n$ with $a$ zeros, the generating function for the major index is the $q$-binomial coefficient $\binom{n}{a}_q$.
The following 41 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000291The number of descents of a binary word. St000293The number of inversions of a binary word. St000296The length of the symmetric border of a binary word. St000347The inversion sum of a binary word. St000466The Gutman (or modified Schultz) index of a connected graph. St000629The defect of a binary word. St000687The dimension of $Hom(I,P)$ for the LNakayama algebra of a Dyck path. St000752The Grundy value for the game 'Couples are forever' on an integer partition. St000790The number of pairs of centered tunnels, one strictly containing the other, of a Dyck path. St000875The semilength of the longest Dyck word in the Catalan factorisation of a binary word. St000921The number of internal inversions of a binary word. St000966Number of peaks minus the global dimension of the corresponding LNakayama algebra. St000980The number of boxes weakly below the path and above the diagonal that lie below at least two peaks. St001025Number of simple modules with projective dimension 4 in the Nakayama algebra corresponding to the Dyck path. St001107The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. St001140Number of indecomposable modules with projective and injective dimension at least two in the corresponding Nakayama algebra. St001175The size of a partition minus the hook length of the base cell. St001193The dimension of $Ext_A^1(A/AeA,A)$ in the corresponding Nakayama algebra $A$ such that $eA$ is a minimal faithful projective-injective module. St001214The aft of an integer partition. St001221The number of simple modules in the corresponding LNakayama algebra that have 2 dimensional second Extension group with the regular module. St001292The injective dimension of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001371The length of the longest Yamanouchi prefix of a binary word. St001421Half the length of a longest factor which is its own reverse-complement and begins with a one of a binary word. St001435The number of missing boxes in the first row. St001436The index of a given binary word in the lex-order among all its cyclic shifts. St001438The number of missing boxes of a skew partition. St001485The modular major index of a binary word. St001588The number of distinct odd parts smaller than the largest even part in an integer partition. St001695The natural comajor index of a standard Young tableau. St001698The comajor index of a standard tableau minus the weighted size of its shape. St001699The major index of a standard tableau minus the weighted size of its shape. St001712The number of natural descents of a standard Young tableau. St001645The pebbling number of a connected graph. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St000791The number of pairs of left tunnels, one strictly containing the other, of a Dyck path. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000225Difference between largest and smallest parts in a partition. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St000944The 3-degree of an integer partition. St001178Twelve times the variance of the major index among all standard Young tableaux of a partition. St001586The number of odd parts smaller than the largest even part in an integer partition.