Your data matches 28 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000733
St000733: Standard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1,2]]
=> 1
[[1],[2]]
=> 2
[[1,2,3]]
=> 1
[[1,3],[2]]
=> 1
[[1,2],[3]]
=> 2
[[1],[2],[3]]
=> 3
[[1,2,3,4]]
=> 1
[[1,3,4],[2]]
=> 1
[[1,2,4],[3]]
=> 1
[[1,2,3],[4]]
=> 2
[[1,3],[2,4]]
=> 2
[[1,2],[3,4]]
=> 2
[[1,4],[2],[3]]
=> 1
[[1,3],[2],[4]]
=> 3
[[1,2],[3],[4]]
=> 3
[[1],[2],[3],[4]]
=> 4
[[1,2,3,4,5]]
=> 1
[[1,3,4,5],[2]]
=> 1
[[1,2,4,5],[3]]
=> 1
[[1,2,3,5],[4]]
=> 1
[[1,2,3,4],[5]]
=> 2
[[1,3,5],[2,4]]
=> 1
[[1,2,5],[3,4]]
=> 1
[[1,3,4],[2,5]]
=> 2
[[1,2,4],[3,5]]
=> 2
[[1,2,3],[4,5]]
=> 2
[[1,4,5],[2],[3]]
=> 1
[[1,3,5],[2],[4]]
=> 1
[[1,2,5],[3],[4]]
=> 1
[[1,3,4],[2],[5]]
=> 3
[[1,2,4],[3],[5]]
=> 3
[[1,2,3],[4],[5]]
=> 3
[[1,4],[2,5],[3]]
=> 2
[[1,3],[2,5],[4]]
=> 2
[[1,2],[3,5],[4]]
=> 2
[[1,3],[2,4],[5]]
=> 3
[[1,2],[3,4],[5]]
=> 3
[[1,5],[2],[3],[4]]
=> 1
[[1,4],[2],[3],[5]]
=> 4
[[1,3],[2],[4],[5]]
=> 4
[[1,2],[3],[4],[5]]
=> 4
[[1],[2],[3],[4],[5]]
=> 5
[[1,2,3,4,5,6]]
=> 1
[[1,3,4,5,6],[2]]
=> 1
[[1,2,4,5,6],[3]]
=> 1
[[1,2,3,5,6],[4]]
=> 1
[[1,2,3,4,6],[5]]
=> 1
[[1,2,3,4,5],[6]]
=> 2
[[1,3,5,6],[2,4]]
=> 1
[[1,2,5,6],[3,4]]
=> 1
Description
The row containing the largest entry of a standard tableau.
Mp00284: Standard tableaux rowsSet partitions
Mp00112: Set partitions complementSet partitions
St000504: Set partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1,2]]
=> {{1,2}}
=> {{1,2}}
=> 2
[[1],[2]]
=> {{1},{2}}
=> {{1},{2}}
=> 1
[[1,2,3]]
=> {{1,2,3}}
=> {{1,2,3}}
=> 3
[[1,3],[2]]
=> {{1,3},{2}}
=> {{1,3},{2}}
=> 2
[[1,2],[3]]
=> {{1,2},{3}}
=> {{1},{2,3}}
=> 1
[[1],[2],[3]]
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> 1
[[1,2,3,4]]
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> 4
[[1,3,4],[2]]
=> {{1,3,4},{2}}
=> {{1,2,4},{3}}
=> 3
[[1,2,4],[3]]
=> {{1,2,4},{3}}
=> {{1,3,4},{2}}
=> 3
[[1,2,3],[4]]
=> {{1,2,3},{4}}
=> {{1},{2,3,4}}
=> 1
[[1,3],[2,4]]
=> {{1,3},{2,4}}
=> {{1,3},{2,4}}
=> 2
[[1,2],[3,4]]
=> {{1,2},{3,4}}
=> {{1,2},{3,4}}
=> 2
[[1,4],[2],[3]]
=> {{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> 2
[[1,3],[2],[4]]
=> {{1,3},{2},{4}}
=> {{1},{2,4},{3}}
=> 1
[[1,2],[3],[4]]
=> {{1,2},{3},{4}}
=> {{1},{2},{3,4}}
=> 1
[[1],[2],[3],[4]]
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> 1
[[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> {{1,2,3,4,5}}
=> 5
[[1,3,4,5],[2]]
=> {{1,3,4,5},{2}}
=> {{1,2,3,5},{4}}
=> 4
[[1,2,4,5],[3]]
=> {{1,2,4,5},{3}}
=> {{1,2,4,5},{3}}
=> 4
[[1,2,3,5],[4]]
=> {{1,2,3,5},{4}}
=> {{1,3,4,5},{2}}
=> 4
[[1,2,3,4],[5]]
=> {{1,2,3,4},{5}}
=> {{1},{2,3,4,5}}
=> 1
[[1,3,5],[2,4]]
=> {{1,3,5},{2,4}}
=> {{1,3,5},{2,4}}
=> 3
[[1,2,5],[3,4]]
=> {{1,2,5},{3,4}}
=> {{1,4,5},{2,3}}
=> 3
[[1,3,4],[2,5]]
=> {{1,3,4},{2,5}}
=> {{1,4},{2,3,5}}
=> 2
[[1,2,4],[3,5]]
=> {{1,2,4},{3,5}}
=> {{1,3},{2,4,5}}
=> 2
[[1,2,3],[4,5]]
=> {{1,2,3},{4,5}}
=> {{1,2},{3,4,5}}
=> 2
[[1,4,5],[2],[3]]
=> {{1,4,5},{2},{3}}
=> {{1,2,5},{3},{4}}
=> 3
[[1,3,5],[2],[4]]
=> {{1,3,5},{2},{4}}
=> {{1,3,5},{2},{4}}
=> 3
[[1,2,5],[3],[4]]
=> {{1,2,5},{3},{4}}
=> {{1,4,5},{2},{3}}
=> 3
[[1,3,4],[2],[5]]
=> {{1,3,4},{2},{5}}
=> {{1},{2,3,5},{4}}
=> 1
[[1,2,4],[3],[5]]
=> {{1,2,4},{3},{5}}
=> {{1},{2,4,5},{3}}
=> 1
[[1,2,3],[4],[5]]
=> {{1,2,3},{4},{5}}
=> {{1},{2},{3,4,5}}
=> 1
[[1,4],[2,5],[3]]
=> {{1,4},{2,5},{3}}
=> {{1,4},{2,5},{3}}
=> 2
[[1,3],[2,5],[4]]
=> {{1,3},{2,5},{4}}
=> {{1,4},{2},{3,5}}
=> 2
[[1,2],[3,5],[4]]
=> {{1,2},{3,5},{4}}
=> {{1,3},{2},{4,5}}
=> 2
[[1,3],[2,4],[5]]
=> {{1,3},{2,4},{5}}
=> {{1},{2,4},{3,5}}
=> 1
[[1,2],[3,4],[5]]
=> {{1,2},{3,4},{5}}
=> {{1},{2,3},{4,5}}
=> 1
[[1,5],[2],[3],[4]]
=> {{1,5},{2},{3},{4}}
=> {{1,5},{2},{3},{4}}
=> 2
[[1,4],[2],[3],[5]]
=> {{1,4},{2},{3},{5}}
=> {{1},{2,5},{3},{4}}
=> 1
[[1,3],[2],[4],[5]]
=> {{1,3},{2},{4},{5}}
=> {{1},{2},{3,5},{4}}
=> 1
[[1,2],[3],[4],[5]]
=> {{1,2},{3},{4},{5}}
=> {{1},{2},{3},{4,5}}
=> 1
[[1],[2],[3],[4],[5]]
=> {{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> 1
[[1,2,3,4,5,6]]
=> {{1,2,3,4,5,6}}
=> {{1,2,3,4,5,6}}
=> 6
[[1,3,4,5,6],[2]]
=> {{1,3,4,5,6},{2}}
=> {{1,2,3,4,6},{5}}
=> 5
[[1,2,4,5,6],[3]]
=> {{1,2,4,5,6},{3}}
=> {{1,2,3,5,6},{4}}
=> 5
[[1,2,3,5,6],[4]]
=> {{1,2,3,5,6},{4}}
=> {{1,2,4,5,6},{3}}
=> 5
[[1,2,3,4,6],[5]]
=> {{1,2,3,4,6},{5}}
=> {{1,3,4,5,6},{2}}
=> 5
[[1,2,3,4,5],[6]]
=> {{1,2,3,4,5},{6}}
=> {{1},{2,3,4,5,6}}
=> 1
[[1,3,5,6],[2,4]]
=> {{1,3,5,6},{2,4}}
=> {{1,2,4,6},{3,5}}
=> 4
[[1,2,5,6],[3,4]]
=> {{1,2,5,6},{3,4}}
=> {{1,2,5,6},{3,4}}
=> 4
Description
The cardinality of the first block of a set partition. The number of partitions of $\{1,\ldots,n\}$ into $k$ blocks in which the first block has cardinality $j+1$ is given by $\binom{n-1}{j}S(n-j-1,k-1)$, see [1, Theorem 1.1] and the references therein. Here, $S(n,k)$ are the ''Stirling numbers of the second kind'' counting all set partitions of $\{1,\ldots,n\}$ into $k$ blocks [2].
Mp00284: Standard tableaux rowsSet partitions
Mp00112: Set partitions complementSet partitions
Mp00128: Set partitions to compositionInteger compositions
St000382: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1,2]]
=> {{1,2}}
=> {{1,2}}
=> [2] => 2
[[1],[2]]
=> {{1},{2}}
=> {{1},{2}}
=> [1,1] => 1
[[1,2,3]]
=> {{1,2,3}}
=> {{1,2,3}}
=> [3] => 3
[[1,3],[2]]
=> {{1,3},{2}}
=> {{1,3},{2}}
=> [2,1] => 2
[[1,2],[3]]
=> {{1,2},{3}}
=> {{1},{2,3}}
=> [1,2] => 1
[[1],[2],[3]]
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> [1,1,1] => 1
[[1,2,3,4]]
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> [4] => 4
[[1,3,4],[2]]
=> {{1,3,4},{2}}
=> {{1,2,4},{3}}
=> [3,1] => 3
[[1,2,4],[3]]
=> {{1,2,4},{3}}
=> {{1,3,4},{2}}
=> [3,1] => 3
[[1,2,3],[4]]
=> {{1,2,3},{4}}
=> {{1},{2,3,4}}
=> [1,3] => 1
[[1,3],[2,4]]
=> {{1,3},{2,4}}
=> {{1,3},{2,4}}
=> [2,2] => 2
[[1,2],[3,4]]
=> {{1,2},{3,4}}
=> {{1,2},{3,4}}
=> [2,2] => 2
[[1,4],[2],[3]]
=> {{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> [2,1,1] => 2
[[1,3],[2],[4]]
=> {{1,3},{2},{4}}
=> {{1},{2,4},{3}}
=> [1,2,1] => 1
[[1,2],[3],[4]]
=> {{1,2},{3},{4}}
=> {{1},{2},{3,4}}
=> [1,1,2] => 1
[[1],[2],[3],[4]]
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> [1,1,1,1] => 1
[[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> {{1,2,3,4,5}}
=> [5] => 5
[[1,3,4,5],[2]]
=> {{1,3,4,5},{2}}
=> {{1,2,3,5},{4}}
=> [4,1] => 4
[[1,2,4,5],[3]]
=> {{1,2,4,5},{3}}
=> {{1,2,4,5},{3}}
=> [4,1] => 4
[[1,2,3,5],[4]]
=> {{1,2,3,5},{4}}
=> {{1,3,4,5},{2}}
=> [4,1] => 4
[[1,2,3,4],[5]]
=> {{1,2,3,4},{5}}
=> {{1},{2,3,4,5}}
=> [1,4] => 1
[[1,3,5],[2,4]]
=> {{1,3,5},{2,4}}
=> {{1,3,5},{2,4}}
=> [3,2] => 3
[[1,2,5],[3,4]]
=> {{1,2,5},{3,4}}
=> {{1,4,5},{2,3}}
=> [3,2] => 3
[[1,3,4],[2,5]]
=> {{1,3,4},{2,5}}
=> {{1,4},{2,3,5}}
=> [2,3] => 2
[[1,2,4],[3,5]]
=> {{1,2,4},{3,5}}
=> {{1,3},{2,4,5}}
=> [2,3] => 2
[[1,2,3],[4,5]]
=> {{1,2,3},{4,5}}
=> {{1,2},{3,4,5}}
=> [2,3] => 2
[[1,4,5],[2],[3]]
=> {{1,4,5},{2},{3}}
=> {{1,2,5},{3},{4}}
=> [3,1,1] => 3
[[1,3,5],[2],[4]]
=> {{1,3,5},{2},{4}}
=> {{1,3,5},{2},{4}}
=> [3,1,1] => 3
[[1,2,5],[3],[4]]
=> {{1,2,5},{3},{4}}
=> {{1,4,5},{2},{3}}
=> [3,1,1] => 3
[[1,3,4],[2],[5]]
=> {{1,3,4},{2},{5}}
=> {{1},{2,3,5},{4}}
=> [1,3,1] => 1
[[1,2,4],[3],[5]]
=> {{1,2,4},{3},{5}}
=> {{1},{2,4,5},{3}}
=> [1,3,1] => 1
[[1,2,3],[4],[5]]
=> {{1,2,3},{4},{5}}
=> {{1},{2},{3,4,5}}
=> [1,1,3] => 1
[[1,4],[2,5],[3]]
=> {{1,4},{2,5},{3}}
=> {{1,4},{2,5},{3}}
=> [2,2,1] => 2
[[1,3],[2,5],[4]]
=> {{1,3},{2,5},{4}}
=> {{1,4},{2},{3,5}}
=> [2,1,2] => 2
[[1,2],[3,5],[4]]
=> {{1,2},{3,5},{4}}
=> {{1,3},{2},{4,5}}
=> [2,1,2] => 2
[[1,3],[2,4],[5]]
=> {{1,3},{2,4},{5}}
=> {{1},{2,4},{3,5}}
=> [1,2,2] => 1
[[1,2],[3,4],[5]]
=> {{1,2},{3,4},{5}}
=> {{1},{2,3},{4,5}}
=> [1,2,2] => 1
[[1,5],[2],[3],[4]]
=> {{1,5},{2},{3},{4}}
=> {{1,5},{2},{3},{4}}
=> [2,1,1,1] => 2
[[1,4],[2],[3],[5]]
=> {{1,4},{2},{3},{5}}
=> {{1},{2,5},{3},{4}}
=> [1,2,1,1] => 1
[[1,3],[2],[4],[5]]
=> {{1,3},{2},{4},{5}}
=> {{1},{2},{3,5},{4}}
=> [1,1,2,1] => 1
[[1,2],[3],[4],[5]]
=> {{1,2},{3},{4},{5}}
=> {{1},{2},{3},{4,5}}
=> [1,1,1,2] => 1
[[1],[2],[3],[4],[5]]
=> {{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> [1,1,1,1,1] => 1
[[1,2,3,4,5,6]]
=> {{1,2,3,4,5,6}}
=> {{1,2,3,4,5,6}}
=> [6] => 6
[[1,3,4,5,6],[2]]
=> {{1,3,4,5,6},{2}}
=> {{1,2,3,4,6},{5}}
=> [5,1] => 5
[[1,2,4,5,6],[3]]
=> {{1,2,4,5,6},{3}}
=> {{1,2,3,5,6},{4}}
=> [5,1] => 5
[[1,2,3,5,6],[4]]
=> {{1,2,3,5,6},{4}}
=> {{1,2,4,5,6},{3}}
=> [5,1] => 5
[[1,2,3,4,6],[5]]
=> {{1,2,3,4,6},{5}}
=> {{1,3,4,5,6},{2}}
=> [5,1] => 5
[[1,2,3,4,5],[6]]
=> {{1,2,3,4,5},{6}}
=> {{1},{2,3,4,5,6}}
=> [1,5] => 1
[[1,3,5,6],[2,4]]
=> {{1,3,5,6},{2,4}}
=> {{1,2,4,6},{3,5}}
=> [4,2] => 4
[[1,2,5,6],[3,4]]
=> {{1,2,5,6},{3,4}}
=> {{1,2,5,6},{3,4}}
=> [4,2] => 4
Description
The first part of an integer composition.
Mp00284: Standard tableaux rowsSet partitions
Mp00091: Set partitions rotate increasingSet partitions
Mp00174: Set partitions dual major index to intertwining numberSet partitions
St000502: Set partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1,2]]
=> {{1,2}}
=> {{1,2}}
=> {{1,2}}
=> 1 = 2 - 1
[[1],[2]]
=> {{1},{2}}
=> {{1},{2}}
=> {{1},{2}}
=> 0 = 1 - 1
[[1,2,3]]
=> {{1,2,3}}
=> {{1,2,3}}
=> {{1,2,3}}
=> 2 = 3 - 1
[[1,3],[2]]
=> {{1,3},{2}}
=> {{1,2},{3}}
=> {{1,2},{3}}
=> 1 = 2 - 1
[[1,2],[3]]
=> {{1,2},{3}}
=> {{1},{2,3}}
=> {{1,3},{2}}
=> 0 = 1 - 1
[[1],[2],[3]]
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> 0 = 1 - 1
[[1,2,3,4]]
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> 3 = 4 - 1
[[1,3,4],[2]]
=> {{1,3,4},{2}}
=> {{1,2,4},{3}}
=> {{1,2},{3,4}}
=> 2 = 3 - 1
[[1,2,4],[3]]
=> {{1,2,4},{3}}
=> {{1,2,3},{4}}
=> {{1,2,3},{4}}
=> 2 = 3 - 1
[[1,2,3],[4]]
=> {{1,2,3},{4}}
=> {{1},{2,3,4}}
=> {{1,3},{2,4}}
=> 0 = 1 - 1
[[1,3],[2,4]]
=> {{1,3},{2,4}}
=> {{1,3},{2,4}}
=> {{1,4},{2,3}}
=> 1 = 2 - 1
[[1,2],[3,4]]
=> {{1,2},{3,4}}
=> {{1,4},{2,3}}
=> {{1,3,4},{2}}
=> 1 = 2 - 1
[[1,4],[2],[3]]
=> {{1,4},{2},{3}}
=> {{1,2},{3},{4}}
=> {{1,2},{3},{4}}
=> 1 = 2 - 1
[[1,3],[2],[4]]
=> {{1,3},{2},{4}}
=> {{1},{2,4},{3}}
=> {{1},{2,4},{3}}
=> 0 = 1 - 1
[[1,2],[3],[4]]
=> {{1,2},{3},{4}}
=> {{1},{2,3},{4}}
=> {{1,3},{2},{4}}
=> 0 = 1 - 1
[[1],[2],[3],[4]]
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> 0 = 1 - 1
[[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> {{1,2,3,4,5}}
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
[[1,3,4,5],[2]]
=> {{1,3,4,5},{2}}
=> {{1,2,4,5},{3}}
=> {{1,2},{3,4,5}}
=> 3 = 4 - 1
[[1,2,4,5],[3]]
=> {{1,2,4,5},{3}}
=> {{1,2,3,5},{4}}
=> {{1,2,3},{4,5}}
=> 3 = 4 - 1
[[1,2,3,5],[4]]
=> {{1,2,3,5},{4}}
=> {{1,2,3,4},{5}}
=> {{1,2,3,4},{5}}
=> 3 = 4 - 1
[[1,2,3,4],[5]]
=> {{1,2,3,4},{5}}
=> {{1},{2,3,4,5}}
=> {{1,3,5},{2,4}}
=> 0 = 1 - 1
[[1,3,5],[2,4]]
=> {{1,3,5},{2,4}}
=> {{1,2,4},{3,5}}
=> {{1,2,5},{3,4}}
=> 2 = 3 - 1
[[1,2,5],[3,4]]
=> {{1,2,5},{3,4}}
=> {{1,2,3},{4,5}}
=> {{1,2,3,5},{4}}
=> 2 = 3 - 1
[[1,3,4],[2,5]]
=> {{1,3,4},{2,5}}
=> {{1,3},{2,4,5}}
=> {{1,4},{2,3,5}}
=> 1 = 2 - 1
[[1,2,4],[3,5]]
=> {{1,2,4},{3,5}}
=> {{1,4},{2,3,5}}
=> {{1,3,4},{2,5}}
=> 1 = 2 - 1
[[1,2,3],[4,5]]
=> {{1,2,3},{4,5}}
=> {{1,5},{2,3,4}}
=> {{1,3},{2,4,5}}
=> 1 = 2 - 1
[[1,4,5],[2],[3]]
=> {{1,4,5},{2},{3}}
=> {{1,2,5},{3},{4}}
=> {{1,2},{3},{4,5}}
=> 2 = 3 - 1
[[1,3,5],[2],[4]]
=> {{1,3,5},{2},{4}}
=> {{1,2,4},{3},{5}}
=> {{1,2},{3,4},{5}}
=> 2 = 3 - 1
[[1,2,5],[3],[4]]
=> {{1,2,5},{3},{4}}
=> {{1,2,3},{4},{5}}
=> {{1,2,3},{4},{5}}
=> 2 = 3 - 1
[[1,3,4],[2],[5]]
=> {{1,3,4},{2},{5}}
=> {{1},{2,4,5},{3}}
=> {{1},{2,4},{3,5}}
=> 0 = 1 - 1
[[1,2,4],[3],[5]]
=> {{1,2,4},{3},{5}}
=> {{1},{2,3,5},{4}}
=> {{1,3,5},{2},{4}}
=> 0 = 1 - 1
[[1,2,3],[4],[5]]
=> {{1,2,3},{4},{5}}
=> {{1},{2,3,4},{5}}
=> {{1,3},{2,4},{5}}
=> 0 = 1 - 1
[[1,4],[2,5],[3]]
=> {{1,4},{2,5},{3}}
=> {{1,3},{2,5},{4}}
=> {{1},{2,3,5},{4}}
=> 1 = 2 - 1
[[1,3],[2,5],[4]]
=> {{1,3},{2,5},{4}}
=> {{1,3},{2,4},{5}}
=> {{1,4},{2,3},{5}}
=> 1 = 2 - 1
[[1,2],[3,5],[4]]
=> {{1,2},{3,5},{4}}
=> {{1,4},{2,3},{5}}
=> {{1,3,4},{2},{5}}
=> 1 = 2 - 1
[[1,3],[2,4],[5]]
=> {{1,3},{2,4},{5}}
=> {{1},{2,4},{3,5}}
=> {{1,5},{2,4},{3}}
=> 0 = 1 - 1
[[1,2],[3,4],[5]]
=> {{1,2},{3,4},{5}}
=> {{1},{2,3},{4,5}}
=> {{1,3},{2,5},{4}}
=> 0 = 1 - 1
[[1,5],[2],[3],[4]]
=> {{1,5},{2},{3},{4}}
=> {{1,2},{3},{4},{5}}
=> {{1,2},{3},{4},{5}}
=> 1 = 2 - 1
[[1,4],[2],[3],[5]]
=> {{1,4},{2},{3},{5}}
=> {{1},{2,5},{3},{4}}
=> {{1},{2},{3,5},{4}}
=> 0 = 1 - 1
[[1,3],[2],[4],[5]]
=> {{1,3},{2},{4},{5}}
=> {{1},{2,4},{3},{5}}
=> {{1},{2,4},{3},{5}}
=> 0 = 1 - 1
[[1,2],[3],[4],[5]]
=> {{1,2},{3},{4},{5}}
=> {{1},{2,3},{4},{5}}
=> {{1,3},{2},{4},{5}}
=> 0 = 1 - 1
[[1],[2],[3],[4],[5]]
=> {{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> 0 = 1 - 1
[[1,2,3,4,5,6]]
=> {{1,2,3,4,5,6}}
=> {{1,2,3,4,5,6}}
=> {{1,2,3,4,5,6}}
=> 5 = 6 - 1
[[1,3,4,5,6],[2]]
=> {{1,3,4,5,6},{2}}
=> {{1,2,4,5,6},{3}}
=> {{1,2},{3,4,5,6}}
=> 4 = 5 - 1
[[1,2,4,5,6],[3]]
=> {{1,2,4,5,6},{3}}
=> {{1,2,3,5,6},{4}}
=> {{1,2,3},{4,5,6}}
=> 4 = 5 - 1
[[1,2,3,5,6],[4]]
=> {{1,2,3,5,6},{4}}
=> {{1,2,3,4,6},{5}}
=> {{1,2,3,4},{5,6}}
=> 4 = 5 - 1
[[1,2,3,4,6],[5]]
=> {{1,2,3,4,6},{5}}
=> {{1,2,3,4,5},{6}}
=> {{1,2,3,4,5},{6}}
=> 4 = 5 - 1
[[1,2,3,4,5],[6]]
=> {{1,2,3,4,5},{6}}
=> {{1},{2,3,4,5,6}}
=> {{1,3,5},{2,4,6}}
=> 0 = 1 - 1
[[1,3,5,6],[2,4]]
=> {{1,3,5,6},{2,4}}
=> {{1,2,4,6},{3,5}}
=> {{1,2,5,6},{3,4}}
=> 3 = 4 - 1
[[1,2,5,6],[3,4]]
=> {{1,2,5,6},{3,4}}
=> {{1,2,3,6},{4,5}}
=> {{1,2,3,5,6},{4}}
=> 3 = 4 - 1
Description
The number of successions of a set partitions. This is the number of indices $i$ such that $i$ and $i+1$ belonging to the same block.
Mp00081: Standard tableaux reading word permutationPermutations
Mp00239: Permutations CorteelPermutations
Mp00160: Permutations graph of inversionsGraphs
St000771: Graphs ⟶ ℤResult quality: 66% values known / values provided: 66%distinct values known / distinct values provided: 71%
Values
[[1,2]]
=> [1,2] => [1,2] => ([],2)
=> ? = 2
[[1],[2]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[[1,2,3]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {2,3}
[[1,3],[2]]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {2,3}
[[1,2],[3]]
=> [3,1,2] => [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1],[2],[3]]
=> [3,2,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[[1,2,3,4]]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,3,4}
[[1,3,4],[2]]
=> [2,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {1,1,3,4}
[[1,2,4],[3]]
=> [3,1,2,4] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,3,4}
[[1,2,3],[4]]
=> [4,1,2,3] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,3],[2,4]]
=> [2,4,1,3] => [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[1,2],[3,4]]
=> [3,4,1,2] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,4],[2],[3]]
=> [3,2,1,4] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,3,4}
[[1,3],[2],[4]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 1
[[1,2],[3],[4]]
=> [4,3,1,2] => [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[[1],[2],[3],[4]]
=> [4,3,2,1] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[[1,2,3,4,5]]
=> [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {1,1,1,1,3,3,4,4,4,5}
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,3,3,4,4,4,5}
[[1,2,4,5],[3]]
=> [3,1,2,4,5] => [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,3,3,4,4,4,5}
[[1,2,3,5],[4]]
=> [4,1,2,3,5] => [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,3,3,4,4,4,5}
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[1,3,5],[2,4]]
=> [2,4,1,3,5] => [4,2,1,3,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,3,3,4,4,4,5}
[[1,2,5],[3,4]]
=> [3,4,1,2,5] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,3,3,4,4,4,5}
[[1,3,4],[2,5]]
=> [2,5,1,3,4] => [5,2,1,3,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,2,4],[3,5]]
=> [3,5,1,2,4] => [5,3,2,1,4] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,2,3],[4,5]]
=> [4,5,1,2,3] => [5,4,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,3,3,4,4,4,5}
[[1,3,5],[2],[4]]
=> [4,2,1,3,5] => [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,1,1,1,3,3,4,4,4,5}
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => [3,4,2,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,3,3,4,4,4,5}
[[1,3,4],[2],[5]]
=> [5,2,1,3,4] => [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[[1,2,4],[3],[5]]
=> [5,3,1,2,4] => [3,5,2,1,4] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [4,5,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
[[1,4],[2,5],[3]]
=> [3,2,5,1,4] => [2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,2],[3,4],[5]]
=> [5,3,4,1,2] => [3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,3,3,4,4,4,5}
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [4,5,1,3,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 1
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => [2,1,3,4,5,6] => ([(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => [3,1,2,4,5,6] => ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => [4,1,2,3,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => [5,1,2,3,4,6] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
[[1,3,5,6],[2,4]]
=> [2,4,1,3,5,6] => [4,2,1,3,5,6] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => [4,3,2,1,5,6] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,4,6],[2,5]]
=> [2,5,1,3,4,6] => [5,2,1,3,4,6] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => [5,3,2,1,4,6] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => [5,4,2,3,1,6] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,4,5],[2,6]]
=> [2,6,1,3,4,5] => [6,2,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,2,4,5],[3,6]]
=> [3,6,1,2,4,5] => [6,3,2,1,4,5] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,3,5],[4,6]]
=> [4,6,1,2,3,5] => [6,4,2,3,1,5] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => [6,5,2,3,4,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => [2,3,1,4,5,6] => ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,5,6],[2],[4]]
=> [4,2,1,3,5,6] => [2,4,1,3,5,6] => ([(2,5),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,5,6],[3],[4]]
=> [4,3,1,2,5,6] => [3,4,2,1,5,6] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,4,6],[2],[5]]
=> [5,2,1,3,4,6] => [2,5,1,3,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,4,6],[3],[5]]
=> [5,3,1,2,4,6] => [3,5,2,1,4,6] => ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,3,6],[4],[5]]
=> [5,4,1,2,3,6] => [4,5,2,3,1,6] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,4,5],[2],[6]]
=> [6,2,1,3,4,5] => [2,6,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2
[[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => [3,6,2,1,4,5] => ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,3,5],[4],[6]]
=> [6,4,1,2,3,5] => [4,6,2,3,1,5] => ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => [5,6,2,3,4,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 2
[[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => [6,2,4,3,1,5] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,5],[3,4,6]]
=> [3,4,6,1,2,5] => [6,4,3,2,1,5] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,3,4],[2,5,6]]
=> [2,5,6,1,3,4] => [6,2,5,3,4,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,4],[3,5,6]]
=> [3,5,6,1,2,4] => [6,5,3,2,4,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,4,6],[2,5],[3]]
=> [3,2,5,1,4,6] => [2,5,3,1,4,6] => ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => [2,5,4,3,1,6] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,6],[3,5],[4]]
=> [4,3,5,1,2,6] => [4,5,3,2,1,6] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,6],[2,4],[5]]
=> [5,2,4,1,3,6] => [2,4,5,3,1,6] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,6],[3,4],[5]]
=> [5,3,4,1,2,6] => [3,5,4,2,1,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,4,5],[2,6],[3]]
=> [3,2,6,1,4,5] => [2,6,3,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 1
[[1,3,5],[2,6],[4]]
=> [4,2,6,1,3,5] => [2,6,4,3,1,5] => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,5],[3,6],[4]]
=> [4,3,6,1,2,5] => [4,6,3,2,1,5] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,3,4],[2,6],[5]]
=> [5,2,6,1,3,4] => [2,6,5,3,4,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,4],[3,6],[5]]
=> [5,3,6,1,2,4] => [5,6,3,2,4,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 2
[[1,2,3],[4,6],[5]]
=> [5,4,6,1,2,3] => [5,6,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,3,5],[2,4],[6]]
=> [6,2,4,1,3,5] => [2,4,6,3,1,5] => ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,5],[3,4],[6]]
=> [6,3,4,1,2,5] => [3,6,4,2,1,5] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,3,4],[2,5],[6]]
=> [6,2,5,1,3,4] => [2,5,6,3,4,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 2
[[1,2,4],[3,5],[6]]
=> [6,3,5,1,2,4] => [3,6,5,2,4,1] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => [4,6,5,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => [3,4,1,2,5,6] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,4,6],[2],[3],[5]]
=> [5,3,2,1,4,6] => [3,5,1,2,4,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,6],[2],[4],[5]]
=> [5,4,2,1,3,6] => [4,5,1,3,2,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,6],[3],[4],[5]]
=> [5,4,3,1,2,6] => [3,4,5,2,1,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,6],[2],[3],[4],[5]]
=> [5,4,3,2,1,6] => [3,4,5,1,2,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,3,4,5,6,7]]
=> [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ([],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7}
[[1,3,4,5,6,7],[2]]
=> [2,1,3,4,5,6,7] => [2,1,3,4,5,6,7] => ([(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7}
[[1,2,4,5,6,7],[3]]
=> [3,1,2,4,5,6,7] => [3,1,2,4,5,6,7] => ([(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7}
[[1,2,3,5,6,7],[4]]
=> [4,1,2,3,5,6,7] => [4,1,2,3,5,6,7] => ([(3,6),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7}
[[1,2,3,4,6,7],[5]]
=> [5,1,2,3,4,6,7] => [5,1,2,3,4,6,7] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7}
[[1,2,3,4,5,7],[6]]
=> [6,1,2,3,4,5,7] => [6,1,2,3,4,5,7] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7}
[[1,3,5,6,7],[2,4]]
=> [2,4,1,3,5,6,7] => [4,2,1,3,5,6,7] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7}
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian $$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$ Its eigenvalues are $0,4,4,6$, so the statistic is $2$. The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Matching statistic: St001432
Mp00081: Standard tableaux reading word permutationPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00027: Dyck paths to partitionInteger partitions
St001432: Integer partitions ⟶ ℤResult quality: 57% values known / values provided: 61%distinct values known / distinct values provided: 57%
Values
[[1,2]]
=> [1,2] => [1,0,1,0]
=> [1]
=> 1
[[1],[2]]
=> [2,1] => [1,1,0,0]
=> []
=> ? = 2
[[1,2,3]]
=> [1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> 2
[[1,3],[2]]
=> [2,1,3] => [1,1,0,0,1,0]
=> [2]
=> 1
[[1,2],[3]]
=> [3,1,2] => [1,1,1,0,0,0]
=> []
=> ? ∊ {1,3}
[[1],[2],[3]]
=> [3,2,1] => [1,1,1,0,0,0]
=> []
=> ? ∊ {1,3}
[[1,2,3,4]]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 3
[[1,3,4],[2]]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [3,2]
=> 2
[[1,2,4],[3]]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> 1
[[1,2,3],[4]]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {2,2,3,4}
[[1,3],[2,4]]
=> [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> 1
[[1,2],[3,4]]
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1]
=> 1
[[1,4],[2],[3]]
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> 1
[[1,3],[2],[4]]
=> [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {2,2,3,4}
[[1,2],[3],[4]]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {2,2,3,4}
[[1],[2],[3],[4]]
=> [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {2,2,3,4}
[[1,2,3,4,5]]
=> [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 4
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> 3
[[1,2,4,5],[3]]
=> [3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> 2
[[1,2,3,5],[4]]
=> [4,1,2,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 1
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,4,4,5}
[[1,3,5],[2,4]]
=> [2,4,1,3,5] => [1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> 2
[[1,2,5],[3,4]]
=> [3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> 2
[[1,3,4],[2,5]]
=> [2,5,1,3,4] => [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> 1
[[1,2,4],[3,5]]
=> [3,5,1,2,4] => [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> 1
[[1,2,3],[4,5]]
=> [4,5,1,2,3] => [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> 1
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> 2
[[1,3,5],[2],[4]]
=> [4,2,1,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 1
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 1
[[1,3,4],[2],[5]]
=> [5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,4,4,5}
[[1,2,4],[3],[5]]
=> [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,4,4,5}
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,4,4,5}
[[1,4],[2,5],[3]]
=> [3,2,5,1,4] => [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> 2
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 1
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 1
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,4,4,5}
[[1,2],[3,4],[5]]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,4,4,5}
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 1
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,4,4,5}
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,4,4,5}
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,4,4,5}
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,4,4,5}
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1]
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2]
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [5,4,3]
=> 3
[[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [5,4]
=> 2
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5]
=> 1
[[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,5,6],[2,4]]
=> [2,4,1,3,5,6] => [1,1,0,1,1,0,0,0,1,0,1,0]
=> [5,4,1,1]
=> 3
[[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => [1,1,1,0,1,0,0,0,1,0,1,0]
=> [5,4,1]
=> 3
[[1,3,4,6],[2,5]]
=> [2,5,1,3,4,6] => [1,1,0,1,1,1,0,0,0,0,1,0]
=> [5,1,1,1]
=> 2
[[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,1,1]
=> 2
[[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => [1,1,1,1,0,1,0,0,0,0,1,0]
=> [5,1]
=> 2
[[1,3,4,5],[2,6]]
=> [2,6,1,3,4,5] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1]
=> 1
[[1,2,4,5],[3,6]]
=> [3,6,1,2,4,5] => [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1]
=> 1
[[1,2,3,5],[4,6]]
=> [4,6,1,2,3,5] => [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> 1
[[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> 1
[[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [5,4,3]
=> 3
[[1,3,5,6],[2],[4]]
=> [4,2,1,3,5,6] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [5,4]
=> 2
[[1,2,5,6],[3],[4]]
=> [4,3,1,2,5,6] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [5,4]
=> 2
[[1,3,4,6],[2],[5]]
=> [5,2,1,3,4,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5]
=> 1
[[1,2,4,6],[3],[5]]
=> [5,3,1,2,4,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5]
=> 1
[[1,2,3,6],[4],[5]]
=> [5,4,1,2,3,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5]
=> 1
[[1,3,4,5],[2],[6]]
=> [6,2,1,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3,5],[4],[6]]
=> [6,4,1,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => [1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,2,1,1]
=> 2
[[1,2,5],[3,4,6]]
=> [3,4,6,1,2,5] => [1,1,1,0,1,0,1,1,0,0,0,0]
=> [2,2,1]
=> 2
[[1,3,4],[2,5,6]]
=> [2,5,6,1,3,4] => [1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,1,1,1]
=> 2
[[1,2,4],[3,5,6]]
=> [3,5,6,1,2,4] => [1,1,1,0,1,1,0,1,0,0,0,0]
=> [2,1,1]
=> 2
[[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => [1,1,1,1,0,1,0,1,0,0,0,0]
=> [2,1]
=> 2
[[1,4,6],[2,5],[3]]
=> [3,2,5,1,4,6] => [1,1,1,0,0,1,1,0,0,0,1,0]
=> [5,2,2]
=> 3
[[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => [1,1,1,1,0,0,1,0,0,0,1,0]
=> [5,2]
=> 2
[[1,3,5],[2,4],[6]]
=> [6,2,4,1,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,5],[3,4],[6]]
=> [6,3,4,1,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,4],[2,5],[6]]
=> [6,2,5,1,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,4],[3,5],[6]]
=> [6,3,5,1,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,4,5],[2],[3],[6]]
=> [6,3,2,1,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,5],[2],[4],[6]]
=> [6,4,2,1,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,5],[3],[4],[6]]
=> [6,4,3,1,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,4],[2],[5],[6]]
=> [6,5,2,1,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,4],[3],[5],[6]]
=> [6,5,3,1,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,4],[2,5],[3],[6]]
=> [6,3,2,5,1,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2],[3,5],[4],[6]]
=> [6,4,3,5,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3],[2,4],[5],[6]]
=> [6,5,2,4,1,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,5],[2],[3],[4],[6]]
=> [6,4,3,2,1,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,4],[2],[3],[5],[6]]
=> [6,5,3,2,1,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3],[2],[4],[5],[6]]
=> [6,5,4,2,1,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3,4,5,6,7]]
=> [1,2,3,4,5,6,7] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1]
=> ? ∊ {1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7}
[[1,3,4,5,6,7],[2]]
=> [2,1,3,4,5,6,7] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2]
=> ? ∊ {1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7}
[[1,2,4,5,6,7],[3]]
=> [3,1,2,4,5,6,7] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3]
=> ? ∊ {1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7}
[[1,2,3,5,6,7],[4]]
=> [4,1,2,3,5,6,7] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [6,5,4]
=> ? ∊ {1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7}
[[1,2,3,4,5,6],[7]]
=> [7,1,2,3,4,5,6] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7}
Description
The order dimension of the partition. Given a partition $\lambda$, let $I(\lambda)$ be the principal order ideal in the Young lattice generated by $\lambda$. The order dimension of a partition is defined as the order dimension of the poset $I(\lambda)$.
Mp00106: Standard tableaux catabolismStandard tableaux
Mp00081: Standard tableaux reading word permutationPermutations
Mp00160: Permutations graph of inversionsGraphs
St000260: Graphs ⟶ ℤResult quality: 29% values known / values provided: 52%distinct values known / distinct values provided: 29%
Values
[[1,2]]
=> [[1,2]]
=> [1,2] => ([],2)
=> ? ∊ {1,2}
[[1],[2]]
=> [[1,2]]
=> [1,2] => ([],2)
=> ? ∊ {1,2}
[[1,2,3]]
=> [[1,2,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {2,3}
[[1,3],[2]]
=> [[1,2],[3]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1,2],[3]]
=> [[1,2,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {2,3}
[[1],[2],[3]]
=> [[1,2],[3]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1,2,3,4]]
=> [[1,2,3,4]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {2,2,2,3,3,4}
[[1,3,4],[2]]
=> [[1,2,4],[3]]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,2,3,3,4}
[[1,2,4],[3]]
=> [[1,2,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[[1,2,3],[4]]
=> [[1,2,3,4]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {2,2,2,3,3,4}
[[1,3],[2,4]]
=> [[1,2,4],[3]]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,2,3,3,4}
[[1,2],[3,4]]
=> [[1,2,3,4]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {2,2,2,3,3,4}
[[1,4],[2],[3]]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[1,3],[2],[4]]
=> [[1,2,4],[3]]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,2,3,3,4}
[[1,2],[3],[4]]
=> [[1,2,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[[1],[2],[3],[4]]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[1,2,3,4,5]]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => ([],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,3,4,5],[2]]
=> [[1,2,4,5],[3]]
=> [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,2,4,5],[3]]
=> [[1,2,3,5],[4]]
=> [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,2,3,5],[4]]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[[1,2,3,4],[5]]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => ([],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,3,5],[2,4]]
=> [[1,2,4],[3,5]]
=> [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[[1,2,5],[3,4]]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[[1,3,4],[2,5]]
=> [[1,2,4,5],[3]]
=> [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,2,4],[3,5]]
=> [[1,2,3,5],[4]]
=> [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,2,3],[4,5]]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => ([],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,4,5],[2],[3]]
=> [[1,2,5],[3],[4]]
=> [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,3,5],[2],[4]]
=> [[1,2,4],[3],[5]]
=> [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,2,5],[3],[4]]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,3,4],[2],[5]]
=> [[1,2,4,5],[3]]
=> [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,2,4],[3],[5]]
=> [[1,2,3,5],[4]]
=> [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,2,3],[4],[5]]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[[1,4],[2,5],[3]]
=> [[1,2,5],[3],[4]]
=> [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,3],[2,5],[4]]
=> [[1,2,4,5],[3]]
=> [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,2],[3,5],[4]]
=> [[1,2,3,5],[4]]
=> [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,3],[2,4],[5]]
=> [[1,2,4],[3,5]]
=> [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[[1,2],[3,4],[5]]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[[1,5],[2],[3],[4]]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,4],[2],[3],[5]]
=> [[1,2,5],[3],[4]]
=> [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,3],[2],[4],[5]]
=> [[1,2,4],[3],[5]]
=> [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,2],[3],[4],[5]]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1],[2],[3],[4],[5]]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,2,3,4,5,6]]
=> [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => ([],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,4,5,6],[2]]
=> [[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => ([(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,4,5,6],[3]]
=> [[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3,5,6],[4]]
=> [[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3,4,6],[5]]
=> [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[[1,2,3,4,5],[6]]
=> [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => ([],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,5,6],[2,4]]
=> [[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,5,6],[3,4]]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[[1,3,4,6],[2,5]]
=> [[1,2,4,5],[3,6]]
=> [3,6,1,2,4,5] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[[1,2,4,6],[3,5]]
=> [[1,2,3,5],[4,6]]
=> [4,6,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[[1,2,3,6],[4,5]]
=> [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[[1,3,4,5],[2,6]]
=> [[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => ([(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,4,5],[3,6]]
=> [[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3,5],[4,6]]
=> [[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3,4],[5,6]]
=> [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => ([],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,4,5,6],[2],[3]]
=> [[1,2,5,6],[3],[4]]
=> [4,3,1,2,5,6] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,5,6],[2],[4]]
=> [[1,2,4,6],[3],[5]]
=> [5,3,1,2,4,6] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,5,6],[3],[4]]
=> [[1,2,3,6],[4],[5]]
=> [5,4,1,2,3,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,4,6],[2],[5]]
=> [[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,4,6],[3],[5]]
=> [[1,2,3,5],[4],[6]]
=> [6,4,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,3,6],[4],[5]]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,3,4,5],[2],[6]]
=> [[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => ([(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,4,5],[3],[6]]
=> [[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3,5],[4],[6]]
=> [[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3,4],[5],[6]]
=> [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[[1,3,5],[2,4,6]]
=> [[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,5],[3,4,6]]
=> [[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,4],[2,5,6]]
=> [[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => ([(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,4],[3,5,6]]
=> [[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3],[4,5,6]]
=> [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => ([],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,4,6],[2,5],[3]]
=> [[1,2,5],[3,6],[4]]
=> [4,3,6,1,2,5] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[[1,3,6],[2,5],[4]]
=> [[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,6],[3,5],[4]]
=> [[1,2,3,5],[4],[6]]
=> [6,4,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,3,6],[2,4],[5]]
=> [[1,2,4],[3,5],[6]]
=> [6,3,5,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,6],[3,4],[5]]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,4,5],[2,6],[3]]
=> [[1,2,5,6],[3],[4]]
=> [4,3,1,2,5,6] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,5],[2,6],[4]]
=> [[1,2,4,6],[3],[5]]
=> [5,3,1,2,4,6] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,5],[3,6],[4]]
=> [[1,2,3,6],[4],[5]]
=> [5,4,1,2,3,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,4],[2,6],[5]]
=> [[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => ([(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,4],[3,6],[5]]
=> [[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,5],[3,4],[6]]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[[1,3,4],[2,5],[6]]
=> [[1,2,4,5],[3,6]]
=> [3,6,1,2,4,5] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[[1,2,4],[3,5],[6]]
=> [[1,2,3,5],[4,6]]
=> [4,6,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[[1,2,3],[4,5],[6]]
=> [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[[1,4,6],[2],[3],[5]]
=> [[1,2,5],[3],[4],[6]]
=> [6,4,3,1,2,5] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,3,6],[2],[4],[5]]
=> [[1,2,4],[3],[5],[6]]
=> [6,5,3,1,2,4] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,6],[3],[4],[5]]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,3,4],[2],[5],[6]]
=> [[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,4],[3],[5],[6]]
=> [[1,2,3,5],[4],[6]]
=> [6,4,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,3],[4],[5],[6]]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,4],[2,5],[3,6]]
=> [[1,2,5],[3,6],[4]]
=> [4,3,6,1,2,5] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[[1,3],[2,5],[4,6]]
=> [[1,2,4,5],[3,6]]
=> [3,6,1,2,4,5] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[[1,2],[3,5],[4,6]]
=> [[1,2,3,5],[4,6]]
=> [4,6,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[[1,2],[3,4],[5,6]]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[[1,4],[2,5],[3],[6]]
=> [[1,2,5],[3,6],[4]]
=> [4,3,6,1,2,5] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[[1,3],[2,5],[4],[6]]
=> [[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2],[3,5],[4],[6]]
=> [[1,2,3,5],[4],[6]]
=> [6,4,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,3],[2,4],[5],[6]]
=> [[1,2,4],[3,5],[6]]
=> [6,3,5,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
Description
The radius of a connected graph. This is the minimum eccentricity of any vertex.
Mp00134: Standard tableaux descent wordBinary words
Mp00178: Binary words to compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000772: Graphs ⟶ ℤResult quality: 50% values known / values provided: 50%distinct values known / distinct values provided: 86%
Values
[[1,2]]
=> 0 => [2] => ([],2)
=> ? = 2
[[1],[2]]
=> 1 => [1,1] => ([(0,1)],2)
=> 1
[[1,2,3]]
=> 00 => [3] => ([],3)
=> ? ∊ {1,3}
[[1,3],[2]]
=> 10 => [1,2] => ([(1,2)],3)
=> ? ∊ {1,3}
[[1,2],[3]]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 1
[[1],[2],[3]]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,2,3,4]]
=> 000 => [4] => ([],4)
=> ? ∊ {1,2,2,3,4}
[[1,3,4],[2]]
=> 100 => [1,3] => ([(2,3)],4)
=> ? ∊ {1,2,2,3,4}
[[1,2,4],[3]]
=> 010 => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,3,4}
[[1,2,3],[4]]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,3],[2,4]]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[1,2],[3,4]]
=> 010 => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,3,4}
[[1,4],[2],[3]]
=> 110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,3,4}
[[1,3],[2],[4]]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[1,2],[3],[4]]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[1],[2],[3],[4]]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,2,3,4,5]]
=> 0000 => [5] => ([],5)
=> ? ∊ {1,1,2,2,2,2,3,3,3,3,4,4,5}
[[1,3,4,5],[2]]
=> 1000 => [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,3,3,3,3,4,4,5}
[[1,2,4,5],[3]]
=> 0100 => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,3,3,3,3,4,4,5}
[[1,2,3,5],[4]]
=> 0010 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,3,3,3,3,4,4,5}
[[1,2,3,4],[5]]
=> 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[1,3,5],[2,4]]
=> 1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,3,3,3,3,4,4,5}
[[1,2,5],[3,4]]
=> 0100 => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,3,3,3,3,4,4,5}
[[1,3,4],[2,5]]
=> 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,2,4],[3,5]]
=> 0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,2,3],[4,5]]
=> 0010 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,3,3,3,3,4,4,5}
[[1,4,5],[2],[3]]
=> 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,3,3,3,3,4,4,5}
[[1,3,5],[2],[4]]
=> 1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,3,3,3,3,4,4,5}
[[1,2,5],[3],[4]]
=> 0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,3,3,3,3,4,4,5}
[[1,3,4],[2],[5]]
=> 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,2,4],[3],[5]]
=> 0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,2,3],[4],[5]]
=> 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,4],[2,5],[3]]
=> 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,3],[2,5],[4]]
=> 1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,3,3,3,3,4,4,5}
[[1,2],[3,5],[4]]
=> 0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,3,3,3,3,4,4,5}
[[1,3],[2,4],[5]]
=> 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,2],[3,4],[5]]
=> 0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,5],[2],[3],[4]]
=> 1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,3,3,3,3,4,4,5}
[[1,4],[2],[3],[5]]
=> 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,3],[2],[4],[5]]
=> 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,2],[3],[4],[5]]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1],[2],[3],[4],[5]]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2,3,4,5,6]]
=> 00000 => [6] => ([],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,4,5,6],[2]]
=> 10000 => [1,5] => ([(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,4,5,6],[3]]
=> 01000 => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,3,5,6],[4]]
=> 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,3,4,6],[5]]
=> 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,3,4,5],[6]]
=> 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
[[1,3,5,6],[2,4]]
=> 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,5,6],[3,4]]
=> 01000 => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,4,6],[2,5]]
=> 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,4,6],[3,5]]
=> 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,3,6],[4,5]]
=> 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,4,5],[2,6]]
=> 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,2,4,5],[3,6]]
=> 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,3,5],[4,6]]
=> 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,3,4],[5,6]]
=> 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,4,5,6],[2],[3]]
=> 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,5,6],[2],[4]]
=> 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,5,6],[3],[4]]
=> 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,4,6],[2],[5]]
=> 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,4,6],[3],[5]]
=> 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,3,6],[4],[5]]
=> 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,4,5],[2],[6]]
=> 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,2,4,5],[3],[6]]
=> 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,3,5],[4],[6]]
=> 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,3,4],[5],[6]]
=> 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,3,5],[2,4,6]]
=> 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,5],[3,4,6]]
=> 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,3,4],[2,5,6]]
=> 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,4],[3,5,6]]
=> 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,3],[4,5,6]]
=> 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,4,6],[2,5],[3]]
=> 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,6],[2,5],[4]]
=> 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,6],[3,5],[4]]
=> 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,6],[2,4],[5]]
=> 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,6],[3,4],[5]]
=> 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,4,5],[2,6],[3]]
=> 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,3,5],[2,6],[4]]
=> 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,5],[3,6],[4]]
=> 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,3,4],[2,6],[5]]
=> 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,4],[3,6],[5]]
=> 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,3],[4,6],[5]]
=> 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,5],[2,4],[6]]
=> 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,5],[3,4],[6]]
=> 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,3,4],[2,5],[6]]
=> 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,4],[3,5],[6]]
=> 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,3],[4,5],[6]]
=> 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,5,6],[2],[3],[4]]
=> 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,4,5],[2],[3],[6]]
=> 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,3,5],[2],[4],[6]]
=> 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,5],[3],[4],[6]]
=> 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,3,4],[2],[5],[6]]
=> 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,4],[3],[5],[6]]
=> 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,3],[4],[5],[6]]
=> 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,4],[2,5],[3,6]]
=> 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,3],[2,5],[4,6]]
=> 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2],[3,5],[4,6]]
=> 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,5],[2,6],[3],[4]]
=> 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,4],[2,5],[3],[6]]
=> 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian $$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$ Its eigenvalues are $0,4,4,6$, so the statistic is $1$. The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$. The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
Matching statistic: St000937
Mp00083: Standard tableaux shapeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000937: Integer partitions ⟶ ℤResult quality: 46% values known / values provided: 46%distinct values known / distinct values provided: 57%
Values
[[1,2]]
=> [2]
=> []
=> ?
=> ? ∊ {1,2}
[[1],[2]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {1,2}
[[1,2,3]]
=> [3]
=> []
=> ?
=> ? ∊ {1,1,2,3}
[[1,3],[2]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {1,1,2,3}
[[1,2],[3]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {1,1,2,3}
[[1],[2],[3]]
=> [1,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,2,3}
[[1,2,3,4]]
=> [4]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,3,3,4}
[[1,3,4],[2]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,2,2,2,3,3,4}
[[1,2,4],[3]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,2,2,2,3,3,4}
[[1,2,3],[4]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,2,2,2,3,3,4}
[[1,3],[2,4]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,2,2,2,3,3,4}
[[1,2],[3,4]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,2,2,2,3,3,4}
[[1,4],[2],[3]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,2,2,2,3,3,4}
[[1,3],[2],[4]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,2,2,2,3,3,4}
[[1,2],[3],[4]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,2,2,2,3,3,4}
[[1],[2],[3],[4]]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,2,3,4,5]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,3,4,5],[2]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,2,4,5],[3]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,2,3,5],[4]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,2,3,4],[5]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,3,5],[2,4]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,2,5],[3,4]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,3,4],[2,5]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,2,4],[3,5]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,2,3],[4,5]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,4,5],[2],[3]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,3,5],[2],[4]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,2,5],[3],[4]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,3,4],[2],[5]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,2,4],[3],[5]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,2,3],[4],[5]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,4],[2,5],[3]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,3],[2,5],[4]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,2],[3,5],[4]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,3],[2,4],[5]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,2],[3,4],[5]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,5],[2],[3],[4]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,4],[2],[3],[5]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,3],[2],[4],[5]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,2],[3],[4],[5]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1],[2],[3],[4],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2
[[1,2,3,4,5,6]]
=> [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,4,5,6],[2]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,4,5,6],[3]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3,5,6],[4]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3,4,6],[5]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3,4,5],[6]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,5,6],[2,4]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,5,6],[3,4]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,4,6],[2,5]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,4,6],[3,5]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3,6],[4,5]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,4,5],[2,6]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,4,5],[3,6]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3,5],[4,6]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,5,6],[2],[3],[4]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,4,6],[2],[3],[5]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,3,6],[2],[4],[5]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,2,6],[3],[4],[5]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,4,5],[2],[3],[6]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,3,5],[2],[4],[6]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,2,5],[3],[4],[6]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,3,4],[2],[5],[6]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,2,4],[3],[5],[6]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,2,3],[4],[5],[6]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,4],[2,5],[3,6]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[1,3],[2,5],[4,6]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[1,2],[3,5],[4,6]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[1,3],[2,4],[5,6]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[1,2],[3,4],[5,6]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[1,5],[2,6],[3],[4]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,4],[2,6],[3],[5]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,3],[2,6],[4],[5]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,2],[3,6],[4],[5]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,4],[2,5],[3],[6]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,3],[2,5],[4],[6]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,2],[3,5],[4],[6]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,3],[2,4],[5],[6]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,2],[3,4],[5],[6]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,6],[2],[3],[4],[5]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2
[[1,5],[2],[3],[4],[6]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2
[[1,4],[2],[3],[5],[6]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2
[[1,3],[2],[4],[5],[6]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2
[[1,2],[3],[4],[5],[6]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2
[[1],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 3
[[1,5,6,7],[2],[3],[4]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,4,6,7],[2],[3],[5]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,3,6,7],[2],[4],[5]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,2,6,7],[3],[4],[5]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,4,5,7],[2],[3],[6]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,3,5,7],[2],[4],[6]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,2,5,7],[3],[4],[6]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,3,4,7],[2],[5],[6]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,2,4,7],[3],[5],[6]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,2,3,7],[4],[5],[6]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,4,5,6],[2],[3],[7]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,3,5,6],[2],[4],[7]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,2,5,6],[3],[4],[7]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,3,4,6],[2],[5],[7]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
Description
The number of positive values of the symmetric group character corresponding to the partition. For example, the character values of the irreducible representation $S^{(2,2)}$ are $2$ on the conjugacy classes $(4)$ and $(2,2)$, $0$ on the conjugacy classes $(3,1)$ and $(1,1,1,1)$, and $-1$ on the conjugacy class $(2,1,1)$. Therefore, the statistic on the partition $(2,2)$ is $2$.
Matching statistic: St000939
Mp00083: Standard tableaux shapeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000939: Integer partitions ⟶ ℤResult quality: 46% values known / values provided: 46%distinct values known / distinct values provided: 71%
Values
[[1,2]]
=> [2]
=> []
=> ?
=> ? ∊ {1,2}
[[1],[2]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {1,2}
[[1,2,3]]
=> [3]
=> []
=> ?
=> ? ∊ {1,1,2,3}
[[1,3],[2]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {1,1,2,3}
[[1,2],[3]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {1,1,2,3}
[[1],[2],[3]]
=> [1,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,2,3}
[[1,2,3,4]]
=> [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,2,2,3,3,4}
[[1,3,4],[2]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,2,2,3,3,4}
[[1,2,4],[3]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,2,2,3,3,4}
[[1,2,3],[4]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,2,2,3,3,4}
[[1,3],[2,4]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,2,2,3,3,4}
[[1,2],[3,4]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,2,2,3,3,4}
[[1,4],[2],[3]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,2,2,3,3,4}
[[1,3],[2],[4]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,2,2,3,3,4}
[[1,2],[3],[4]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,2,2,3,3,4}
[[1],[2],[3],[4]]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,2,3,4,5]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,3,4,5],[2]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,2,4,5],[3]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,2,3,5],[4]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,2,3,4],[5]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,3,5],[2,4]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,2,5],[3,4]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,3,4],[2,5]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,2,4],[3,5]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,2,3],[4,5]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,4,5],[2],[3]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,3,5],[2],[4]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,2,5],[3],[4]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,3,4],[2],[5]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,2,4],[3],[5]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,2,3],[4],[5]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,4],[2,5],[3]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,3],[2,5],[4]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,2],[3,5],[4]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,3],[2,4],[5]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,2],[3,4],[5]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,5],[2],[3],[4]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,4],[2],[3],[5]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,3],[2],[4],[5]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,2],[3],[4],[5]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1],[2],[3],[4],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 3
[[1,2,3,4,5,6]]
=> [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,4,5,6],[2]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,4,5,6],[3]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,3,5,6],[4]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,3,4,6],[5]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,3,4,5],[6]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,5,6],[2,4]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,5,6],[3,4]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,4,6],[2,5]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,4,6],[3,5]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,3,6],[4,5]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,4,5],[2,6]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,4,5],[3,6]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,3,5],[4,6]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,5,6],[2],[3],[4]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,4,6],[2],[3],[5]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,3,6],[2],[4],[5]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,2,6],[3],[4],[5]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,4,5],[2],[3],[6]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,3,5],[2],[4],[6]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,2,5],[3],[4],[6]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,3,4],[2],[5],[6]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,2,4],[3],[5],[6]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,2,3],[4],[5],[6]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,4],[2,5],[3,6]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
[[1,3],[2,5],[4,6]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
[[1,2],[3,5],[4,6]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
[[1,3],[2,4],[5,6]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
[[1,2],[3,4],[5,6]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
[[1,5],[2,6],[3],[4]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
[[1,4],[2,6],[3],[5]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
[[1,3],[2,6],[4],[5]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
[[1,2],[3,6],[4],[5]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
[[1,4],[2,5],[3],[6]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
[[1,3],[2,5],[4],[6]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
[[1,2],[3,5],[4],[6]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
[[1,3],[2,4],[5],[6]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
[[1,2],[3,4],[5],[6]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
[[1,6],[2],[3],[4],[5]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 3
[[1,5],[2],[3],[4],[6]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 3
[[1,4],[2],[3],[5],[6]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 3
[[1,3],[2],[4],[5],[6]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 3
[[1,2],[3],[4],[5],[6]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 3
[[1],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 5
[[1,5,6,7],[2],[3],[4]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,4,6,7],[2],[3],[5]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,3,6,7],[2],[4],[5]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,2,6,7],[3],[4],[5]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,4,5,7],[2],[3],[6]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,3,5,7],[2],[4],[6]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,2,5,7],[3],[4],[6]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,3,4,7],[2],[5],[6]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,2,4,7],[3],[5],[6]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,2,3,7],[4],[5],[6]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,4,5,6],[2],[3],[7]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,3,5,6],[2],[4],[7]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,2,5,6],[3],[4],[7]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,3,4,6],[2],[5],[7]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
Description
The number of characters of the symmetric group whose value on the partition is positive.
The following 18 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000993The multiplicity of the largest part of an integer partition. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000054The first entry of the permutation. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St000314The number of left-to-right-maxima of a permutation. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St000259The diameter of a connected graph. St000066The column of the unique '1' in the first row of the alternating sign matrix. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St000454The largest eigenvalue of a graph if it is integral. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000193The row of the unique '1' in the first column of the alternating sign matrix. St000199The column of the unique '1' in the last row of the alternating sign matrix. St000200The row of the unique '1' in the last column of the alternating sign matrix. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St001429The number of negative entries in a signed permutation. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001060The distinguishing index of a graph.