searching the database
Your data matches 28 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000733
St000733: Standard tableaux ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1,2]]
=> 1
[[1],[2]]
=> 2
[[1,2,3]]
=> 1
[[1,3],[2]]
=> 1
[[1,2],[3]]
=> 2
[[1],[2],[3]]
=> 3
[[1,2,3,4]]
=> 1
[[1,3,4],[2]]
=> 1
[[1,2,4],[3]]
=> 1
[[1,2,3],[4]]
=> 2
[[1,3],[2,4]]
=> 2
[[1,2],[3,4]]
=> 2
[[1,4],[2],[3]]
=> 1
[[1,3],[2],[4]]
=> 3
[[1,2],[3],[4]]
=> 3
[[1],[2],[3],[4]]
=> 4
[[1,2,3,4,5]]
=> 1
[[1,3,4,5],[2]]
=> 1
[[1,2,4,5],[3]]
=> 1
[[1,2,3,5],[4]]
=> 1
[[1,2,3,4],[5]]
=> 2
[[1,3,5],[2,4]]
=> 1
[[1,2,5],[3,4]]
=> 1
[[1,3,4],[2,5]]
=> 2
[[1,2,4],[3,5]]
=> 2
[[1,2,3],[4,5]]
=> 2
[[1,4,5],[2],[3]]
=> 1
[[1,3,5],[2],[4]]
=> 1
[[1,2,5],[3],[4]]
=> 1
[[1,3,4],[2],[5]]
=> 3
[[1,2,4],[3],[5]]
=> 3
[[1,2,3],[4],[5]]
=> 3
[[1,4],[2,5],[3]]
=> 2
[[1,3],[2,5],[4]]
=> 2
[[1,2],[3,5],[4]]
=> 2
[[1,3],[2,4],[5]]
=> 3
[[1,2],[3,4],[5]]
=> 3
[[1,5],[2],[3],[4]]
=> 1
[[1,4],[2],[3],[5]]
=> 4
[[1,3],[2],[4],[5]]
=> 4
[[1,2],[3],[4],[5]]
=> 4
[[1],[2],[3],[4],[5]]
=> 5
[[1,2,3,4,5,6]]
=> 1
[[1,3,4,5,6],[2]]
=> 1
[[1,2,4,5,6],[3]]
=> 1
[[1,2,3,5,6],[4]]
=> 1
[[1,2,3,4,6],[5]]
=> 1
[[1,2,3,4,5],[6]]
=> 2
[[1,3,5,6],[2,4]]
=> 1
[[1,2,5,6],[3,4]]
=> 1
Description
The row containing the largest entry of a standard tableau.
Matching statistic: St000504
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00284: Standard tableaux —rows⟶ Set partitions
Mp00112: Set partitions —complement⟶ Set partitions
St000504: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00112: Set partitions —complement⟶ Set partitions
St000504: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1,2]]
=> {{1,2}}
=> {{1,2}}
=> 2
[[1],[2]]
=> {{1},{2}}
=> {{1},{2}}
=> 1
[[1,2,3]]
=> {{1,2,3}}
=> {{1,2,3}}
=> 3
[[1,3],[2]]
=> {{1,3},{2}}
=> {{1,3},{2}}
=> 2
[[1,2],[3]]
=> {{1,2},{3}}
=> {{1},{2,3}}
=> 1
[[1],[2],[3]]
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> 1
[[1,2,3,4]]
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> 4
[[1,3,4],[2]]
=> {{1,3,4},{2}}
=> {{1,2,4},{3}}
=> 3
[[1,2,4],[3]]
=> {{1,2,4},{3}}
=> {{1,3,4},{2}}
=> 3
[[1,2,3],[4]]
=> {{1,2,3},{4}}
=> {{1},{2,3,4}}
=> 1
[[1,3],[2,4]]
=> {{1,3},{2,4}}
=> {{1,3},{2,4}}
=> 2
[[1,2],[3,4]]
=> {{1,2},{3,4}}
=> {{1,2},{3,4}}
=> 2
[[1,4],[2],[3]]
=> {{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> 2
[[1,3],[2],[4]]
=> {{1,3},{2},{4}}
=> {{1},{2,4},{3}}
=> 1
[[1,2],[3],[4]]
=> {{1,2},{3},{4}}
=> {{1},{2},{3,4}}
=> 1
[[1],[2],[3],[4]]
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> 1
[[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> {{1,2,3,4,5}}
=> 5
[[1,3,4,5],[2]]
=> {{1,3,4,5},{2}}
=> {{1,2,3,5},{4}}
=> 4
[[1,2,4,5],[3]]
=> {{1,2,4,5},{3}}
=> {{1,2,4,5},{3}}
=> 4
[[1,2,3,5],[4]]
=> {{1,2,3,5},{4}}
=> {{1,3,4,5},{2}}
=> 4
[[1,2,3,4],[5]]
=> {{1,2,3,4},{5}}
=> {{1},{2,3,4,5}}
=> 1
[[1,3,5],[2,4]]
=> {{1,3,5},{2,4}}
=> {{1,3,5},{2,4}}
=> 3
[[1,2,5],[3,4]]
=> {{1,2,5},{3,4}}
=> {{1,4,5},{2,3}}
=> 3
[[1,3,4],[2,5]]
=> {{1,3,4},{2,5}}
=> {{1,4},{2,3,5}}
=> 2
[[1,2,4],[3,5]]
=> {{1,2,4},{3,5}}
=> {{1,3},{2,4,5}}
=> 2
[[1,2,3],[4,5]]
=> {{1,2,3},{4,5}}
=> {{1,2},{3,4,5}}
=> 2
[[1,4,5],[2],[3]]
=> {{1,4,5},{2},{3}}
=> {{1,2,5},{3},{4}}
=> 3
[[1,3,5],[2],[4]]
=> {{1,3,5},{2},{4}}
=> {{1,3,5},{2},{4}}
=> 3
[[1,2,5],[3],[4]]
=> {{1,2,5},{3},{4}}
=> {{1,4,5},{2},{3}}
=> 3
[[1,3,4],[2],[5]]
=> {{1,3,4},{2},{5}}
=> {{1},{2,3,5},{4}}
=> 1
[[1,2,4],[3],[5]]
=> {{1,2,4},{3},{5}}
=> {{1},{2,4,5},{3}}
=> 1
[[1,2,3],[4],[5]]
=> {{1,2,3},{4},{5}}
=> {{1},{2},{3,4,5}}
=> 1
[[1,4],[2,5],[3]]
=> {{1,4},{2,5},{3}}
=> {{1,4},{2,5},{3}}
=> 2
[[1,3],[2,5],[4]]
=> {{1,3},{2,5},{4}}
=> {{1,4},{2},{3,5}}
=> 2
[[1,2],[3,5],[4]]
=> {{1,2},{3,5},{4}}
=> {{1,3},{2},{4,5}}
=> 2
[[1,3],[2,4],[5]]
=> {{1,3},{2,4},{5}}
=> {{1},{2,4},{3,5}}
=> 1
[[1,2],[3,4],[5]]
=> {{1,2},{3,4},{5}}
=> {{1},{2,3},{4,5}}
=> 1
[[1,5],[2],[3],[4]]
=> {{1,5},{2},{3},{4}}
=> {{1,5},{2},{3},{4}}
=> 2
[[1,4],[2],[3],[5]]
=> {{1,4},{2},{3},{5}}
=> {{1},{2,5},{3},{4}}
=> 1
[[1,3],[2],[4],[5]]
=> {{1,3},{2},{4},{5}}
=> {{1},{2},{3,5},{4}}
=> 1
[[1,2],[3],[4],[5]]
=> {{1,2},{3},{4},{5}}
=> {{1},{2},{3},{4,5}}
=> 1
[[1],[2],[3],[4],[5]]
=> {{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> 1
[[1,2,3,4,5,6]]
=> {{1,2,3,4,5,6}}
=> {{1,2,3,4,5,6}}
=> 6
[[1,3,4,5,6],[2]]
=> {{1,3,4,5,6},{2}}
=> {{1,2,3,4,6},{5}}
=> 5
[[1,2,4,5,6],[3]]
=> {{1,2,4,5,6},{3}}
=> {{1,2,3,5,6},{4}}
=> 5
[[1,2,3,5,6],[4]]
=> {{1,2,3,5,6},{4}}
=> {{1,2,4,5,6},{3}}
=> 5
[[1,2,3,4,6],[5]]
=> {{1,2,3,4,6},{5}}
=> {{1,3,4,5,6},{2}}
=> 5
[[1,2,3,4,5],[6]]
=> {{1,2,3,4,5},{6}}
=> {{1},{2,3,4,5,6}}
=> 1
[[1,3,5,6],[2,4]]
=> {{1,3,5,6},{2,4}}
=> {{1,2,4,6},{3,5}}
=> 4
[[1,2,5,6],[3,4]]
=> {{1,2,5,6},{3,4}}
=> {{1,2,5,6},{3,4}}
=> 4
Description
The cardinality of the first block of a set partition.
The number of partitions of $\{1,\ldots,n\}$ into $k$ blocks in which the first block has cardinality $j+1$ is given by $\binom{n-1}{j}S(n-j-1,k-1)$, see [1, Theorem 1.1] and the references therein. Here, $S(n,k)$ are the ''Stirling numbers of the second kind'' counting all set partitions of $\{1,\ldots,n\}$ into $k$ blocks [2].
Matching statistic: St000382
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00284: Standard tableaux —rows⟶ Set partitions
Mp00112: Set partitions —complement⟶ Set partitions
Mp00128: Set partitions —to composition⟶ Integer compositions
St000382: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00112: Set partitions —complement⟶ Set partitions
Mp00128: Set partitions —to composition⟶ Integer compositions
St000382: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1,2]]
=> {{1,2}}
=> {{1,2}}
=> [2] => 2
[[1],[2]]
=> {{1},{2}}
=> {{1},{2}}
=> [1,1] => 1
[[1,2,3]]
=> {{1,2,3}}
=> {{1,2,3}}
=> [3] => 3
[[1,3],[2]]
=> {{1,3},{2}}
=> {{1,3},{2}}
=> [2,1] => 2
[[1,2],[3]]
=> {{1,2},{3}}
=> {{1},{2,3}}
=> [1,2] => 1
[[1],[2],[3]]
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> [1,1,1] => 1
[[1,2,3,4]]
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> [4] => 4
[[1,3,4],[2]]
=> {{1,3,4},{2}}
=> {{1,2,4},{3}}
=> [3,1] => 3
[[1,2,4],[3]]
=> {{1,2,4},{3}}
=> {{1,3,4},{2}}
=> [3,1] => 3
[[1,2,3],[4]]
=> {{1,2,3},{4}}
=> {{1},{2,3,4}}
=> [1,3] => 1
[[1,3],[2,4]]
=> {{1,3},{2,4}}
=> {{1,3},{2,4}}
=> [2,2] => 2
[[1,2],[3,4]]
=> {{1,2},{3,4}}
=> {{1,2},{3,4}}
=> [2,2] => 2
[[1,4],[2],[3]]
=> {{1,4},{2},{3}}
=> {{1,4},{2},{3}}
=> [2,1,1] => 2
[[1,3],[2],[4]]
=> {{1,3},{2},{4}}
=> {{1},{2,4},{3}}
=> [1,2,1] => 1
[[1,2],[3],[4]]
=> {{1,2},{3},{4}}
=> {{1},{2},{3,4}}
=> [1,1,2] => 1
[[1],[2],[3],[4]]
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> [1,1,1,1] => 1
[[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> {{1,2,3,4,5}}
=> [5] => 5
[[1,3,4,5],[2]]
=> {{1,3,4,5},{2}}
=> {{1,2,3,5},{4}}
=> [4,1] => 4
[[1,2,4,5],[3]]
=> {{1,2,4,5},{3}}
=> {{1,2,4,5},{3}}
=> [4,1] => 4
[[1,2,3,5],[4]]
=> {{1,2,3,5},{4}}
=> {{1,3,4,5},{2}}
=> [4,1] => 4
[[1,2,3,4],[5]]
=> {{1,2,3,4},{5}}
=> {{1},{2,3,4,5}}
=> [1,4] => 1
[[1,3,5],[2,4]]
=> {{1,3,5},{2,4}}
=> {{1,3,5},{2,4}}
=> [3,2] => 3
[[1,2,5],[3,4]]
=> {{1,2,5},{3,4}}
=> {{1,4,5},{2,3}}
=> [3,2] => 3
[[1,3,4],[2,5]]
=> {{1,3,4},{2,5}}
=> {{1,4},{2,3,5}}
=> [2,3] => 2
[[1,2,4],[3,5]]
=> {{1,2,4},{3,5}}
=> {{1,3},{2,4,5}}
=> [2,3] => 2
[[1,2,3],[4,5]]
=> {{1,2,3},{4,5}}
=> {{1,2},{3,4,5}}
=> [2,3] => 2
[[1,4,5],[2],[3]]
=> {{1,4,5},{2},{3}}
=> {{1,2,5},{3},{4}}
=> [3,1,1] => 3
[[1,3,5],[2],[4]]
=> {{1,3,5},{2},{4}}
=> {{1,3,5},{2},{4}}
=> [3,1,1] => 3
[[1,2,5],[3],[4]]
=> {{1,2,5},{3},{4}}
=> {{1,4,5},{2},{3}}
=> [3,1,1] => 3
[[1,3,4],[2],[5]]
=> {{1,3,4},{2},{5}}
=> {{1},{2,3,5},{4}}
=> [1,3,1] => 1
[[1,2,4],[3],[5]]
=> {{1,2,4},{3},{5}}
=> {{1},{2,4,5},{3}}
=> [1,3,1] => 1
[[1,2,3],[4],[5]]
=> {{1,2,3},{4},{5}}
=> {{1},{2},{3,4,5}}
=> [1,1,3] => 1
[[1,4],[2,5],[3]]
=> {{1,4},{2,5},{3}}
=> {{1,4},{2,5},{3}}
=> [2,2,1] => 2
[[1,3],[2,5],[4]]
=> {{1,3},{2,5},{4}}
=> {{1,4},{2},{3,5}}
=> [2,1,2] => 2
[[1,2],[3,5],[4]]
=> {{1,2},{3,5},{4}}
=> {{1,3},{2},{4,5}}
=> [2,1,2] => 2
[[1,3],[2,4],[5]]
=> {{1,3},{2,4},{5}}
=> {{1},{2,4},{3,5}}
=> [1,2,2] => 1
[[1,2],[3,4],[5]]
=> {{1,2},{3,4},{5}}
=> {{1},{2,3},{4,5}}
=> [1,2,2] => 1
[[1,5],[2],[3],[4]]
=> {{1,5},{2},{3},{4}}
=> {{1,5},{2},{3},{4}}
=> [2,1,1,1] => 2
[[1,4],[2],[3],[5]]
=> {{1,4},{2},{3},{5}}
=> {{1},{2,5},{3},{4}}
=> [1,2,1,1] => 1
[[1,3],[2],[4],[5]]
=> {{1,3},{2},{4},{5}}
=> {{1},{2},{3,5},{4}}
=> [1,1,2,1] => 1
[[1,2],[3],[4],[5]]
=> {{1,2},{3},{4},{5}}
=> {{1},{2},{3},{4,5}}
=> [1,1,1,2] => 1
[[1],[2],[3],[4],[5]]
=> {{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> [1,1,1,1,1] => 1
[[1,2,3,4,5,6]]
=> {{1,2,3,4,5,6}}
=> {{1,2,3,4,5,6}}
=> [6] => 6
[[1,3,4,5,6],[2]]
=> {{1,3,4,5,6},{2}}
=> {{1,2,3,4,6},{5}}
=> [5,1] => 5
[[1,2,4,5,6],[3]]
=> {{1,2,4,5,6},{3}}
=> {{1,2,3,5,6},{4}}
=> [5,1] => 5
[[1,2,3,5,6],[4]]
=> {{1,2,3,5,6},{4}}
=> {{1,2,4,5,6},{3}}
=> [5,1] => 5
[[1,2,3,4,6],[5]]
=> {{1,2,3,4,6},{5}}
=> {{1,3,4,5,6},{2}}
=> [5,1] => 5
[[1,2,3,4,5],[6]]
=> {{1,2,3,4,5},{6}}
=> {{1},{2,3,4,5,6}}
=> [1,5] => 1
[[1,3,5,6],[2,4]]
=> {{1,3,5,6},{2,4}}
=> {{1,2,4,6},{3,5}}
=> [4,2] => 4
[[1,2,5,6],[3,4]]
=> {{1,2,5,6},{3,4}}
=> {{1,2,5,6},{3,4}}
=> [4,2] => 4
Description
The first part of an integer composition.
Matching statistic: St000502
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00284: Standard tableaux —rows⟶ Set partitions
Mp00091: Set partitions —rotate increasing⟶ Set partitions
Mp00174: Set partitions —dual major index to intertwining number⟶ Set partitions
St000502: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00091: Set partitions —rotate increasing⟶ Set partitions
Mp00174: Set partitions —dual major index to intertwining number⟶ Set partitions
St000502: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1,2]]
=> {{1,2}}
=> {{1,2}}
=> {{1,2}}
=> 1 = 2 - 1
[[1],[2]]
=> {{1},{2}}
=> {{1},{2}}
=> {{1},{2}}
=> 0 = 1 - 1
[[1,2,3]]
=> {{1,2,3}}
=> {{1,2,3}}
=> {{1,2,3}}
=> 2 = 3 - 1
[[1,3],[2]]
=> {{1,3},{2}}
=> {{1,2},{3}}
=> {{1,2},{3}}
=> 1 = 2 - 1
[[1,2],[3]]
=> {{1,2},{3}}
=> {{1},{2,3}}
=> {{1,3},{2}}
=> 0 = 1 - 1
[[1],[2],[3]]
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> {{1},{2},{3}}
=> 0 = 1 - 1
[[1,2,3,4]]
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> {{1,2,3,4}}
=> 3 = 4 - 1
[[1,3,4],[2]]
=> {{1,3,4},{2}}
=> {{1,2,4},{3}}
=> {{1,2},{3,4}}
=> 2 = 3 - 1
[[1,2,4],[3]]
=> {{1,2,4},{3}}
=> {{1,2,3},{4}}
=> {{1,2,3},{4}}
=> 2 = 3 - 1
[[1,2,3],[4]]
=> {{1,2,3},{4}}
=> {{1},{2,3,4}}
=> {{1,3},{2,4}}
=> 0 = 1 - 1
[[1,3],[2,4]]
=> {{1,3},{2,4}}
=> {{1,3},{2,4}}
=> {{1,4},{2,3}}
=> 1 = 2 - 1
[[1,2],[3,4]]
=> {{1,2},{3,4}}
=> {{1,4},{2,3}}
=> {{1,3,4},{2}}
=> 1 = 2 - 1
[[1,4],[2],[3]]
=> {{1,4},{2},{3}}
=> {{1,2},{3},{4}}
=> {{1,2},{3},{4}}
=> 1 = 2 - 1
[[1,3],[2],[4]]
=> {{1,3},{2},{4}}
=> {{1},{2,4},{3}}
=> {{1},{2,4},{3}}
=> 0 = 1 - 1
[[1,2],[3],[4]]
=> {{1,2},{3},{4}}
=> {{1},{2,3},{4}}
=> {{1,3},{2},{4}}
=> 0 = 1 - 1
[[1],[2],[3],[4]]
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> {{1},{2},{3},{4}}
=> 0 = 1 - 1
[[1,2,3,4,5]]
=> {{1,2,3,4,5}}
=> {{1,2,3,4,5}}
=> {{1,2,3,4,5}}
=> 4 = 5 - 1
[[1,3,4,5],[2]]
=> {{1,3,4,5},{2}}
=> {{1,2,4,5},{3}}
=> {{1,2},{3,4,5}}
=> 3 = 4 - 1
[[1,2,4,5],[3]]
=> {{1,2,4,5},{3}}
=> {{1,2,3,5},{4}}
=> {{1,2,3},{4,5}}
=> 3 = 4 - 1
[[1,2,3,5],[4]]
=> {{1,2,3,5},{4}}
=> {{1,2,3,4},{5}}
=> {{1,2,3,4},{5}}
=> 3 = 4 - 1
[[1,2,3,4],[5]]
=> {{1,2,3,4},{5}}
=> {{1},{2,3,4,5}}
=> {{1,3,5},{2,4}}
=> 0 = 1 - 1
[[1,3,5],[2,4]]
=> {{1,3,5},{2,4}}
=> {{1,2,4},{3,5}}
=> {{1,2,5},{3,4}}
=> 2 = 3 - 1
[[1,2,5],[3,4]]
=> {{1,2,5},{3,4}}
=> {{1,2,3},{4,5}}
=> {{1,2,3,5},{4}}
=> 2 = 3 - 1
[[1,3,4],[2,5]]
=> {{1,3,4},{2,5}}
=> {{1,3},{2,4,5}}
=> {{1,4},{2,3,5}}
=> 1 = 2 - 1
[[1,2,4],[3,5]]
=> {{1,2,4},{3,5}}
=> {{1,4},{2,3,5}}
=> {{1,3,4},{2,5}}
=> 1 = 2 - 1
[[1,2,3],[4,5]]
=> {{1,2,3},{4,5}}
=> {{1,5},{2,3,4}}
=> {{1,3},{2,4,5}}
=> 1 = 2 - 1
[[1,4,5],[2],[3]]
=> {{1,4,5},{2},{3}}
=> {{1,2,5},{3},{4}}
=> {{1,2},{3},{4,5}}
=> 2 = 3 - 1
[[1,3,5],[2],[4]]
=> {{1,3,5},{2},{4}}
=> {{1,2,4},{3},{5}}
=> {{1,2},{3,4},{5}}
=> 2 = 3 - 1
[[1,2,5],[3],[4]]
=> {{1,2,5},{3},{4}}
=> {{1,2,3},{4},{5}}
=> {{1,2,3},{4},{5}}
=> 2 = 3 - 1
[[1,3,4],[2],[5]]
=> {{1,3,4},{2},{5}}
=> {{1},{2,4,5},{3}}
=> {{1},{2,4},{3,5}}
=> 0 = 1 - 1
[[1,2,4],[3],[5]]
=> {{1,2,4},{3},{5}}
=> {{1},{2,3,5},{4}}
=> {{1,3,5},{2},{4}}
=> 0 = 1 - 1
[[1,2,3],[4],[5]]
=> {{1,2,3},{4},{5}}
=> {{1},{2,3,4},{5}}
=> {{1,3},{2,4},{5}}
=> 0 = 1 - 1
[[1,4],[2,5],[3]]
=> {{1,4},{2,5},{3}}
=> {{1,3},{2,5},{4}}
=> {{1},{2,3,5},{4}}
=> 1 = 2 - 1
[[1,3],[2,5],[4]]
=> {{1,3},{2,5},{4}}
=> {{1,3},{2,4},{5}}
=> {{1,4},{2,3},{5}}
=> 1 = 2 - 1
[[1,2],[3,5],[4]]
=> {{1,2},{3,5},{4}}
=> {{1,4},{2,3},{5}}
=> {{1,3,4},{2},{5}}
=> 1 = 2 - 1
[[1,3],[2,4],[5]]
=> {{1,3},{2,4},{5}}
=> {{1},{2,4},{3,5}}
=> {{1,5},{2,4},{3}}
=> 0 = 1 - 1
[[1,2],[3,4],[5]]
=> {{1,2},{3,4},{5}}
=> {{1},{2,3},{4,5}}
=> {{1,3},{2,5},{4}}
=> 0 = 1 - 1
[[1,5],[2],[3],[4]]
=> {{1,5},{2},{3},{4}}
=> {{1,2},{3},{4},{5}}
=> {{1,2},{3},{4},{5}}
=> 1 = 2 - 1
[[1,4],[2],[3],[5]]
=> {{1,4},{2},{3},{5}}
=> {{1},{2,5},{3},{4}}
=> {{1},{2},{3,5},{4}}
=> 0 = 1 - 1
[[1,3],[2],[4],[5]]
=> {{1,3},{2},{4},{5}}
=> {{1},{2,4},{3},{5}}
=> {{1},{2,4},{3},{5}}
=> 0 = 1 - 1
[[1,2],[3],[4],[5]]
=> {{1,2},{3},{4},{5}}
=> {{1},{2,3},{4},{5}}
=> {{1,3},{2},{4},{5}}
=> 0 = 1 - 1
[[1],[2],[3],[4],[5]]
=> {{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> {{1},{2},{3},{4},{5}}
=> 0 = 1 - 1
[[1,2,3,4,5,6]]
=> {{1,2,3,4,5,6}}
=> {{1,2,3,4,5,6}}
=> {{1,2,3,4,5,6}}
=> 5 = 6 - 1
[[1,3,4,5,6],[2]]
=> {{1,3,4,5,6},{2}}
=> {{1,2,4,5,6},{3}}
=> {{1,2},{3,4,5,6}}
=> 4 = 5 - 1
[[1,2,4,5,6],[3]]
=> {{1,2,4,5,6},{3}}
=> {{1,2,3,5,6},{4}}
=> {{1,2,3},{4,5,6}}
=> 4 = 5 - 1
[[1,2,3,5,6],[4]]
=> {{1,2,3,5,6},{4}}
=> {{1,2,3,4,6},{5}}
=> {{1,2,3,4},{5,6}}
=> 4 = 5 - 1
[[1,2,3,4,6],[5]]
=> {{1,2,3,4,6},{5}}
=> {{1,2,3,4,5},{6}}
=> {{1,2,3,4,5},{6}}
=> 4 = 5 - 1
[[1,2,3,4,5],[6]]
=> {{1,2,3,4,5},{6}}
=> {{1},{2,3,4,5,6}}
=> {{1,3,5},{2,4,6}}
=> 0 = 1 - 1
[[1,3,5,6],[2,4]]
=> {{1,3,5,6},{2,4}}
=> {{1,2,4,6},{3,5}}
=> {{1,2,5,6},{3,4}}
=> 3 = 4 - 1
[[1,2,5,6],[3,4]]
=> {{1,2,5,6},{3,4}}
=> {{1,2,3,6},{4,5}}
=> {{1,2,3,5,6},{4}}
=> 3 = 4 - 1
Description
The number of successions of a set partitions.
This is the number of indices $i$ such that $i$ and $i+1$ belonging to the same block.
Matching statistic: St000771
(load all 11 compositions to match this statistic)
(load all 11 compositions to match this statistic)
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00239: Permutations —Corteel⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 66% ●values known / values provided: 66%●distinct values known / distinct values provided: 71%
Mp00239: Permutations —Corteel⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000771: Graphs ⟶ ℤResult quality: 66% ●values known / values provided: 66%●distinct values known / distinct values provided: 71%
Values
[[1,2]]
=> [1,2] => [1,2] => ([],2)
=> ? = 2
[[1],[2]]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[[1,2,3]]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {2,3}
[[1,3],[2]]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? ∊ {2,3}
[[1,2],[3]]
=> [3,1,2] => [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1],[2],[3]]
=> [3,2,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[[1,2,3,4]]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {1,1,3,4}
[[1,3,4],[2]]
=> [2,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {1,1,3,4}
[[1,2,4],[3]]
=> [3,1,2,4] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,3,4}
[[1,2,3],[4]]
=> [4,1,2,3] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,3],[2,4]]
=> [2,4,1,3] => [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[1,2],[3,4]]
=> [3,4,1,2] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,4],[2],[3]]
=> [3,2,1,4] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? ∊ {1,1,3,4}
[[1,3],[2],[4]]
=> [4,2,1,3] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 1
[[1,2],[3],[4]]
=> [4,3,1,2] => [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[[1],[2],[3],[4]]
=> [4,3,2,1] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[[1,2,3,4,5]]
=> [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {1,1,1,1,3,3,4,4,4,5}
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => [2,1,3,4,5] => ([(3,4)],5)
=> ? ∊ {1,1,1,1,3,3,4,4,4,5}
[[1,2,4,5],[3]]
=> [3,1,2,4,5] => [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,3,3,4,4,4,5}
[[1,2,3,5],[4]]
=> [4,1,2,3,5] => [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,3,3,4,4,4,5}
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[1,3,5],[2,4]]
=> [2,4,1,3,5] => [4,2,1,3,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,3,3,4,4,4,5}
[[1,2,5],[3,4]]
=> [3,4,1,2,5] => [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,3,3,4,4,4,5}
[[1,3,4],[2,5]]
=> [2,5,1,3,4] => [5,2,1,3,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,2,4],[3,5]]
=> [3,5,1,2,4] => [5,3,2,1,4] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,2,3],[4,5]]
=> [4,5,1,2,3] => [5,4,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,3,3,4,4,4,5}
[[1,3,5],[2],[4]]
=> [4,2,1,3,5] => [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ? ∊ {1,1,1,1,3,3,4,4,4,5}
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => [3,4,2,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,3,3,4,4,4,5}
[[1,3,4],[2],[5]]
=> [5,2,1,3,4] => [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[[1,2,4],[3],[5]]
=> [5,3,1,2,4] => [3,5,2,1,4] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [4,5,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 2
[[1,4],[2,5],[3]]
=> [3,2,5,1,4] => [2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,2],[3,4],[5]]
=> [5,3,4,1,2] => [3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,3,3,4,4,4,5}
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [4,5,1,3,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 1
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => [2,1,3,4,5,6] => ([(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => [3,1,2,4,5,6] => ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => [4,1,2,3,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => [5,1,2,3,4,6] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
[[1,3,5,6],[2,4]]
=> [2,4,1,3,5,6] => [4,2,1,3,5,6] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => [4,3,2,1,5,6] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,4,6],[2,5]]
=> [2,5,1,3,4,6] => [5,2,1,3,4,6] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => [5,3,2,1,4,6] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => [5,4,2,3,1,6] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,4,5],[2,6]]
=> [2,6,1,3,4,5] => [6,2,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,2,4,5],[3,6]]
=> [3,6,1,2,4,5] => [6,3,2,1,4,5] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,3,5],[4,6]]
=> [4,6,1,2,3,5] => [6,4,2,3,1,5] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => [6,5,2,3,4,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => [2,3,1,4,5,6] => ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,5,6],[2],[4]]
=> [4,2,1,3,5,6] => [2,4,1,3,5,6] => ([(2,5),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,5,6],[3],[4]]
=> [4,3,1,2,5,6] => [3,4,2,1,5,6] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,4,6],[2],[5]]
=> [5,2,1,3,4,6] => [2,5,1,3,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,4,6],[3],[5]]
=> [5,3,1,2,4,6] => [3,5,2,1,4,6] => ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,3,6],[4],[5]]
=> [5,4,1,2,3,6] => [4,5,2,3,1,6] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,4,5],[2],[6]]
=> [6,2,1,3,4,5] => [2,6,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 2
[[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => [3,6,2,1,4,5] => ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,3,5],[4],[6]]
=> [6,4,1,2,3,5] => [4,6,2,3,1,5] => ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => [5,6,2,3,4,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 2
[[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => [6,2,4,3,1,5] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,5],[3,4,6]]
=> [3,4,6,1,2,5] => [6,4,3,2,1,5] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,3,4],[2,5,6]]
=> [2,5,6,1,3,4] => [6,2,5,3,4,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,4],[3,5,6]]
=> [3,5,6,1,2,4] => [6,5,3,2,4,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[[1,4,6],[2,5],[3]]
=> [3,2,5,1,4,6] => [2,5,3,1,4,6] => ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => [2,5,4,3,1,6] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,6],[3,5],[4]]
=> [4,3,5,1,2,6] => [4,5,3,2,1,6] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,6],[2,4],[5]]
=> [5,2,4,1,3,6] => [2,4,5,3,1,6] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,6],[3,4],[5]]
=> [5,3,4,1,2,6] => [3,5,4,2,1,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,4,5],[2,6],[3]]
=> [3,2,6,1,4,5] => [2,6,3,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 1
[[1,3,5],[2,6],[4]]
=> [4,2,6,1,3,5] => [2,6,4,3,1,5] => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,5],[3,6],[4]]
=> [4,3,6,1,2,5] => [4,6,3,2,1,5] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,3,4],[2,6],[5]]
=> [5,2,6,1,3,4] => [2,6,5,3,4,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,4],[3,6],[5]]
=> [5,3,6,1,2,4] => [5,6,3,2,4,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 2
[[1,2,3],[4,6],[5]]
=> [5,4,6,1,2,3] => [5,6,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[[1,3,5],[2,4],[6]]
=> [6,2,4,1,3,5] => [2,4,6,3,1,5] => ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,5],[3,4],[6]]
=> [6,3,4,1,2,5] => [3,6,4,2,1,5] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,3,4],[2,5],[6]]
=> [6,2,5,1,3,4] => [2,5,6,3,4,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 2
[[1,2,4],[3,5],[6]]
=> [6,3,5,1,2,4] => [3,6,5,2,4,1] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => [4,6,5,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => [3,4,1,2,5,6] => ([(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,4,6],[2],[3],[5]]
=> [5,3,2,1,4,6] => [3,5,1,2,4,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,6],[2],[4],[5]]
=> [5,4,2,1,3,6] => [4,5,1,3,2,6] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,6],[3],[4],[5]]
=> [5,4,3,1,2,6] => [3,4,5,2,1,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,6],[2],[3],[4],[5]]
=> [5,4,3,2,1,6] => [3,4,5,1,2,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,3,4,5,6,7]]
=> [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ([],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7}
[[1,3,4,5,6,7],[2]]
=> [2,1,3,4,5,6,7] => [2,1,3,4,5,6,7] => ([(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7}
[[1,2,4,5,6,7],[3]]
=> [3,1,2,4,5,6,7] => [3,1,2,4,5,6,7] => ([(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7}
[[1,2,3,5,6,7],[4]]
=> [4,1,2,3,5,6,7] => [4,1,2,3,5,6,7] => ([(3,6),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7}
[[1,2,3,4,6,7],[5]]
=> [5,1,2,3,4,6,7] => [5,1,2,3,4,6,7] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7}
[[1,2,3,4,5,7],[6]]
=> [6,1,2,3,4,5,7] => [6,1,2,3,4,5,7] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7}
[[1,3,5,6,7],[2,4]]
=> [2,4,1,3,5,6,7] => [4,2,1,3,5,6,7] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7}
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $2$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Matching statistic: St001432
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St001432: Integer partitions ⟶ ℤResult quality: 57% ●values known / values provided: 61%●distinct values known / distinct values provided: 57%
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St001432: Integer partitions ⟶ ℤResult quality: 57% ●values known / values provided: 61%●distinct values known / distinct values provided: 57%
Values
[[1,2]]
=> [1,2] => [1,0,1,0]
=> [1]
=> 1
[[1],[2]]
=> [2,1] => [1,1,0,0]
=> []
=> ? = 2
[[1,2,3]]
=> [1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> 2
[[1,3],[2]]
=> [2,1,3] => [1,1,0,0,1,0]
=> [2]
=> 1
[[1,2],[3]]
=> [3,1,2] => [1,1,1,0,0,0]
=> []
=> ? ∊ {1,3}
[[1],[2],[3]]
=> [3,2,1] => [1,1,1,0,0,0]
=> []
=> ? ∊ {1,3}
[[1,2,3,4]]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 3
[[1,3,4],[2]]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [3,2]
=> 2
[[1,2,4],[3]]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> 1
[[1,2,3],[4]]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {2,2,3,4}
[[1,3],[2,4]]
=> [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> 1
[[1,2],[3,4]]
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1]
=> 1
[[1,4],[2],[3]]
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> 1
[[1,3],[2],[4]]
=> [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {2,2,3,4}
[[1,2],[3],[4]]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {2,2,3,4}
[[1],[2],[3],[4]]
=> [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {2,2,3,4}
[[1,2,3,4,5]]
=> [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 4
[[1,3,4,5],[2]]
=> [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> 3
[[1,2,4,5],[3]]
=> [3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> 2
[[1,2,3,5],[4]]
=> [4,1,2,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 1
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,4,4,5}
[[1,3,5],[2,4]]
=> [2,4,1,3,5] => [1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> 2
[[1,2,5],[3,4]]
=> [3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> 2
[[1,3,4],[2,5]]
=> [2,5,1,3,4] => [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> 1
[[1,2,4],[3,5]]
=> [3,5,1,2,4] => [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> 1
[[1,2,3],[4,5]]
=> [4,5,1,2,3] => [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> 1
[[1,4,5],[2],[3]]
=> [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> 2
[[1,3,5],[2],[4]]
=> [4,2,1,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 1
[[1,2,5],[3],[4]]
=> [4,3,1,2,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 1
[[1,3,4],[2],[5]]
=> [5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,4,4,5}
[[1,2,4],[3],[5]]
=> [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,4,4,5}
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,4,4,5}
[[1,4],[2,5],[3]]
=> [3,2,5,1,4] => [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> 2
[[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 1
[[1,2],[3,5],[4]]
=> [4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 1
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,4,4,5}
[[1,2],[3,4],[5]]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,4,4,5}
[[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 1
[[1,4],[2],[3],[5]]
=> [5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,4,4,5}
[[1,3],[2],[4],[5]]
=> [5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,4,4,5}
[[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,4,4,5}
[[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,4,4,5}
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1]
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2]
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [5,4,3]
=> 3
[[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [5,4]
=> 2
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5]
=> 1
[[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,5,6],[2,4]]
=> [2,4,1,3,5,6] => [1,1,0,1,1,0,0,0,1,0,1,0]
=> [5,4,1,1]
=> 3
[[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => [1,1,1,0,1,0,0,0,1,0,1,0]
=> [5,4,1]
=> 3
[[1,3,4,6],[2,5]]
=> [2,5,1,3,4,6] => [1,1,0,1,1,1,0,0,0,0,1,0]
=> [5,1,1,1]
=> 2
[[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,1,1]
=> 2
[[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => [1,1,1,1,0,1,0,0,0,0,1,0]
=> [5,1]
=> 2
[[1,3,4,5],[2,6]]
=> [2,6,1,3,4,5] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1]
=> 1
[[1,2,4,5],[3,6]]
=> [3,6,1,2,4,5] => [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1]
=> 1
[[1,2,3,5],[4,6]]
=> [4,6,1,2,3,5] => [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> 1
[[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> 1
[[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [5,4,3]
=> 3
[[1,3,5,6],[2],[4]]
=> [4,2,1,3,5,6] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [5,4]
=> 2
[[1,2,5,6],[3],[4]]
=> [4,3,1,2,5,6] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [5,4]
=> 2
[[1,3,4,6],[2],[5]]
=> [5,2,1,3,4,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5]
=> 1
[[1,2,4,6],[3],[5]]
=> [5,3,1,2,4,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5]
=> 1
[[1,2,3,6],[4],[5]]
=> [5,4,1,2,3,6] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5]
=> 1
[[1,3,4,5],[2],[6]]
=> [6,2,1,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3,5],[4],[6]]
=> [6,4,1,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => [1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,2,1,1]
=> 2
[[1,2,5],[3,4,6]]
=> [3,4,6,1,2,5] => [1,1,1,0,1,0,1,1,0,0,0,0]
=> [2,2,1]
=> 2
[[1,3,4],[2,5,6]]
=> [2,5,6,1,3,4] => [1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,1,1,1]
=> 2
[[1,2,4],[3,5,6]]
=> [3,5,6,1,2,4] => [1,1,1,0,1,1,0,1,0,0,0,0]
=> [2,1,1]
=> 2
[[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => [1,1,1,1,0,1,0,1,0,0,0,0]
=> [2,1]
=> 2
[[1,4,6],[2,5],[3]]
=> [3,2,5,1,4,6] => [1,1,1,0,0,1,1,0,0,0,1,0]
=> [5,2,2]
=> 3
[[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => [1,1,1,1,0,0,1,0,0,0,1,0]
=> [5,2]
=> 2
[[1,3,5],[2,4],[6]]
=> [6,2,4,1,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,5],[3,4],[6]]
=> [6,3,4,1,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,4],[2,5],[6]]
=> [6,2,5,1,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,4],[3,5],[6]]
=> [6,3,5,1,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,4,5],[2],[3],[6]]
=> [6,3,2,1,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,5],[2],[4],[6]]
=> [6,4,2,1,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,5],[3],[4],[6]]
=> [6,4,3,1,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,4],[2],[5],[6]]
=> [6,5,2,1,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,4],[3],[5],[6]]
=> [6,5,3,1,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,4],[2,5],[3],[6]]
=> [6,3,2,5,1,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3],[2,5],[4],[6]]
=> [6,4,2,5,1,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2],[3,5],[4],[6]]
=> [6,4,3,5,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3],[2,4],[5],[6]]
=> [6,5,2,4,1,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,5],[2],[3],[4],[6]]
=> [6,4,3,2,1,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,4],[2],[3],[5],[6]]
=> [6,5,3,2,1,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3],[2],[4],[5],[6]]
=> [6,5,4,2,1,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {1,2,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3,4,5,6,7]]
=> [1,2,3,4,5,6,7] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1]
=> ? ∊ {1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7}
[[1,3,4,5,6,7],[2]]
=> [2,1,3,4,5,6,7] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2]
=> ? ∊ {1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7}
[[1,2,4,5,6,7],[3]]
=> [3,1,2,4,5,6,7] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3]
=> ? ∊ {1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7}
[[1,2,3,5,6,7],[4]]
=> [4,1,2,3,5,6,7] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [6,5,4]
=> ? ∊ {1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7}
[[1,2,3,4,5,6],[7]]
=> [7,1,2,3,4,5,6] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,7}
Description
The order dimension of the partition.
Given a partition $\lambda$, let $I(\lambda)$ be the principal order ideal in the Young lattice generated by $\lambda$. The order dimension of a partition is defined as the order dimension of the poset $I(\lambda)$.
Matching statistic: St000260
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00106: Standard tableaux —catabolism⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 29% ●values known / values provided: 52%●distinct values known / distinct values provided: 29%
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 29% ●values known / values provided: 52%●distinct values known / distinct values provided: 29%
Values
[[1,2]]
=> [[1,2]]
=> [1,2] => ([],2)
=> ? ∊ {1,2}
[[1],[2]]
=> [[1,2]]
=> [1,2] => ([],2)
=> ? ∊ {1,2}
[[1,2,3]]
=> [[1,2,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {2,3}
[[1,3],[2]]
=> [[1,2],[3]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1,2],[3]]
=> [[1,2,3]]
=> [1,2,3] => ([],3)
=> ? ∊ {2,3}
[[1],[2],[3]]
=> [[1,2],[3]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[1,2,3,4]]
=> [[1,2,3,4]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {2,2,2,3,3,4}
[[1,3,4],[2]]
=> [[1,2,4],[3]]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,2,3,3,4}
[[1,2,4],[3]]
=> [[1,2,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[[1,2,3],[4]]
=> [[1,2,3,4]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {2,2,2,3,3,4}
[[1,3],[2,4]]
=> [[1,2,4],[3]]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,2,3,3,4}
[[1,2],[3,4]]
=> [[1,2,3,4]]
=> [1,2,3,4] => ([],4)
=> ? ∊ {2,2,2,3,3,4}
[[1,4],[2],[3]]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[1,3],[2],[4]]
=> [[1,2,4],[3]]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {2,2,2,3,3,4}
[[1,2],[3],[4]]
=> [[1,2,3],[4]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[[1],[2],[3],[4]]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[1,2,3,4,5]]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => ([],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,3,4,5],[2]]
=> [[1,2,4,5],[3]]
=> [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,2,4,5],[3]]
=> [[1,2,3,5],[4]]
=> [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,2,3,5],[4]]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[[1,2,3,4],[5]]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => ([],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,3,5],[2,4]]
=> [[1,2,4],[3,5]]
=> [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[[1,2,5],[3,4]]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[[1,3,4],[2,5]]
=> [[1,2,4,5],[3]]
=> [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,2,4],[3,5]]
=> [[1,2,3,5],[4]]
=> [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,2,3],[4,5]]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => ([],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,4,5],[2],[3]]
=> [[1,2,5],[3],[4]]
=> [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,3,5],[2],[4]]
=> [[1,2,4],[3],[5]]
=> [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,2,5],[3],[4]]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,3,4],[2],[5]]
=> [[1,2,4,5],[3]]
=> [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,2,4],[3],[5]]
=> [[1,2,3,5],[4]]
=> [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,2,3],[4],[5]]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[[1,4],[2,5],[3]]
=> [[1,2,5],[3],[4]]
=> [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,3],[2,5],[4]]
=> [[1,2,4,5],[3]]
=> [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,2],[3,5],[4]]
=> [[1,2,3,5],[4]]
=> [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,3],[2,4],[5]]
=> [[1,2,4],[3,5]]
=> [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[[1,2],[3,4],[5]]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[[1,5],[2],[3],[4]]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,4],[2],[3],[5]]
=> [[1,2,5],[3],[4]]
=> [4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,3],[2],[4],[5]]
=> [[1,2,4],[3],[5]]
=> [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,2],[3],[4],[5]]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1],[2],[3],[4],[5]]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,2,3,4,5,6]]
=> [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => ([],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,4,5,6],[2]]
=> [[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => ([(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,4,5,6],[3]]
=> [[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3,5,6],[4]]
=> [[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3,4,6],[5]]
=> [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[[1,2,3,4,5],[6]]
=> [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => ([],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,5,6],[2,4]]
=> [[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,5,6],[3,4]]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[[1,3,4,6],[2,5]]
=> [[1,2,4,5],[3,6]]
=> [3,6,1,2,4,5] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[[1,2,4,6],[3,5]]
=> [[1,2,3,5],[4,6]]
=> [4,6,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[[1,2,3,6],[4,5]]
=> [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[[1,3,4,5],[2,6]]
=> [[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => ([(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,4,5],[3,6]]
=> [[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3,5],[4,6]]
=> [[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3,4],[5,6]]
=> [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => ([],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,4,5,6],[2],[3]]
=> [[1,2,5,6],[3],[4]]
=> [4,3,1,2,5,6] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,5,6],[2],[4]]
=> [[1,2,4,6],[3],[5]]
=> [5,3,1,2,4,6] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,5,6],[3],[4]]
=> [[1,2,3,6],[4],[5]]
=> [5,4,1,2,3,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,4,6],[2],[5]]
=> [[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,4,6],[3],[5]]
=> [[1,2,3,5],[4],[6]]
=> [6,4,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,3,6],[4],[5]]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,3,4,5],[2],[6]]
=> [[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => ([(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,4,5],[3],[6]]
=> [[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3,5],[4],[6]]
=> [[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3,4],[5],[6]]
=> [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[[1,3,5],[2,4,6]]
=> [[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,5],[3,4,6]]
=> [[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,4],[2,5,6]]
=> [[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => ([(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,4],[3,5,6]]
=> [[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3],[4,5,6]]
=> [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => ([],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,4,6],[2,5],[3]]
=> [[1,2,5],[3,6],[4]]
=> [4,3,6,1,2,5] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[[1,3,6],[2,5],[4]]
=> [[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,6],[3,5],[4]]
=> [[1,2,3,5],[4],[6]]
=> [6,4,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,3,6],[2,4],[5]]
=> [[1,2,4],[3,5],[6]]
=> [6,3,5,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,6],[3,4],[5]]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,4,5],[2,6],[3]]
=> [[1,2,5,6],[3],[4]]
=> [4,3,1,2,5,6] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,5],[2,6],[4]]
=> [[1,2,4,6],[3],[5]]
=> [5,3,1,2,4,6] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,5],[3,6],[4]]
=> [[1,2,3,6],[4],[5]]
=> [5,4,1,2,3,6] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,4],[2,6],[5]]
=> [[1,2,4,5,6],[3]]
=> [3,1,2,4,5,6] => ([(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,4],[3,6],[5]]
=> [[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,5],[3,4],[6]]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[[1,3,4],[2,5],[6]]
=> [[1,2,4,5],[3,6]]
=> [3,6,1,2,4,5] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[[1,2,4],[3,5],[6]]
=> [[1,2,3,5],[4,6]]
=> [4,6,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[[1,2,3],[4,5],[6]]
=> [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[[1,4,6],[2],[3],[5]]
=> [[1,2,5],[3],[4],[6]]
=> [6,4,3,1,2,5] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,3,6],[2],[4],[5]]
=> [[1,2,4],[3],[5],[6]]
=> [6,5,3,1,2,4] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,6],[3],[4],[5]]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,3,4],[2],[5],[6]]
=> [[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,4],[3],[5],[6]]
=> [[1,2,3,5],[4],[6]]
=> [6,4,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,3],[4],[5],[6]]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,4],[2,5],[3,6]]
=> [[1,2,5],[3,6],[4]]
=> [4,3,6,1,2,5] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[[1,3],[2,5],[4,6]]
=> [[1,2,4,5],[3,6]]
=> [3,6,1,2,4,5] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[[1,2],[3,5],[4,6]]
=> [[1,2,3,5],[4,6]]
=> [4,6,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[[1,2],[3,4],[5,6]]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[[1,4],[2,5],[3],[6]]
=> [[1,2,5],[3,6],[4]]
=> [4,3,6,1,2,5] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[[1,3],[2,5],[4],[6]]
=> [[1,2,4,5],[3],[6]]
=> [6,3,1,2,4,5] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2],[3,5],[4],[6]]
=> [[1,2,3,5],[4],[6]]
=> [6,4,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,3],[2,4],[5],[6]]
=> [[1,2,4],[3,5],[6]]
=> [6,3,5,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
Description
The radius of a connected graph.
This is the minimum eccentricity of any vertex.
Matching statistic: St000772
(load all 16 compositions to match this statistic)
(load all 16 compositions to match this statistic)
Mp00134: Standard tableaux —descent word⟶ Binary words
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000772: Graphs ⟶ ℤResult quality: 50% ●values known / values provided: 50%●distinct values known / distinct values provided: 86%
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000772: Graphs ⟶ ℤResult quality: 50% ●values known / values provided: 50%●distinct values known / distinct values provided: 86%
Values
[[1,2]]
=> 0 => [2] => ([],2)
=> ? = 2
[[1],[2]]
=> 1 => [1,1] => ([(0,1)],2)
=> 1
[[1,2,3]]
=> 00 => [3] => ([],3)
=> ? ∊ {1,3}
[[1,3],[2]]
=> 10 => [1,2] => ([(1,2)],3)
=> ? ∊ {1,3}
[[1,2],[3]]
=> 01 => [2,1] => ([(0,2),(1,2)],3)
=> 1
[[1],[2],[3]]
=> 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[[1,2,3,4]]
=> 000 => [4] => ([],4)
=> ? ∊ {1,2,2,3,4}
[[1,3,4],[2]]
=> 100 => [1,3] => ([(2,3)],4)
=> ? ∊ {1,2,2,3,4}
[[1,2,4],[3]]
=> 010 => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,3,4}
[[1,2,3],[4]]
=> 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[1,3],[2,4]]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[1,2],[3,4]]
=> 010 => [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,2,2,3,4}
[[1,4],[2],[3]]
=> 110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,2,2,3,4}
[[1,3],[2],[4]]
=> 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[1,2],[3],[4]]
=> 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[1],[2],[3],[4]]
=> 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[[1,2,3,4,5]]
=> 0000 => [5] => ([],5)
=> ? ∊ {1,1,2,2,2,2,3,3,3,3,4,4,5}
[[1,3,4,5],[2]]
=> 1000 => [1,4] => ([(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,3,3,3,3,4,4,5}
[[1,2,4,5],[3]]
=> 0100 => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,3,3,3,3,4,4,5}
[[1,2,3,5],[4]]
=> 0010 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,3,3,3,3,4,4,5}
[[1,2,3,4],[5]]
=> 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[[1,3,5],[2,4]]
=> 1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,3,3,3,3,4,4,5}
[[1,2,5],[3,4]]
=> 0100 => [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,3,3,3,3,4,4,5}
[[1,3,4],[2,5]]
=> 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,2,4],[3,5]]
=> 0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,2,3],[4,5]]
=> 0010 => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,3,3,3,3,4,4,5}
[[1,4,5],[2],[3]]
=> 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,3,3,3,3,4,4,5}
[[1,3,5],[2],[4]]
=> 1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,3,3,3,3,4,4,5}
[[1,2,5],[3],[4]]
=> 0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,3,3,3,3,4,4,5}
[[1,3,4],[2],[5]]
=> 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,2,4],[3],[5]]
=> 0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,2,3],[4],[5]]
=> 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[1,4],[2,5],[3]]
=> 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,3],[2,5],[4]]
=> 1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,3,3,3,3,4,4,5}
[[1,2],[3,5],[4]]
=> 0110 => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,3,3,3,3,4,4,5}
[[1,3],[2,4],[5]]
=> 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,2],[3,4],[5]]
=> 0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,5],[2],[3],[4]]
=> 1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,2,2,2,3,3,3,3,4,4,5}
[[1,4],[2],[3],[5]]
=> 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,3],[2],[4],[5]]
=> 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1,2],[3],[4],[5]]
=> 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[1],[2],[3],[4],[5]]
=> 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[[1,2,3,4,5,6]]
=> 00000 => [6] => ([],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,4,5,6],[2]]
=> 10000 => [1,5] => ([(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,4,5,6],[3]]
=> 01000 => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,3,5,6],[4]]
=> 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,3,4,6],[5]]
=> 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,3,4,5],[6]]
=> 00001 => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
[[1,3,5,6],[2,4]]
=> 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,5,6],[3,4]]
=> 01000 => [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,4,6],[2,5]]
=> 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,4,6],[3,5]]
=> 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,3,6],[4,5]]
=> 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,4,5],[2,6]]
=> 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,2,4,5],[3,6]]
=> 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,3,5],[4,6]]
=> 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,3,4],[5,6]]
=> 00010 => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,4,5,6],[2],[3]]
=> 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,5,6],[2],[4]]
=> 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,5,6],[3],[4]]
=> 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,4,6],[2],[5]]
=> 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,4,6],[3],[5]]
=> 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,3,6],[4],[5]]
=> 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,4,5],[2],[6]]
=> 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,2,4,5],[3],[6]]
=> 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,3,5],[4],[6]]
=> 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,3,4],[5],[6]]
=> 00011 => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[1,3,5],[2,4,6]]
=> 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,5],[3,4,6]]
=> 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,3,4],[2,5,6]]
=> 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,4],[3,5,6]]
=> 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,3],[4,5,6]]
=> 00100 => [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,4,6],[2,5],[3]]
=> 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,6],[2,5],[4]]
=> 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,6],[3,5],[4]]
=> 01100 => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,6],[2,4],[5]]
=> 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,6],[3,4],[5]]
=> 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,4,5],[2,6],[3]]
=> 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,3,5],[2,6],[4]]
=> 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,5],[3,6],[4]]
=> 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,3,4],[2,6],[5]]
=> 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,4],[3,6],[5]]
=> 01010 => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,3],[4,6],[5]]
=> 00110 => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,5],[2,4],[6]]
=> 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,5],[3,4],[6]]
=> 01001 => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,3,4],[2,5],[6]]
=> 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,4],[3,5],[6]]
=> 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,3],[4,5],[6]]
=> 00101 => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,5,6],[2],[3],[4]]
=> 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,4,5],[2],[3],[6]]
=> 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,3,5],[2],[4],[6]]
=> 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,5],[3],[4],[6]]
=> 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,3,4],[2],[5],[6]]
=> 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,2,4],[3],[5],[6]]
=> 01011 => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2,3],[4],[5],[6]]
=> 00111 => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[1,4],[2,5],[3,6]]
=> 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,3],[2,5],[4,6]]
=> 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,2],[3,5],[4,6]]
=> 01101 => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,5],[2,6],[3],[4]]
=> 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[1,4],[2,5],[3],[6]]
=> 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $1$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$.
The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
Matching statistic: St000937
Mp00083: Standard tableaux —shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000937: Integer partitions ⟶ ℤResult quality: 46% ●values known / values provided: 46%●distinct values known / distinct values provided: 57%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000937: Integer partitions ⟶ ℤResult quality: 46% ●values known / values provided: 46%●distinct values known / distinct values provided: 57%
Values
[[1,2]]
=> [2]
=> []
=> ?
=> ? ∊ {1,2}
[[1],[2]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {1,2}
[[1,2,3]]
=> [3]
=> []
=> ?
=> ? ∊ {1,1,2,3}
[[1,3],[2]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {1,1,2,3}
[[1,2],[3]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {1,1,2,3}
[[1],[2],[3]]
=> [1,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,2,3}
[[1,2,3,4]]
=> [4]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,3,3,4}
[[1,3,4],[2]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,2,2,2,3,3,4}
[[1,2,4],[3]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,2,2,2,3,3,4}
[[1,2,3],[4]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,2,2,2,3,3,4}
[[1,3],[2,4]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,2,2,2,3,3,4}
[[1,2],[3,4]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,2,2,2,3,3,4}
[[1,4],[2],[3]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,2,2,2,3,3,4}
[[1,3],[2],[4]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,2,2,2,3,3,4}
[[1,2],[3],[4]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,2,2,2,3,3,4}
[[1],[2],[3],[4]]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,2,3,4,5]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,3,4,5],[2]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,2,4,5],[3]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,2,3,5],[4]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,2,3,4],[5]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,3,5],[2,4]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,2,5],[3,4]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,3,4],[2,5]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,2,4],[3,5]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,2,3],[4,5]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,4,5],[2],[3]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,3,5],[2],[4]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,2,5],[3],[4]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,3,4],[2],[5]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,2,4],[3],[5]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,2,3],[4],[5]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,4],[2,5],[3]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,3],[2,5],[4]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,2],[3,5],[4]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,3],[2,4],[5]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,2],[3,4],[5]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,4,4,4,5}
[[1,5],[2],[3],[4]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,4],[2],[3],[5]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,3],[2],[4],[5]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,2],[3],[4],[5]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1],[2],[3],[4],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2
[[1,2,3,4,5,6]]
=> [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,4,5,6],[2]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,4,5,6],[3]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3,5,6],[4]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3,4,6],[5]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3,4,5],[6]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,5,6],[2,4]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,5,6],[3,4]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,4,6],[2,5]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,4,6],[3,5]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3,6],[4,5]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,3,4,5],[2,6]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,4,5],[3,6]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,2,3,5],[4,6]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,6}
[[1,5,6],[2],[3],[4]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,4,6],[2],[3],[5]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,3,6],[2],[4],[5]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,2,6],[3],[4],[5]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,4,5],[2],[3],[6]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,3,5],[2],[4],[6]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,2,5],[3],[4],[6]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,3,4],[2],[5],[6]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,2,4],[3],[5],[6]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,2,3],[4],[5],[6]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,4],[2,5],[3,6]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[1,3],[2,5],[4,6]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[1,2],[3,5],[4,6]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[1,3],[2,4],[5,6]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[1,2],[3,4],[5,6]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[1,5],[2,6],[3],[4]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,4],[2,6],[3],[5]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,3],[2,6],[4],[5]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,2],[3,6],[4],[5]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,4],[2,5],[3],[6]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,3],[2,5],[4],[6]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,2],[3,5],[4],[6]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,3],[2,4],[5],[6]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,2],[3,4],[5],[6]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,6],[2],[3],[4],[5]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2
[[1,5],[2],[3],[4],[6]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2
[[1,4],[2],[3],[5],[6]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2
[[1,3],[2],[4],[5],[6]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2
[[1,2],[3],[4],[5],[6]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2
[[1],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 3
[[1,5,6,7],[2],[3],[4]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,4,6,7],[2],[3],[5]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,3,6,7],[2],[4],[5]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,2,6,7],[3],[4],[5]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,4,5,7],[2],[3],[6]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,3,5,7],[2],[4],[6]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,2,5,7],[3],[4],[6]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,3,4,7],[2],[5],[6]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,2,4,7],[3],[5],[6]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,2,3,7],[4],[5],[6]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,4,5,6],[2],[3],[7]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,3,5,6],[2],[4],[7]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,2,5,6],[3],[4],[7]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,3,4,6],[2],[5],[7]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
Description
The number of positive values of the symmetric group character corresponding to the partition.
For example, the character values of the irreducible representation $S^{(2,2)}$ are $2$ on the conjugacy classes $(4)$ and $(2,2)$, $0$ on the conjugacy classes $(3,1)$ and $(1,1,1,1)$, and $-1$ on the conjugacy class $(2,1,1)$. Therefore, the statistic on the partition $(2,2)$ is $2$.
Matching statistic: St000939
Mp00083: Standard tableaux —shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000939: Integer partitions ⟶ ℤResult quality: 46% ●values known / values provided: 46%●distinct values known / distinct values provided: 71%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000939: Integer partitions ⟶ ℤResult quality: 46% ●values known / values provided: 46%●distinct values known / distinct values provided: 71%
Values
[[1,2]]
=> [2]
=> []
=> ?
=> ? ∊ {1,2}
[[1],[2]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {1,2}
[[1,2,3]]
=> [3]
=> []
=> ?
=> ? ∊ {1,1,2,3}
[[1,3],[2]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {1,1,2,3}
[[1,2],[3]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {1,1,2,3}
[[1],[2],[3]]
=> [1,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,2,3}
[[1,2,3,4]]
=> [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,2,2,3,3,4}
[[1,3,4],[2]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,2,2,3,3,4}
[[1,2,4],[3]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,2,2,3,3,4}
[[1,2,3],[4]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,2,2,3,3,4}
[[1,3],[2,4]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,2,2,3,3,4}
[[1,2],[3,4]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,2,2,3,3,4}
[[1,4],[2],[3]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,2,2,3,3,4}
[[1,3],[2],[4]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,2,2,3,3,4}
[[1,2],[3],[4]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,2,2,3,3,4}
[[1],[2],[3],[4]]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,2,3,4,5]]
=> [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,3,4,5],[2]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,2,4,5],[3]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,2,3,5],[4]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,2,3,4],[5]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,3,5],[2,4]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,2,5],[3,4]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,3,4],[2,5]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,2,4],[3,5]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,2,3],[4,5]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,4,5],[2],[3]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,3,5],[2],[4]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,2,5],[3],[4]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,3,4],[2],[5]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,2,4],[3],[5]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,2,3],[4],[5]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,4],[2,5],[3]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,3],[2,5],[4]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,2],[3,5],[4]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,3],[2,4],[5]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,2],[3,4],[5]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3,3,4,4,4,5}
[[1,5],[2],[3],[4]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,4],[2],[3],[5]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,3],[2],[4],[5]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,2],[3],[4],[5]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1],[2],[3],[4],[5]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 3
[[1,2,3,4,5,6]]
=> [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,4,5,6],[2]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,4,5,6],[3]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,3,5,6],[4]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,3,4,6],[5]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,3,4,5],[6]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,5,6],[2,4]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,5,6],[3,4]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,4,6],[2,5]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,4,6],[3,5]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,3,6],[4,5]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,3,4,5],[2,6]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,4,5],[3,6]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,2,3,5],[4,6]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[[1,5,6],[2],[3],[4]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,4,6],[2],[3],[5]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,3,6],[2],[4],[5]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,2,6],[3],[4],[5]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,4,5],[2],[3],[6]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,3,5],[2],[4],[6]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,2,5],[3],[4],[6]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,3,4],[2],[5],[6]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,2,4],[3],[5],[6]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,2,3],[4],[5],[6]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,4],[2,5],[3,6]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
[[1,3],[2,5],[4,6]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
[[1,2],[3,5],[4,6]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
[[1,3],[2,4],[5,6]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
[[1,2],[3,4],[5,6]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
[[1,5],[2,6],[3],[4]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
[[1,4],[2,6],[3],[5]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
[[1,3],[2,6],[4],[5]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
[[1,2],[3,6],[4],[5]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
[[1,4],[2,5],[3],[6]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
[[1,3],[2,5],[4],[6]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
[[1,2],[3,5],[4],[6]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
[[1,3],[2,4],[5],[6]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
[[1,2],[3,4],[5],[6]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2
[[1,6],[2],[3],[4],[5]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 3
[[1,5],[2],[3],[4],[6]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 3
[[1,4],[2],[3],[5],[6]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 3
[[1,3],[2],[4],[5],[6]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 3
[[1,2],[3],[4],[5],[6]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 3
[[1],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 5
[[1,5,6,7],[2],[3],[4]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,4,6,7],[2],[3],[5]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,3,6,7],[2],[4],[5]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,2,6,7],[3],[4],[5]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,4,5,7],[2],[3],[6]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,3,5,7],[2],[4],[6]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,2,5,7],[3],[4],[6]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,3,4,7],[2],[5],[6]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,2,4,7],[3],[5],[6]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,2,3,7],[4],[5],[6]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,4,5,6],[2],[3],[7]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,3,5,6],[2],[4],[7]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,2,5,6],[3],[4],[7]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[[1,3,4,6],[2],[5],[7]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
Description
The number of characters of the symmetric group whose value on the partition is positive.
The following 18 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000993The multiplicity of the largest part of an integer partition. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000054The first entry of the permutation. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St000314The number of left-to-right-maxima of a permutation. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St000259The diameter of a connected graph. St000066The column of the unique '1' in the first row of the alternating sign matrix. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St000454The largest eigenvalue of a graph if it is integral. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000193The row of the unique '1' in the first column of the alternating sign matrix. St000199The column of the unique '1' in the last row of the alternating sign matrix. St000200The row of the unique '1' in the last column of the alternating sign matrix. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St001429The number of negative entries in a signed permutation. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001060The distinguishing index of a graph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!