Processing math: 17%

Your data matches 6 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000525
St000525: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],2)
=> 1
([(0,1)],2)
=> 1
([],3)
=> 1
([(1,2)],3)
=> 1
([(0,1),(0,2)],3)
=> 2
([(0,2),(2,1)],3)
=> 1
([(0,2),(1,2)],3)
=> 2
([],4)
=> 1
([(2,3)],4)
=> 1
([(1,2),(1,3)],4)
=> 3
([(0,1),(0,2),(0,3)],4)
=> 3
([(0,2),(0,3),(3,1)],4)
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> 3
([(1,2),(2,3)],4)
=> 1
([(0,3),(3,1),(3,2)],4)
=> 3
([(1,3),(2,3)],4)
=> 3
([(0,3),(1,3),(3,2)],4)
=> 3
([(0,3),(1,3),(2,3)],4)
=> 3
([(0,3),(1,2)],4)
=> 3
([(0,3),(1,2),(1,3)],4)
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> 1
([(0,3),(2,1),(3,2)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> 2
([],5)
=> 1
([(3,4)],5)
=> 1
([(2,3),(2,4)],5)
=> 3
([(1,2),(1,3),(1,4)],5)
=> 5
([(0,1),(0,2),(0,3),(0,4)],5)
=> 7
([(0,2),(0,3),(0,4),(4,1)],5)
=> 5
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> 8
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 5
([(1,3),(1,4),(4,2)],5)
=> 3
([(0,3),(0,4),(4,1),(4,2)],5)
=> 8
([(1,2),(1,3),(2,4),(3,4)],5)
=> 3
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 4
([(0,3),(0,4),(3,2),(4,1)],5)
=> 8
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 5
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 3
([(2,3),(3,4)],5)
=> 1
([(1,4),(4,2),(4,3)],5)
=> 3
([(0,4),(4,1),(4,2),(4,3)],5)
=> 5
([(2,4),(3,4)],5)
=> 3
([(1,4),(2,4),(4,3)],5)
=> 3
([(0,4),(1,4),(4,2),(4,3)],5)
=> 3
([(1,4),(2,4),(3,4)],5)
=> 5
([(0,4),(1,4),(2,4),(4,3)],5)
=> 5
([(0,4),(1,4),(2,4),(3,4)],5)
=> 7
([(0,4),(1,4),(2,3)],5)
=> 5
([(0,4),(1,3),(2,3),(2,4)],5)
=> 7
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
Description
The number of posets with the same zeta polynomial. The zeta polynomial Z is the polynomial such that Z(m) is the number of weakly increasing sequences x1x2xm1 of elements of the poset. See section 3.12 of [1]. Since Z(q) = \sum_{k\geq 1} \binom{q-2}{k-1} c_k, where c_k is the number of chains of length k, this statistic is the same as the number of posets with the same chain polynomial.
Matching statistic: St001880
Mp00206: Posets antichains of maximal sizeLattices
Mp00263: Lattices join irreduciblesPosets
St001880: Posets ⟶ ℤResult quality: 9% values known / values provided: 9%distinct values known / distinct values provided: 21%
Values
([],2)
=> ([],1)
=> ([],0)
=> ? ∊ {1,1}
([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {1,1}
([],3)
=> ([],1)
=> ([],0)
=> ? ∊ {1,1,1,2,2}
([(1,2)],3)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {1,1,1,2,2}
([(0,1),(0,2)],3)
=> ([],1)
=> ([],0)
=> ? ∊ {1,1,1,2,2}
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,2,2}
([(0,2),(1,2)],3)
=> ([],1)
=> ([],0)
=> ? ∊ {1,1,1,2,2}
([],4)
=> ([],1)
=> ([],0)
=> ? ∊ {1,1,1,1,1,2,2,3,3,3,3,3,3,3,3}
([(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,3,3,3,3,3,3,3,3}
([(1,2),(1,3)],4)
=> ([],1)
=> ([],0)
=> ? ∊ {1,1,1,1,1,2,2,3,3,3,3,3,3,3,3}
([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ([],0)
=> ? ∊ {1,1,1,1,1,2,2,3,3,3,3,3,3,3,3}
([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,3,3,3,3,3,3,3,3}
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],0)
=> ? ∊ {1,1,1,1,1,2,2,3,3,3,3,3,3,3,3}
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,2,2,3,3,3,3,3,3,3,3}
([(0,3),(3,1),(3,2)],4)
=> ([],1)
=> ([],0)
=> ? ∊ {1,1,1,1,1,2,2,3,3,3,3,3,3,3,3}
([(1,3),(2,3)],4)
=> ([],1)
=> ([],0)
=> ? ∊ {1,1,1,1,1,2,2,3,3,3,3,3,3,3,3}
([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ([],0)
=> ? ∊ {1,1,1,1,1,2,2,3,3,3,3,3,3,3,3}
([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([],0)
=> ? ∊ {1,1,1,1,1,2,2,3,3,3,3,3,3,3,3}
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> ? ∊ {1,1,1,1,1,2,2,3,3,3,3,3,3,3,3}
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,2,2,3,3,3,3,3,3,3,3}
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,3,3,3,3,3,3,3,3}
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {1,1,1,1,1,2,2,3,3,3,3,3,3,3,3}
([],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(2,3),(2,4)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,1)],2)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(1,4),(4,2),(4,3)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(2,4),(3,4)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,4),(1,4),(2,3)],5)
=> ([(0,1)],2)
=> ([],1)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],0)
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(2,3),(3,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
([(0,5),(1,2),(1,5),(2,3),(2,4),(5,3),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,4),(1,2),(1,4),(2,5),(4,3),(4,5)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(1,5),(2,3),(2,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(1,4),(1,5),(2,3),(2,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,4),(0,5),(1,2),(1,4),(2,5),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,2),(0,5),(1,4),(1,5),(2,3),(2,4),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(0,4),(0,5),(1,2),(1,4),(2,3),(3,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,4),(0,5),(1,2),(2,3),(2,5),(3,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(1,5),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,5),(1,4),(4,2),(4,5),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(1,5),(3,4),(4,2),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,5),(1,3),(1,5),(4,2),(5,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(0,4),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,5),(1,2),(2,3),(2,5),(3,4),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
([(0,5),(1,3),(3,4),(4,2),(4,5)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 4
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> 3
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Matching statistic: St001695
Mp00306: Posets rowmotion cycle typeInteger partitions
Mp00045: Integer partitions reading tableauStandard tableaux
St001695: Standard tableaux ⟶ ℤResult quality: 8% values known / values provided: 8%distinct values known / distinct values provided: 36%
Values
([],2)
=> [2,2]
=> [[1,2],[3,4]]
=> 0 = 1 - 1
([(0,1)],2)
=> [3]
=> [[1,2,3]]
=> 0 = 1 - 1
([],3)
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> 0 = 1 - 1
([(1,2)],3)
=> [6]
=> [[1,2,3,4,5,6]]
=> 0 = 1 - 1
([(0,1),(0,2)],3)
=> [3,2]
=> [[1,2,5],[3,4]]
=> 1 = 2 - 1
([(0,2),(2,1)],3)
=> [4]
=> [[1,2,3,4]]
=> 0 = 1 - 1
([(0,2),(1,2)],3)
=> [3,2]
=> [[1,2,5],[3,4]]
=> 1 = 2 - 1
([],4)
=> [2,2,2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14],[15,16]]
=> ? ∊ {1,2,3,3,3,3,3} - 1
([(2,3)],4)
=> [6,6]
=> [[1,2,3,4,5,6],[7,8,9,10,11,12]]
=> ? ∊ {1,2,3,3,3,3,3} - 1
([(1,2),(1,3)],4)
=> [6,2,2]
=> [[1,2,7,8,9,10],[3,4],[5,6]]
=> ? ∊ {1,2,3,3,3,3,3} - 1
([(0,1),(0,2),(0,3)],4)
=> [3,2,2,2]
=> [[1,2,9],[3,4],[5,6],[7,8]]
=> ? ∊ {1,2,3,3,3,3,3} - 1
([(0,2),(0,3),(3,1)],4)
=> [7]
=> [[1,2,3,4,5,6,7]]
=> 0 = 1 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> 2 = 3 - 1
([(1,2),(2,3)],4)
=> [4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> 0 = 1 - 1
([(0,3),(3,1),(3,2)],4)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> 2 = 3 - 1
([(1,3),(2,3)],4)
=> [6,2,2]
=> [[1,2,7,8,9,10],[3,4],[5,6]]
=> ? ∊ {1,2,3,3,3,3,3} - 1
([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> 2 = 3 - 1
([(0,3),(1,3),(2,3)],4)
=> [3,2,2,2]
=> [[1,2,9],[3,4],[5,6],[7,8]]
=> ? ∊ {1,2,3,3,3,3,3} - 1
([(0,3),(1,2)],4)
=> [3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> ? ∊ {1,2,3,3,3,3,3} - 1
([(0,3),(1,2),(1,3)],4)
=> [5,3]
=> [[1,2,3,7,8],[4,5,6]]
=> 2 = 3 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> 1 = 2 - 1
([(0,3),(2,1),(3,2)],4)
=> [5]
=> [[1,2,3,4,5]]
=> 0 = 1 - 1
([(0,3),(1,2),(2,3)],4)
=> [7]
=> [[1,2,3,4,5,6,7]]
=> 0 = 1 - 1
([],5)
=> [2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14],[15,16],[17,18],[19,20],[21,22],[23,24],[25,26],[27,28],[29,30],[31,32]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(3,4)],5)
=> [6,6,6,6]
=> [[1,2,3,4,5,6],[7,8,9,10,11,12],[13,14,15,16,17,18],[19,20,21,22,23,24]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(2,3),(2,4)],5)
=> [6,6,2,2,2,2]
=> [[1,2,11,12,13,14],[3,4,17,18,19,20],[5,6],[7,8],[9,10],[15,16]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(1,2),(1,3),(1,4)],5)
=> [6,2,2,2,2,2,2]
=> [[1,2,15,16,17,18],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> [3,2,2,2,2,2,2,2]
=> [[1,2,17],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14],[15,16]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> [7,6]
=> [[1,2,3,4,5,6,13],[7,8,9,10,11,12]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [7,2,2]
=> [[1,2,7,8,9,10,11],[3,4],[5,6]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [4,2,2,2]
=> [[1,2,9,10],[3,4],[5,6],[7,8]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(1,3),(1,4),(4,2)],5)
=> [14]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> [7,2,2]
=> [[1,2,7,8,9,10,11],[3,4],[5,6]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> [4,4,2,2]
=> [[1,2,7,8],[3,4,11,12],[5,6],[9,10]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> 3 = 4 - 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,3,3]
=> [[1,2,3,10],[4,5,6],[7,8,9]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [5,4]
=> [[1,2,3,4,9],[5,6,7,8]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [4,2,2]
=> [[1,2,7,8],[3,4],[5,6]]
=> 2 = 3 - 1
([(2,3),(3,4)],5)
=> [4,4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(1,4),(4,2),(4,3)],5)
=> [4,4,2,2]
=> [[1,2,7,8],[3,4,11,12],[5,6],[9,10]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> [4,2,2,2]
=> [[1,2,9,10],[3,4],[5,6],[7,8]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(2,4),(3,4)],5)
=> [6,6,2,2,2,2]
=> [[1,2,11,12,13,14],[3,4,17,18,19,20],[5,6],[7,8],[9,10],[15,16]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(1,4),(2,4),(4,3)],5)
=> [4,4,2,2]
=> [[1,2,7,8],[3,4,11,12],[5,6],[9,10]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> [4,2,2]
=> [[1,2,7,8],[3,4],[5,6]]
=> 2 = 3 - 1
([(1,4),(2,4),(3,4)],5)
=> [6,2,2,2,2,2,2]
=> [[1,2,15,16,17,18],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> [4,2,2,2]
=> [[1,2,9,10],[3,4],[5,6],[7,8]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [3,2,2,2,2,2,2,2]
=> [[1,2,17],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14],[15,16]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(1,4),(2,3)],5)
=> [6,3,3,3]
=> [[1,2,3,13,14,15],[4,5,6],[7,8,9],[10,11,12]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [8,3,2]
=> [[1,2,5,9,10,11,12,13],[3,4,8],[6,7]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5,3,2,2]
=> [[1,2,7,11,12],[3,4,10],[5,6],[8,9]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2,2,2,2]
=> [[1,2,11],[3,4],[5,6],[7,8],[9,10]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> 3 = 4 - 1
([(0,4),(1,3),(2,3),(3,4)],5)
=> [7,2,2]
=> [[1,2,7,8,9,10,11],[3,4],[5,6]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(1,4),(2,3),(2,4)],5)
=> [6,5,3]
=> [[1,2,3,7,8,14],[4,5,6,12,13],[9,10,11]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [7,6]
=> [[1,2,3,4,5,6,13],[7,8,9,10,11,12]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(1,4),(2,3)],5)
=> [6,6,6]
=> [[1,2,3,4,5,6],[7,8,9,10,11,12],[13,14,15,16,17,18]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(1,4),(2,3),(2,4)],5)
=> [10,6]
=> [[1,2,3,4,5,6,13,14,15,16],[7,8,9,10,11,12]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(1,2),(1,4),(2,3)],5)
=> [8,3]
=> [[1,2,3,7,8,9,10,11],[4,5,6]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [5,4]
=> [[1,2,3,4,9],[5,6,7,8]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [6,2,2,2,2]
=> [[1,2,11,12,13,14],[3,4],[5,6],[7,8],[9,10]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> [7,2]
=> [[1,2,5,6,7,8,9],[3,4]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [4,2,2]
=> [[1,2,7,8],[3,4],[5,6]]
=> 2 = 3 - 1
([(0,4),(1,2),(1,4),(4,3)],5)
=> [10]
=> [[1,2,3,4,5,6,7,8,9,10]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(1,2),(1,3)],5)
=> [6,3,3,3]
=> [[1,2,3,13,14,15],[4,5,6],[7,8,9],[10,11,12]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> [6,5,3]
=> [[1,2,3,7,8,14],[4,5,6,12,13],[9,10,11]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> [5,4]
=> [[1,2,3,4,9],[5,6,7,8]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(1,2),(1,3),(3,4)],5)
=> [10,2]
=> [[1,2,5,6,7,8,9,10,11,12],[3,4]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [8]
=> [[1,2,3,4,5,6,7,8]]
=> 0 = 1 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [7,2,2]
=> [[1,2,7,8,9,10,11],[3,4],[5,6]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,3),(0,4),(1,2),(1,4)],5)
=> [8,3,2]
=> [[1,2,5,9,10,11,12,13],[3,4,8],[6,7]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [5,3,2,2]
=> [[1,2,7,11,12],[3,4,10],[5,6],[8,9]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [3,2,2,2,2]
=> [[1,2,11],[3,4],[5,6],[7,8],[9,10]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,3),(3,4),(4,1),(4,2)],5)
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> 3 = 4 - 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> [8]
=> [[1,2,3,4,5,6,7,8]]
=> 0 = 1 - 1
([(0,4),(3,2),(4,1),(4,3)],5)
=> [8]
=> [[1,2,3,4,5,6,7,8]]
=> 0 = 1 - 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> [[1,2,3,4,5,6]]
=> 0 = 1 - 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> 3 = 4 - 1
([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> [[1,2,5,6,7,8],[3,4]]
=> 4 = 5 - 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [6,2]
=> [[1,2,5,6,7,8],[3,4]]
=> 4 = 5 - 1
([(0,4),(3,5),(4,3),(5,1),(5,2)],6)
=> [6,2]
=> [[1,2,5,6,7,8],[3,4]]
=> 4 = 5 - 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [6,2]
=> [[1,2,5,6,7,8],[3,4]]
=> 4 = 5 - 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [7]
=> [[1,2,3,4,5,6,7]]
=> 0 = 1 - 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [6,2]
=> [[1,2,5,6,7,8],[3,4]]
=> 4 = 5 - 1
Description
The natural comajor index of a standard Young tableau. A natural descent of a standard tableau T is an entry i such that i+1 appears in a higher row than i in English notation. The natural comajor index of a tableau of size n with natural descent set D is then \sum_{d\in D} n-d.
Matching statistic: St001698
Mp00306: Posets rowmotion cycle typeInteger partitions
Mp00045: Integer partitions reading tableauStandard tableaux
St001698: Standard tableaux ⟶ ℤResult quality: 8% values known / values provided: 8%distinct values known / distinct values provided: 36%
Values
([],2)
=> [2,2]
=> [[1,2],[3,4]]
=> 0 = 1 - 1
([(0,1)],2)
=> [3]
=> [[1,2,3]]
=> 0 = 1 - 1
([],3)
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> 0 = 1 - 1
([(1,2)],3)
=> [6]
=> [[1,2,3,4,5,6]]
=> 0 = 1 - 1
([(0,1),(0,2)],3)
=> [3,2]
=> [[1,2,5],[3,4]]
=> 1 = 2 - 1
([(0,2),(2,1)],3)
=> [4]
=> [[1,2,3,4]]
=> 0 = 1 - 1
([(0,2),(1,2)],3)
=> [3,2]
=> [[1,2,5],[3,4]]
=> 1 = 2 - 1
([],4)
=> [2,2,2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14],[15,16]]
=> ? ∊ {1,2,2,3,3,3,3} - 1
([(2,3)],4)
=> [6,6]
=> [[1,2,3,4,5,6],[7,8,9,10,11,12]]
=> ? ∊ {1,2,2,3,3,3,3} - 1
([(1,2),(1,3)],4)
=> [6,2,2]
=> [[1,2,7,8,9,10],[3,4],[5,6]]
=> ? ∊ {1,2,2,3,3,3,3} - 1
([(0,1),(0,2),(0,3)],4)
=> [3,2,2,2]
=> [[1,2,9],[3,4],[5,6],[7,8]]
=> ? ∊ {1,2,2,3,3,3,3} - 1
([(0,2),(0,3),(3,1)],4)
=> [7]
=> [[1,2,3,4,5,6,7]]
=> 0 = 1 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> 2 = 3 - 1
([(1,2),(2,3)],4)
=> [4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> 0 = 1 - 1
([(0,3),(3,1),(3,2)],4)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> 2 = 3 - 1
([(1,3),(2,3)],4)
=> [6,2,2]
=> [[1,2,7,8,9,10],[3,4],[5,6]]
=> ? ∊ {1,2,2,3,3,3,3} - 1
([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> 2 = 3 - 1
([(0,3),(1,3),(2,3)],4)
=> [3,2,2,2]
=> [[1,2,9],[3,4],[5,6],[7,8]]
=> ? ∊ {1,2,2,3,3,3,3} - 1
([(0,3),(1,2)],4)
=> [3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> ? ∊ {1,2,2,3,3,3,3} - 1
([(0,3),(1,2),(1,3)],4)
=> [5,3]
=> [[1,2,3,7,8],[4,5,6]]
=> 2 = 3 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> 2 = 3 - 1
([(0,3),(2,1),(3,2)],4)
=> [5]
=> [[1,2,3,4,5]]
=> 0 = 1 - 1
([(0,3),(1,2),(2,3)],4)
=> [7]
=> [[1,2,3,4,5,6,7]]
=> 0 = 1 - 1
([],5)
=> [2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14],[15,16],[17,18],[19,20],[21,22],[23,24],[25,26],[27,28],[29,30],[31,32]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(3,4)],5)
=> [6,6,6,6]
=> [[1,2,3,4,5,6],[7,8,9,10,11,12],[13,14,15,16,17,18],[19,20,21,22,23,24]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(2,3),(2,4)],5)
=> [6,6,2,2,2,2]
=> [[1,2,11,12,13,14],[3,4,17,18,19,20],[5,6],[7,8],[9,10],[15,16]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(1,2),(1,3),(1,4)],5)
=> [6,2,2,2,2,2,2]
=> [[1,2,15,16,17,18],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> [3,2,2,2,2,2,2,2]
=> [[1,2,17],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14],[15,16]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> [7,6]
=> [[1,2,3,4,5,6,13],[7,8,9,10,11,12]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [7,2,2]
=> [[1,2,7,8,9,10,11],[3,4],[5,6]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [4,2,2,2]
=> [[1,2,9,10],[3,4],[5,6],[7,8]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(1,3),(1,4),(4,2)],5)
=> [14]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> [7,2,2]
=> [[1,2,7,8,9,10,11],[3,4],[5,6]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> [4,4,2,2]
=> [[1,2,7,8],[3,4,11,12],[5,6],[9,10]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> 3 = 4 - 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,3,3]
=> [[1,2,3,10],[4,5,6],[7,8,9]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [5,4]
=> [[1,2,3,4,9],[5,6,7,8]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [4,2,2]
=> [[1,2,7,8],[3,4],[5,6]]
=> 4 = 5 - 1
([(2,3),(3,4)],5)
=> [4,4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(1,4),(4,2),(4,3)],5)
=> [4,4,2,2]
=> [[1,2,7,8],[3,4,11,12],[5,6],[9,10]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> [4,2,2,2]
=> [[1,2,9,10],[3,4],[5,6],[7,8]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(2,4),(3,4)],5)
=> [6,6,2,2,2,2]
=> [[1,2,11,12,13,14],[3,4,17,18,19,20],[5,6],[7,8],[9,10],[15,16]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(1,4),(2,4),(4,3)],5)
=> [4,4,2,2]
=> [[1,2,7,8],[3,4,11,12],[5,6],[9,10]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> [4,2,2]
=> [[1,2,7,8],[3,4],[5,6]]
=> 4 = 5 - 1
([(1,4),(2,4),(3,4)],5)
=> [6,2,2,2,2,2,2]
=> [[1,2,15,16,17,18],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> [4,2,2,2]
=> [[1,2,9,10],[3,4],[5,6],[7,8]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [3,2,2,2,2,2,2,2]
=> [[1,2,17],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14],[15,16]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(1,4),(2,3)],5)
=> [6,3,3,3]
=> [[1,2,3,13,14,15],[4,5,6],[7,8,9],[10,11,12]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [8,3,2]
=> [[1,2,5,9,10,11,12,13],[3,4,8],[6,7]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5,3,2,2]
=> [[1,2,7,11,12],[3,4,10],[5,6],[8,9]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2,2,2,2]
=> [[1,2,11],[3,4],[5,6],[7,8],[9,10]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> 3 = 4 - 1
([(0,4),(1,3),(2,3),(3,4)],5)
=> [7,2,2]
=> [[1,2,7,8,9,10,11],[3,4],[5,6]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(1,4),(2,3),(2,4)],5)
=> [6,5,3]
=> [[1,2,3,7,8,14],[4,5,6,12,13],[9,10,11]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [7,6]
=> [[1,2,3,4,5,6,13],[7,8,9,10,11,12]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(1,4),(2,3)],5)
=> [6,6,6]
=> [[1,2,3,4,5,6],[7,8,9,10,11,12],[13,14,15,16,17,18]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(1,4),(2,3),(2,4)],5)
=> [10,6]
=> [[1,2,3,4,5,6,13,14,15,16],[7,8,9,10,11,12]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(1,2),(1,4),(2,3)],5)
=> [8,3]
=> [[1,2,3,7,8,9,10,11],[4,5,6]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [5,4]
=> [[1,2,3,4,9],[5,6,7,8]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [6,2,2,2,2]
=> [[1,2,11,12,13,14],[3,4],[5,6],[7,8],[9,10]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> [7,2]
=> [[1,2,5,6,7,8,9],[3,4]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [4,2,2]
=> [[1,2,7,8],[3,4],[5,6]]
=> 4 = 5 - 1
([(0,4),(1,2),(1,4),(4,3)],5)
=> [10]
=> [[1,2,3,4,5,6,7,8,9,10]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(1,2),(1,3)],5)
=> [6,3,3,3]
=> [[1,2,3,13,14,15],[4,5,6],[7,8,9],[10,11,12]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> [6,5,3]
=> [[1,2,3,7,8,14],[4,5,6,12,13],[9,10,11]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> [5,4]
=> [[1,2,3,4,9],[5,6,7,8]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(1,2),(1,3),(3,4)],5)
=> [10,2]
=> [[1,2,5,6,7,8,9,10,11,12],[3,4]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [8]
=> [[1,2,3,4,5,6,7,8]]
=> 0 = 1 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [7,2,2]
=> [[1,2,7,8,9,10,11],[3,4],[5,6]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,3),(0,4),(1,2),(1,4)],5)
=> [8,3,2]
=> [[1,2,5,9,10,11,12,13],[3,4,8],[6,7]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [5,3,2,2]
=> [[1,2,7,11,12],[3,4,10],[5,6],[8,9]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [3,2,2,2,2]
=> [[1,2,11],[3,4],[5,6],[7,8],[9,10]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,3),(3,4),(4,1),(4,2)],5)
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> 3 = 4 - 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> [8]
=> [[1,2,3,4,5,6,7,8]]
=> 0 = 1 - 1
([(0,4),(3,2),(4,1),(4,3)],5)
=> [8]
=> [[1,2,3,4,5,6,7,8]]
=> 0 = 1 - 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> [[1,2,3,4,5,6]]
=> 0 = 1 - 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> 3 = 4 - 1
([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> [[1,2,5,6,7,8],[3,4]]
=> 4 = 5 - 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [6,2]
=> [[1,2,5,6,7,8],[3,4]]
=> 4 = 5 - 1
([(0,4),(3,5),(4,3),(5,1),(5,2)],6)
=> [6,2]
=> [[1,2,5,6,7,8],[3,4]]
=> 4 = 5 - 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [6,2]
=> [[1,2,5,6,7,8],[3,4]]
=> 4 = 5 - 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [7]
=> [[1,2,3,4,5,6,7]]
=> 0 = 1 - 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [6,2]
=> [[1,2,5,6,7,8],[3,4]]
=> 4 = 5 - 1
Description
The comajor index of a standard tableau minus the weighted size of its shape.
Matching statistic: St001699
Mp00306: Posets rowmotion cycle typeInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
St001699: Standard tableaux ⟶ ℤResult quality: 8% values known / values provided: 8%distinct values known / distinct values provided: 36%
Values
([],2)
=> [2,2]
=> [[1,2],[3,4]]
=> 0 = 1 - 1
([(0,1)],2)
=> [3]
=> [[1,2,3]]
=> 0 = 1 - 1
([],3)
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> 0 = 1 - 1
([(1,2)],3)
=> [6]
=> [[1,2,3,4,5,6]]
=> 0 = 1 - 1
([(0,1),(0,2)],3)
=> [3,2]
=> [[1,2,3],[4,5]]
=> 1 = 2 - 1
([(0,2),(2,1)],3)
=> [4]
=> [[1,2,3,4]]
=> 0 = 1 - 1
([(0,2),(1,2)],3)
=> [3,2]
=> [[1,2,3],[4,5]]
=> 1 = 2 - 1
([],4)
=> [2,2,2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14],[15,16]]
=> ? ∊ {1,2,2,3,3,3,3} - 1
([(2,3)],4)
=> [6,6]
=> [[1,2,3,4,5,6],[7,8,9,10,11,12]]
=> ? ∊ {1,2,2,3,3,3,3} - 1
([(1,2),(1,3)],4)
=> [6,2,2]
=> [[1,2,3,4,5,6],[7,8],[9,10]]
=> ? ∊ {1,2,2,3,3,3,3} - 1
([(0,1),(0,2),(0,3)],4)
=> [3,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9]]
=> ? ∊ {1,2,2,3,3,3,3} - 1
([(0,2),(0,3),(3,1)],4)
=> [7]
=> [[1,2,3,4,5,6,7]]
=> 0 = 1 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> 2 = 3 - 1
([(1,2),(2,3)],4)
=> [4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> 0 = 1 - 1
([(0,3),(3,1),(3,2)],4)
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> 2 = 3 - 1
([(1,3),(2,3)],4)
=> [6,2,2]
=> [[1,2,3,4,5,6],[7,8],[9,10]]
=> ? ∊ {1,2,2,3,3,3,3} - 1
([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> 2 = 3 - 1
([(0,3),(1,3),(2,3)],4)
=> [3,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9]]
=> ? ∊ {1,2,2,3,3,3,3} - 1
([(0,3),(1,2)],4)
=> [3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> ? ∊ {1,2,2,3,3,3,3} - 1
([(0,3),(1,2),(1,3)],4)
=> [5,3]
=> [[1,2,3,4,5],[6,7,8]]
=> 2 = 3 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> 2 = 3 - 1
([(0,3),(2,1),(3,2)],4)
=> [5]
=> [[1,2,3,4,5]]
=> 0 = 1 - 1
([(0,3),(1,2),(2,3)],4)
=> [7]
=> [[1,2,3,4,5,6,7]]
=> 0 = 1 - 1
([],5)
=> [2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14],[15,16],[17,18],[19,20],[21,22],[23,24],[25,26],[27,28],[29,30],[31,32]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(3,4)],5)
=> [6,6,6,6]
=> [[1,2,3,4,5,6],[7,8,9,10,11,12],[13,14,15,16,17,18],[19,20,21,22,23,24]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(2,3),(2,4)],5)
=> [6,6,2,2,2,2]
=> [[1,2,3,4,5,6],[7,8,9,10,11,12],[13,14],[15,16],[17,18],[19,20]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(1,2),(1,3),(1,4)],5)
=> [6,2,2,2,2,2,2]
=> [[1,2,3,4,5,6],[7,8],[9,10],[11,12],[13,14],[15,16],[17,18]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> [3,2,2,2,2,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11],[12,13],[14,15],[16,17]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> [7,6]
=> [[1,2,3,4,5,6,7],[8,9,10,11,12,13]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [7,2,2]
=> [[1,2,3,4,5,6,7],[8,9],[10,11]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [4,2,2,2]
=> [[1,2,3,4],[5,6],[7,8],[9,10]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(1,3),(1,4),(4,2)],5)
=> [14]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> [7,2,2]
=> [[1,2,3,4,5,6,7],[8,9],[10,11]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> [4,4,2,2]
=> [[1,2,3,4],[5,6,7,8],[9,10],[11,12]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> [[1,2,3,4,5],[6,7]]
=> 3 = 4 - 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,3,3]
=> [[1,2,3,4],[5,6,7],[8,9,10]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [5,4]
=> [[1,2,3,4,5],[6,7,8,9]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [4,2,2]
=> [[1,2,3,4],[5,6],[7,8]]
=> 4 = 5 - 1
([(2,3),(3,4)],5)
=> [4,4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(1,4),(4,2),(4,3)],5)
=> [4,4,2,2]
=> [[1,2,3,4],[5,6,7,8],[9,10],[11,12]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> [4,2,2,2]
=> [[1,2,3,4],[5,6],[7,8],[9,10]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(2,4),(3,4)],5)
=> [6,6,2,2,2,2]
=> [[1,2,3,4,5,6],[7,8,9,10,11,12],[13,14],[15,16],[17,18],[19,20]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(1,4),(2,4),(4,3)],5)
=> [4,4,2,2]
=> [[1,2,3,4],[5,6,7,8],[9,10],[11,12]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> [4,2,2]
=> [[1,2,3,4],[5,6],[7,8]]
=> 4 = 5 - 1
([(1,4),(2,4),(3,4)],5)
=> [6,2,2,2,2,2,2]
=> [[1,2,3,4,5,6],[7,8],[9,10],[11,12],[13,14],[15,16],[17,18]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> [4,2,2,2]
=> [[1,2,3,4],[5,6],[7,8],[9,10]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [3,2,2,2,2,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11],[12,13],[14,15],[16,17]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(1,4),(2,3)],5)
=> [6,3,3,3]
=> [[1,2,3,4,5,6],[7,8,9],[10,11,12],[13,14,15]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [8,3,2]
=> [[1,2,3,4,5,6,7,8],[9,10,11],[12,13]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5,3,2,2]
=> [[1,2,3,4,5],[6,7,8],[9,10],[11,12]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> [[1,2,3,4,5],[6,7]]
=> 3 = 4 - 1
([(0,4),(1,3),(2,3),(3,4)],5)
=> [7,2,2]
=> [[1,2,3,4,5,6,7],[8,9],[10,11]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(1,4),(2,3),(2,4)],5)
=> [6,5,3]
=> [[1,2,3,4,5,6],[7,8,9,10,11],[12,13,14]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [7,6]
=> [[1,2,3,4,5,6,7],[8,9,10,11,12,13]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(1,4),(2,3)],5)
=> [6,6,6]
=> [[1,2,3,4,5,6],[7,8,9,10,11,12],[13,14,15,16,17,18]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(1,4),(2,3),(2,4)],5)
=> [10,6]
=> [[1,2,3,4,5,6,7,8,9,10],[11,12,13,14,15,16]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(1,2),(1,4),(2,3)],5)
=> [8,3]
=> [[1,2,3,4,5,6,7,8],[9,10,11]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [5,4]
=> [[1,2,3,4,5],[6,7,8,9]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [6,2,2,2,2]
=> [[1,2,3,4,5,6],[7,8],[9,10],[11,12],[13,14]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> [7,2]
=> [[1,2,3,4,5,6,7],[8,9]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [4,2,2]
=> [[1,2,3,4],[5,6],[7,8]]
=> 4 = 5 - 1
([(0,4),(1,2),(1,4),(4,3)],5)
=> [10]
=> [[1,2,3,4,5,6,7,8,9,10]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(1,2),(1,3)],5)
=> [6,3,3,3]
=> [[1,2,3,4,5,6],[7,8,9],[10,11,12],[13,14,15]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> [6,5,3]
=> [[1,2,3,4,5,6],[7,8,9,10,11],[12,13,14]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> [5,4]
=> [[1,2,3,4,5],[6,7,8,9]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,4),(1,2),(1,3),(3,4)],5)
=> [10,2]
=> [[1,2,3,4,5,6,7,8,9,10],[11,12]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [8]
=> [[1,2,3,4,5,6,7,8]]
=> 0 = 1 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [7,2,2]
=> [[1,2,3,4,5,6,7],[8,9],[10,11]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,3),(0,4),(1,2),(1,4)],5)
=> [8,3,2]
=> [[1,2,3,4,5,6,7,8],[9,10,11],[12,13]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [5,3,2,2]
=> [[1,2,3,4,5],[6,7,8],[9,10],[11,12]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [3,2,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8} - 1
([(0,3),(3,4),(4,1),(4,2)],5)
=> [5,2]
=> [[1,2,3,4,5],[6,7]]
=> 3 = 4 - 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> [8]
=> [[1,2,3,4,5,6,7,8]]
=> 0 = 1 - 1
([(0,4),(3,2),(4,1),(4,3)],5)
=> [8]
=> [[1,2,3,4,5,6,7,8]]
=> 0 = 1 - 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> [[1,2,3,4,5,6]]
=> 0 = 1 - 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> [[1,2,3,4,5],[6,7]]
=> 3 = 4 - 1
([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> [[1,2,3,4,5,6],[7,8]]
=> 4 = 5 - 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [6,2]
=> [[1,2,3,4,5,6],[7,8]]
=> 4 = 5 - 1
([(0,4),(3,5),(4,3),(5,1),(5,2)],6)
=> [6,2]
=> [[1,2,3,4,5,6],[7,8]]
=> 4 = 5 - 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [6,2]
=> [[1,2,3,4,5,6],[7,8]]
=> 4 = 5 - 1
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [7]
=> [[1,2,3,4,5,6,7]]
=> 0 = 1 - 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [6,2]
=> [[1,2,3,4,5,6],[7,8]]
=> 4 = 5 - 1
Description
The major index of a standard tableau minus the weighted size of its shape.
Matching statistic: St001804
Mp00306: Posets rowmotion cycle typeInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
Mp00045: Integer partitions reading tableauStandard tableaux
St001804: Standard tableaux ⟶ ℤResult quality: 8% values known / values provided: 8%distinct values known / distinct values provided: 36%
Values
([],2)
=> [2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> 1
([(0,1)],2)
=> [3]
=> [1,1,1]
=> [[1],[2],[3]]
=> 1
([],3)
=> [2,2,2,2]
=> [4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> 1
([(1,2)],3)
=> [6]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 1
([(0,1),(0,2)],3)
=> [3,2]
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> 2
([(0,2),(2,1)],3)
=> [4]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 1
([(0,2),(1,2)],3)
=> [3,2]
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> 2
([],4)
=> [2,2,2,2,2,2,2,2]
=> [8,8]
=> [[1,2,3,4,5,6,7,8],[9,10,11,12,13,14,15,16]]
=> ? ∊ {1,2,3,3,3,3,3}
([(2,3)],4)
=> [6,6]
=> [2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]]
=> ? ∊ {1,2,3,3,3,3,3}
([(1,2),(1,3)],4)
=> [6,2,2]
=> [3,3,1,1,1,1]
=> [[1,6,7],[2,9,10],[3],[4],[5],[8]]
=> ? ∊ {1,2,3,3,3,3,3}
([(0,1),(0,2),(0,3)],4)
=> [3,2,2,2]
=> [4,4,1]
=> [[1,3,4,5],[2,7,8,9],[6]]
=> ? ∊ {1,2,3,3,3,3,3}
([(0,2),(0,3),(3,1)],4)
=> [7]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 3
([(1,2),(2,3)],4)
=> [4,4]
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> 1
([(0,3),(3,1),(3,2)],4)
=> [4,2]
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 3
([(1,3),(2,3)],4)
=> [6,2,2]
=> [3,3,1,1,1,1]
=> [[1,6,7],[2,9,10],[3],[4],[5],[8]]
=> ? ∊ {1,2,3,3,3,3,3}
([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 3
([(0,3),(1,3),(2,3)],4)
=> [3,2,2,2]
=> [4,4,1]
=> [[1,3,4,5],[2,7,8,9],[6]]
=> ? ∊ {1,2,3,3,3,3,3}
([(0,3),(1,2)],4)
=> [3,3,3]
=> [3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> ? ∊ {1,2,3,3,3,3,3}
([(0,3),(1,2),(1,3)],4)
=> [5,3]
=> [2,2,2,1,1]
=> [[1,4],[2,6],[3,8],[5],[7]]
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> [3,2,2]
=> [3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> 2
([(0,3),(2,1),(3,2)],4)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1
([(0,3),(1,2),(2,3)],4)
=> [7]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> 1
([],5)
=> [2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]
=> [16,16]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16],[17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(3,4)],5)
=> [6,6,6,6]
=> [4,4,4,4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16],[17,18,19,20],[21,22,23,24]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(2,3),(2,4)],5)
=> [6,6,2,2,2,2]
=> [6,6,2,2,2,2]
=> [[1,2,11,12,13,14],[3,4,17,18,19,20],[5,6],[7,8],[9,10],[15,16]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(1,2),(1,3),(1,4)],5)
=> [6,2,2,2,2,2,2]
=> [7,7,1,1,1,1]
=> [[1,6,7,8,9,10,11],[2,13,14,15,16,17,18],[3],[4],[5],[12]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,1),(0,2),(0,3),(0,4)],5)
=> [3,2,2,2,2,2,2,2]
=> [8,8,1]
=> [[1,3,4,5,6,7,8,9],[2,11,12,13,14,15,16,17],[10]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,2),(0,3),(0,4),(4,1)],5)
=> [7,6]
=> [2,2,2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8,11],[10,13],[12]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [7,2,2]
=> [3,3,1,1,1,1,1]
=> [[1,7,8],[2,10,11],[3],[4],[5],[6],[9]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [4,2,2,2]
=> [4,4,1,1]
=> [[1,4,5,6],[2,8,9,10],[3],[7]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(1,3),(1,4),(4,2)],5)
=> [14]
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,3),(0,4),(4,1),(4,2)],5)
=> [7,2,2]
=> [3,3,1,1,1,1,1]
=> [[1,7,8],[2,10,11],[3],[4],[5],[6],[9]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(1,2),(1,3),(2,4),(3,4)],5)
=> [4,4,2,2]
=> [4,4,2,2]
=> [[1,2,7,8],[3,4,11,12],[5,6],[9,10]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> [2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> 4
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,3,3]
=> [3,3,3,1]
=> [[1,3,4],[2,6,7],[5,9,10],[8]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [5,4]
=> [2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [4,2,2]
=> [3,3,1,1]
=> [[1,4,5],[2,7,8],[3],[6]]
=> 3
([(2,3),(3,4)],5)
=> [4,4,4,4]
=> [4,4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(1,4),(4,2),(4,3)],5)
=> [4,4,2,2]
=> [4,4,2,2]
=> [[1,2,7,8],[3,4,11,12],[5,6],[9,10]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,4),(4,1),(4,2),(4,3)],5)
=> [4,2,2,2]
=> [4,4,1,1]
=> [[1,4,5,6],[2,8,9,10],[3],[7]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(2,4),(3,4)],5)
=> [6,6,2,2,2,2]
=> [6,6,2,2,2,2]
=> [[1,2,11,12,13,14],[3,4,17,18,19,20],[5,6],[7,8],[9,10],[15,16]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(1,4),(2,4),(4,3)],5)
=> [4,4,2,2]
=> [4,4,2,2]
=> [[1,2,7,8],[3,4,11,12],[5,6],[9,10]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,4),(1,4),(4,2),(4,3)],5)
=> [4,2,2]
=> [3,3,1,1]
=> [[1,4,5],[2,7,8],[3],[6]]
=> 3
([(1,4),(2,4),(3,4)],5)
=> [6,2,2,2,2,2,2]
=> [7,7,1,1,1,1]
=> [[1,6,7,8,9,10,11],[2,13,14,15,16,17,18],[3],[4],[5],[12]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,4),(1,4),(2,4),(4,3)],5)
=> [4,2,2,2]
=> [4,4,1,1]
=> [[1,4,5,6],[2,8,9,10],[3],[7]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,4),(1,4),(2,4),(3,4)],5)
=> [3,2,2,2,2,2,2,2]
=> [8,8,1]
=> [[1,3,4,5,6,7,8,9],[2,11,12,13,14,15,16,17],[10]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,4),(1,4),(2,3)],5)
=> [6,3,3,3]
=> [4,4,4,1,1,1]
=> [[1,5,6,7],[2,9,10,11],[3,13,14,15],[4],[8],[12]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,4),(1,3),(2,3),(2,4)],5)
=> [8,3,2]
=> [3,3,2,1,1,1,1,1]
=> [[1,7,10],[2,9,13],[3,12],[4],[5],[6],[8],[11]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5,3,2,2]
=> [4,4,2,1,1]
=> [[1,4,7,8],[2,6,11,12],[3,10],[5],[9]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2,2,2,2]
=> [5,5,1]
=> [[1,3,4,5,6],[2,8,9,10,11],[7]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> [2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> 4
([(0,4),(1,3),(2,3),(3,4)],5)
=> [7,2,2]
=> [3,3,1,1,1,1,1]
=> [[1,7,8],[2,10,11],[3],[4],[5],[6],[9]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,4),(1,4),(2,3),(2,4)],5)
=> [6,5,3]
=> [3,3,3,2,2,1]
=> [[1,3,8],[2,5,11],[4,7,14],[6,10],[9,13],[12]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,4),(1,4),(2,3),(3,4)],5)
=> [7,6]
=> [2,2,2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8,11],[10,13],[12]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(1,4),(2,3)],5)
=> [6,6,6]
=> [3,3,3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15],[16,17,18]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(1,4),(2,3),(2,4)],5)
=> [10,6]
=> [2,2,2,2,2,2,1,1,1,1]
=> [[1,6],[2,8],[3,10],[4,12],[5,14],[7,16],[9],[11],[13],[15]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,4),(1,2),(1,4),(2,3)],5)
=> [8,3]
=> [2,2,2,1,1,1,1,1]
=> [[1,7],[2,9],[3,11],[4],[5],[6],[8],[10]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [5,4]
=> [2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(1,3),(1,4),(2,3),(2,4)],5)
=> [6,2,2,2,2]
=> [5,5,1,1,1,1]
=> [[1,6,7,8,9],[2,11,12,13,14],[3],[4],[5],[10]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> [7,2]
=> [2,2,1,1,1,1,1]
=> [[1,7],[2,9],[3],[4],[5],[6],[8]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [4,2,2]
=> [3,3,1,1]
=> [[1,4,5],[2,7,8],[3],[6]]
=> 3
([(0,4),(1,2),(1,4),(4,3)],5)
=> [10]
=> [1,1,1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,4),(1,2),(1,3)],5)
=> [6,3,3,3]
=> [4,4,4,1,1,1]
=> [[1,5,6,7],[2,9,10,11],[3,13,14,15],[4],[8],[12]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,4),(1,2),(1,3),(1,4)],5)
=> [6,5,3]
=> [3,3,3,2,2,1]
=> [[1,3,8],[2,5,11],[4,7,14],[6,10],[9,13],[12]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,2),(0,4),(3,1),(4,3)],5)
=> [5,4]
=> [2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,4),(1,2),(1,3),(3,4)],5)
=> [10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> [[1,10],[2,12],[3],[4],[5],[6],[7],[8],[9],[11]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [7,2,2]
=> [3,3,1,1,1,1,1]
=> [[1,7,8],[2,10,11],[3],[4],[5],[6],[9]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,3),(0,4),(1,2),(1,4)],5)
=> [8,3,2]
=> [3,3,2,1,1,1,1,1]
=> [[1,7,10],[2,9,13],[3,12],[4],[5],[6],[8],[11]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [5,3,2,2]
=> [4,4,2,1,1]
=> [[1,4,7,8],[2,6,11,12],[3,10],[5],[9]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [3,2,2,2,2]
=> [5,5,1]
=> [[1,3,4,5,6],[2,8,9,10,11],[7]]
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8}
([(0,3),(3,4),(4,1),(4,2)],5)
=> [5,2]
=> [2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> 4
([(0,4),(1,2),(2,4),(4,3)],5)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> 1
([(0,4),(3,2),(4,1),(4,3)],5)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> [2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> 4
([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> [2,2,1,1,1,1]
=> [[1,6],[2,8],[3],[4],[5],[7]]
=> 5
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [6,2]
=> [2,2,1,1,1,1]
=> [[1,6],[2,8],[3],[4],[5],[7]]
=> 5
([(0,4),(3,5),(4,3),(5,1),(5,2)],6)
=> [6,2]
=> [2,2,1,1,1,1]
=> [[1,6],[2,8],[3],[4],[5],[7]]
=> 5
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [6,2]
=> [2,2,1,1,1,1]
=> [[1,6],[2,8],[3],[4],[5],[7]]
=> 5
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [7]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> 1
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> [6,2]
=> [2,2,1,1,1,1]
=> [[1,6],[2,8],[3],[4],[5],[7]]
=> 5
Description
The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau. A cylindrical tableau associated with a standard Young tableau T is the skew row-strict tableau obtained by gluing two copies of T such that the inner shape is a rectangle. This statistic equals \max_C\big(\ell(C) - \ell(T)\big), where \ell denotes the number of rows of a tableau and the maximum is taken over all cylindrical tableaux.